Advancing Sustainable Housing in Latin America: A Critical Review of Energy Efficiency, Indoor Environmental Quality, and Policy
Abstract
1. Introduction
1.1. Problem Statement
1.2. Aim and Objectives of the Review
2. Materials and Methods
2.1. Conceptual Framework
2.2. Database Selection and Language Considerations
2.3. Search Strategy and Keyword Justification
2.4. Inclusion and Exclusion Criteria
- Timeframe: Each thematic axis yielded results over two decades old, so the first exclusion criterion was to consider only documents published between 2013 and 2023 to ensure contemporary relevance and reflect post-COVID influence in housing energy use and policy.
- Duplicates and redundancy: Repeated publications, non-accessible full texts, and studies with insufficient methodological detail were removed.
- Document type: Only peer-reviewed journal articles within the thematic axes were included. Conference proceedings, book chapters, and the grey literature were excluded.
- Relevance to themes: Studies had to explicitly focus on residential housing in Latin America and address at least one of the thematic axes (energy efficiency, IEQ, or regulation). No typological classification of housing was applied, as residential regulations in LAC typically apply broadly to the housing sector, regardless of typology.
2.5. Analytical Approach
3. Results
3.1. Research-Related Sustainable Governance in Latin American Housing
3.2. Energy Efficiency in Housing in Latin America
3.2.1. Building Systems and Design Factors for Thermal Comfort
3.2.2. Social Factors and Energy Policies
3.3. IEQ in Latin America
3.3.1. IEQ Assessments
3.3.2. Systems to Improve Indoor Air Quality
3.3.3. Cooking and Heating Practices Impacts on Health
- Heating and cooling systems.
- Food cooking systems.
- Substituting and validating cleaner practices.
3.4. Housing and Efficiency Legislation in Latin America
3.4.1. Environmental Quality and Energy Efficiency Regulations in Latin America
Country | Policy | Aim [Source] |
---|---|---|
Mexico | NOM-024-ENER-2012 | Double glazing [79] |
Mexico | NMX-C-460-ONNCCE-2019 1 | Thermal insulation [94] |
Mexico | NMX-U-125-SCFI-2016 | Reflective finish envelope [81] |
Mexico | NOM-018-ENER-2011 | Thermal-insulating materials [82] |
Mexico | NOM-008-ENER-2011 | Energy efficiency envelope for non-residential buildings [83] |
Mexico | NOM-020-ENER-2011 | Energy efficiency building envelope for residential use [77] |
Mexico | PROY-NOM-172-SEMARNAT-2023 2 | Indoor air quality and health risks [78] |
Peru | EM.110 | Thermal envelope [84] |
Peru | Technical Code for Sustainable Construction 1 | Sustainable building [95] |
Argentina | IRAM standard 11549 | Thermal insulation of building [87] |
Argentina | IRAM standard 11605 | Thermal insulation of buildings—living conditions at home [86] |
Argentina | IRAM standard 11900 | Energy efficiency label of heating for buildings [85] |
Chile | NCh3308:2013 | Ventilation—acceptable indoor air quality [90] |
Chile | NCh3309:2014 | Ventilation and acceptable indoor air quality in low-rise residential buildings [89] |
Brazil | Lei 10.295 | Conservation and rational use of energy [96] |
Colombia | Ley 1955 2019 1 | Guidelines for energy efficiency [92] |
3.4.2. Environmental Sustainability Assessment and Tools
3.4.3. Equitable Access to Clean Energy
4. Discussion
4.1. Towards Context-Sensitive Policy Adaptation
4.2. Persistent Barriers and Evidence Gaps
5. Conclusions
- Deficiencies in residential energy efficiency: Despite the implementation of effective building systems and housing design features for thermal comfort across different climates in the region, vulnerable households still have limited access to efficient technologies and passive design solutions, increasing their dependence on costly mechanical systems and exacerbating energy poverty. While countries such as Mexico, Chile, and Brazil have made progress in the implementation of energy efficiency strategies and the development of regulations, regional inequalities and gaps in implementation and enforcement remain widespread.
- Critical exposure to indoor pollutants: Residents are frequently exposed to harmful levels of indoor air pollutants, including particulate matter, radon, and carbon monoxide, particularly in the absence of proper ventilation or air filtration systems. The persistence of traditional cooking and heating methods and insufficient ventilation in low-income settings significantly increases the health burden on already vulnerable communities. In terms of legislation, a limited inclusion of indoor air quality and health risks in buildings and energy efficiency regulations across the region was observed, which could reduce the health risks to residents from exposure to indoor pollutants.
- Fragmented and insufficient regulatory frameworks: Although some LAC countries have adopted policies and voluntary standards, many lack comprehensive, enforceable regulations that address IEQ alongside energy efficiency. Crucial aspects—such as occupancy rates, user perception, behavioural factors, and environmental justice—are often absent from current frameworks. While regulations on these aspects may exist in some countries at the national or regional level, awareness of these regulations by housing developers and residents is often limited, and monitoring and enforcement of these regulations are not sufficient.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakhsh, S.; Zhang, W.; Ali, K.; Oláh, J. Strategy towards sustainable energy transition: The effect of environmental governance, economic complexity and geopolitics. Energy Strategy Rev. 2024, 52, 101330. [Google Scholar] [CrossRef]
- Buttazzoni, A.; Minaker, L. Exploring the relationships between specific urban design features and adolescent mental health: The case of imageability, enclosure, human scale, transparency, and complexity. Landsc. Urban Plan. 2023, 235, 104736. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Meng, Q.; Li, B.; Caneparo, L. Physical environment research of the family ward for a healthy residential environment. Front. Public Health 2022, 10, 1015718. [Google Scholar] [CrossRef]
- Yglesias-González, M.; Palmeiro-Silva, Y.; Sergeeva, M.; Cortés, S.; Hurtado-Epstein, A.; Buss, D.F.; Hartinger, S.M. Code Red for Health response in Latin America and the Caribbean: Enhancing peoples’ health through climate action. Lancet Reg. Health–Am. 2022, 11, 100248. [Google Scholar] [CrossRef]
- United Nations. Extreme Poverty in Latin America. Available online: https://news.un.org/ (accessed on 2 October 2023).
- Romitti, Y.; Wing, I.S.; Spangler, K.R.; A Wellenius, G.; Galea, S. Inequality in the availability of residential air conditioning across 115 US metropolitan areas. PNAS Nexus 2022, 1, pgac210. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Pastorinho, M.R.; Lanzinha, J.; Monteiro, M. Model for Health Risk Assessment in Portuguese Housing Spaces. Environments 2022, 9, 69. [Google Scholar] [CrossRef]
- UN. ONU Habitat. Available online: https://onuhabitat.org.mx/index.php/contaminacion-automoviles-y-calidad-del-aire (accessed on 2 October 2023).
- Zhuang, X.; Xu, Y.; Zhang, L.; Li, X.; Lu, J. Experiment and numerical investigation of inhalable particles and indoor environment with ventilation system. Energy Build. 2022, 271, 112309. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, C.; Magana-Arachchi, D.; Vithanage, M.; Vanka, K.S.; Palanisami, T.; Masakorala, K.; Wijesekara, H.; Yan, Y.; Bolan, N.; et al. Indoor particulate matter in urban households: Sources, pathways, characteristics, health effects, and exposure mitigation. Int. J. Environ. Res. Public Health 2021, 18, 11055. [Google Scholar] [CrossRef]
- Aksenov, A.A.; Salido, R.A.; Melnik, A.V.; Brennan, C.; Brejnrod, A.; Caraballo-Rodríguez, A.M.; Gauglitz, J.M.; Lejzerowicz, F.; Farmer, D.K.; Vance, M.E.; et al. The molecular impact of life in an indoor environment. Sci. Adv. 2022, 8, eabn8016. [Google Scholar] [CrossRef]
- Yu, C.; Crump, D. Indoor environmental quality—Standards for protection of occupants’ safety, health and environment. Indoor Built Environ. 2010, 19, 499–502. [Google Scholar] [CrossRef]
- Tabadkani, A.; Aghasizadeh, S.; Banihashemi, S.; Hajirasouli, A. Courtyard design impact on indoor thermal comfort and utility costs for residential households: Comparative analysis and deep-learning predictive model. Front. Arch. Res. 2022, 11, 963–980. [Google Scholar] [CrossRef]
- Naboni, E.; Lee, D.S.-H.; Fabbri, K. Thermal Comfort-CFD maps for Architectural Interior Design. Procedia Eng. 2017, 180, 110–117. [Google Scholar] [CrossRef]
- Sung, W.-T.; Hsiao, S.-J. Building an indoor air quality monitoring system based on the architecture of the Internet of Things. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 153. [Google Scholar] [CrossRef]
- Agarwal, N.; Meena, C.S.; Raj, B.P.; Saini, L.; Kumar, A.; Gopalakrishnan, N.; Kumar, A.; Balam, N.B.; Alam, T.; Kapoor, N.R.; et al. Indoor air quality improvement in COVID-19 pandemic: Review. Sustain. Cities Soc. 2021, 70, 102942. [Google Scholar] [CrossRef]
- Valarezo, A.; Dávila, L.; Bejarano, M.L.; Nolivos, I.; Molina, E.; Schlesinger, S.B.; Gould, C.F.; Jack, D.W. Resilient clean cooking: Maintaining household clean cooking in Ecuador during the COVID-19 pandemic. Energy Sustain. Dev. 2023, 74, 349–360. [Google Scholar] [CrossRef]
- Martinez-Soto, A.; Vera, C.C.A.; Boso, A.; Hofflinger, A.; Shupler, M. Energy poverty influences urban outdoor air pollution levels during COVID-19 lockdown in south-central Chile. Energy Policy 2021, 158, 112571. [Google Scholar] [CrossRef] [PubMed]
- Guzowski, C.; Martin, M.M.I.; Zabaloy, M.F. Energy poverty: Conceptualization and its link to exclusion. Brief review for Latin America. Ambiente Soc. 2021, 24, e00272. [Google Scholar] [CrossRef]
- Thomson, H.; Day, R.; Ricalde, K.; Brand-Correa, L.I.; Cedano, K.; Martinez, M.; Santillán, O.; Triana, Y.D.; Cordova, J.G.L.; Gómez, J.F.M.; et al. Understanding, recognizing, and sharing energy poverty knowledge and gaps in Latin America and the Caribbean—Because conocer es resolver. Energy Res. Soc. Sci. 2022, 87, 102475. [Google Scholar] [CrossRef]
- Silvero, F.; Rodrigues, F.; Montelpare, S.; Spacone, E.; Varum, H. The path towards buildings energy efficiency in South American countries. Sustain. Cities Soc. 2019, 44, 646–665. [Google Scholar] [CrossRef]
- Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. e-Prime 2021, 1, 100002. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef]
- Coenda, V.M. vivienda campesina en América Latina: Hacia la construcción de una definición integral. Estud. Hábitat 2022, 19, e106. [Google Scholar] [CrossRef]
- Barraza-Bracamontes, C.; Íñiguez-Ayón, Y.P.; Íñiguez-Sepúlveda, C.D.; Bojórquez-Morales, G. Habitabilidad de la vivienda social. Caso: Fraccionamiento Urbi Villa del Cedro, Culiacán, Sinaloa. Rev. Cienc. 2022, 5, 387–406. [Google Scholar] [CrossRef]
- Centre for Science and Technology Studies. Visualizing Scientific Landscape. Available online: https://www.vosviewer.com// (accessed on 8 November 2023).
- Mata, É.; Kihila, J.; Wanemark, J.; Cheng, S.; Harris, S.; Sandkvist, F.; Nyberg, T.; Yaramenka, K. Non-technological and behavioral options for decarbonizing buildings—A review of global topics, trends, gaps, and potentials. Sustain. Prod. Consum. 2022, 29, 529–545. [Google Scholar] [CrossRef]
- Fuinhas, J.A.; Koengkan, M.; Santiago, R. The capacity of energy transition to decrease deaths from air pollution: Empirical evidence from Latin America and the Caribbean countries. In Physical Capital Development and Energy Transition in Latin America and the Caribbean; Elsevier: Amsterdam, The Netherlands, 2021; pp. 185–205. [Google Scholar] [CrossRef]
- Charoenkit, S.; Kumar, S. Environmental sustainability assessment tools for low carbon and climate resilient low income housing settlements. Renew. Sustain. Energy Rev. 2014, 38, 509–525. [Google Scholar] [CrossRef]
- The World Bank. Research and Development Expediture (% of GDP). Available online: https://data.worldbank.org/ (accessed on 2 October 2023).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Serrano-Medrano, M.; Masera, O. Patrones de Consumo Energético en el Sector Residencial de México: Un Análisis Desde la Perspectiva de Usos Finales Consejo; Consejo Nacional de Ciencia y Tecnología, Plataforma Nacional Energía Ambiene y Sociedad, Programa Nacional Estratégico de Energía y Cambio Climático: Mexico City, Mexico, 2022; Available online: https://secihti.mx/wp-content/uploads/pronaces/micrositios/energia_y_cambio_climatico/energia/cuadernos_tematicos/Cuaderno_Tematico_I_Pronaces_ECC_ISBN_final.pdf (accessed on 10 December 2023).
- In-Data SpA CDT, Informe Final Uso de la Energía Hogares Chile 2018. 2019. Available online: https://energia.gob.cl/sites/default/files/documentos/informe_final_caracterizacion_residencial_2018.pdf (accessed on 10 December 2023).
- Cóstola, D.; Carreira, G.; Fernandes, L.; Labaki, L. Seasonal Thermal Sensation Vote—An indicator for long-term energy performance of dwellings with no HVAC systems. Energy Build. 2019, 187, 64–76. [Google Scholar] [CrossRef]
- Marincic, I.; Ochoa, J.; Alpuche, M.; González, I. Comparative analysis of the thermal behavior between cellular concrete blocks and stabilized earth blocks as wall materials. Energy Procedia 2014, 57, 1783–1791. [Google Scholar] [CrossRef]
- Flores-Larsen, S.; Filippín, C. Energy efficiency, thermal resilience, and health during extreme heat events in low-income housing in Argentina. Energy Build. 2021, 231, 110576. [Google Scholar] [CrossRef]
- Romero-Pérez, C.K.; Rodríguez-Muñoz, N.A.; Alpuche-Cruz, M.G.; Martín-Domínguez, I.R. Preliminary study of the condition of social housing in the city of Durango, México. Energy Procedia 2017, 134, 29–39. [Google Scholar] [CrossRef]
- Alpuche, M.G.; González, I.; Ochoa, J.M.; Marincic, I.; Duarte, A.; Valdenebro, E. Influence of Absorptance in the Building Envelope of Affordable Housing in Warm Dry Climates. Energy Procedia 2014, 57, 1842–1850. [Google Scholar] [CrossRef]
- Barrios, G.; Huelsz, G.; Rojas, J.; Ochoa, J.; Marincic, I. Envelope wall/roof thermal performance parameters for non air-conditioned buildings. Energy Build. 2012, 50, 120–127. [Google Scholar] [CrossRef]
- Reyes-Barajas, K.D.; Romero-Moreno, R.A.; Luna-León, A.; Olvera-García, D.; Sotelo-Salas, C.; Bojórquez-Morales, G. Economic feasibility of passive strategies for energy efficient envelopes of mass-built housing in hot-dry climate. Int. J. Energy Prod. Manag. 2021, 6, 129–142. [Google Scholar] [CrossRef]
- López-Escamilla, Á.; Herrera-Limones, R.; León-Rodríguez, Á.L. Evaluation of environmental comfort in a social housing prototype with bioclimatic double-skin in a tropical climate. Build. Environ. 2022, 218, 109119. [Google Scholar] [CrossRef]
- Medrano-Gómez, L.E.; Izquierdo, A.E. Social housing retrofit: Improving energy efficiency and thermal comfort for the housing stock recovery in Mexico. Energy Procedia 2017, 121, 41–48. [Google Scholar] [CrossRef]
- Agurto, L.; Allacker, K.; Fissore, A.; Agurto, C.; De Troyer, F. Design and experimental study of a low-cost prefab Trombe wall to improve indoor temperatures in social housing in the Biobío region in Chile. Sol. Energy 2020, 198, 704–721. [Google Scholar] [CrossRef]
- Bonaccorso, N.; da Graça, G.C. Low-cost DIY thermal upgrades for overheating mitigation in slum houses in Latin America & Caribbean. Energy Build. 2022, 271, 112319. [Google Scholar] [CrossRef]
- Filippín, C.; Larsen, S.F. Summer thermal behaviour of compact single family housing in a temperate climate in Argentina. Renew. Sustain. Energy Rev. 2012, 16, 3439–3455. [Google Scholar] [CrossRef]
- Molina, C.; Jones, B.; Hall, I.P.; Sherman, M.H. CHAARM: A model to predict uncertainties in indoor pollutant concentrations, ventilation and infiltration rates, and associated energy demand in Chilean houses. Energy Build. 2021, 230, 110539. [Google Scholar] [CrossRef]
- Arvizu-Piña, V.A.; López, J.F.A.; González, A.A.G.; Alarcón, I.G.B. An open access online tool for LCA in building’s early design stage in the Latin American context. A screening LCA case study for a bioclimatic building. Energy Build. 2023, 295, 113269. [Google Scholar] [CrossRef]
- Guillén-Mena, V.; Quesada, F. Assessment model of energy performance in housing of Cuenca, Ecuador. Ain Shams Eng. J. 2019, 10, 897–905. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Marín-Restrepo, L.; Contreras-Espinoza, S.; Bienvenido-Huertas, D. Do we need complex and multidimensional indicators to assess energy poverty? The case of the Chilean indicator. Energy Build. 2023, 295, 113314. [Google Scholar] [CrossRef]
- Brown, P.; Newton, D.; Armitage, R.; Monchuk, L.; Robson, B. Locked down: Ontological security and the experience of COVID-19 while living in poor-quality housing. J. Community Psychol. 2022, 51, 2509–2529. [Google Scholar] [CrossRef] [PubMed]
- Burbank, A.J.; Hernandez, M.L.; Jefferson, A.; Perry, T.T.; Phipatanakul, W.; Poole, J.; Matsui, E.C. Environmental justice and allergic disease: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee and the Diversity, Equity and Inclusion Committee. J. Allergy Clin. Immunol. 2023, 151, 656–670. [Google Scholar] [CrossRef]
- World Economic Forum. The Global Risk Report 2023; World Economic Forum: Geneva, Switzerland, 2023. [Google Scholar]
- Borghi-Silva, A.; Back, G.D.; de Araújo, A.S.G.; Oliveira, M.R.; Goulart, C.d.L.; Silva, R.N.; Bassi, D.; Mendes, R.G.; Arena, R. COVID-19 seen from a syndemic perspective: Impact of unhealthy habits and future perspectives to combat these negative interactions in Latin America. Prog. Cardiovasc. Dis. 2022, 71, 72–78. [Google Scholar] [CrossRef]
- Mundial, B. Cocinar es un Riesgo Para Casi la Mitad de los Latinoamericanos. Available online: https://www.bancomundial.org/es/news/feature/2020/11/11/cocina-energias-modernas-combustibles-limpios-latinoamerica (accessed on 15 October 2023).
- Becerra, M.; Jerez, A.; Valenzuela, M.; Garcés, H.O.; Demarco, R. Life quality disparity: Analysis of indoor comfort gaps for Chilean households. Energy Policy 2018, 121, 190–201. [Google Scholar] [CrossRef]
- Florencia, T.M.; Iván, T.B.; Alejandra, C.H. Health risk assessment of exposure to polycyclic aromatic hydrocarbons in household indoor environments. Environ. Adv. 2022, 7, 100159. [Google Scholar] [CrossRef]
- Tene, T.; Gomez, C.V.; Usca, G.T.; Suquillo, B.; Bellucci, S. Measurement of radon exhalation rate from building materials: The case of Highland Region of Ecuador. Constr. Build. Mater. 2021, 293, 123282. [Google Scholar] [CrossRef]
- McEwen, A.R.; Hsu-Kim, H.; Robins, N.A.; Hagan, N.A.; Halabi, S.; Barras, O.; Richter, D.D.; Vandenberg, J.J. Residential metal contamination and potential health risks of exposure in adobe brick houses in Potosí, Bolivia. Sci. Total Environ. 2016, 562, 237–246. [Google Scholar] [CrossRef]
- Laskari, M.; Karatasou, S.; Santamouris, M. A methodology for the determination of indoor environmental quality in residential buildings through the monitoring of fundamental environmental parameters: A proposed Dwelling Environmental Quality Index. Indoor Built Environ. 2017, 26, 813–827. [Google Scholar] [CrossRef]
- Blanco, E.; Algranti, E.; Cifuentes, L.A.; López-Carrillo, L.; Mora, A.M.; Rodríguez-Guzmán, J.; Rodríguez-Villamizar, L.A.; Veiga, L.H.; Canelo-Aybar, C.; Nieto-Gutierrez, W.; et al. Latin America and the Caribbean Code Against cancer 1st edition: Environment, occupation, and cancer. Cancer Epidemiol. 2023, 86, 102381. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Palma, I.; Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.-I.; Ponce-Caballero, C.; Rieradevall, J. Towards a green sustainable strategy for social neighbourhoods in Latin America: Case from social housing in Merida, Yucatan, Mexico. Habitat Int. 2013, 38, 47–56. [Google Scholar] [CrossRef]
- Velazquez Robles, J.F.; Picó, E.C.; Hosseini, S.A. Environmental performance assessment: A comparison and improvement of three existing social housing projects. Clean. Environ. Syst. 2022, 5, 100077. [Google Scholar] [CrossRef]
- Flamant, G.; Bustamante, W.; Schmitt, C.; Bunster, V.; Osorio, C. Thermal and environmental evaluation of mid-rise social housing retrofit under different climate conditions. J. Build. Eng. 2022, 46, 103724. [Google Scholar] [CrossRef]
- Clark, M.L.; Reynolds, S.J.; Burch, J.B.; Conway, S.; Bachand, A.M.; Peel, J.L. Indoor air pollution, cookstove quality, and housing characteristics in two Honduran communities. Environ. Res. 2010, 110, 12–18. [Google Scholar] [CrossRef]
- Rojas, C.; Simon, F.; Muñiz, I.; Quintana, M.; Irarrazaval, F.; Stamm, C.; Santos, B. Trends in household energy-related GHG emissions during COVID-19 in four Chilean cities. Carbon Manag. 2022, 13, 1–16. [Google Scholar] [CrossRef]
- Cherni, J.A.; Hill, Y. Energy and policy providing for sustainable rural livelihoods in remote locations—The case of Cuba. Geoforum 2009, 40, 645–654. [Google Scholar] [CrossRef]
- Freire-Vinueza, C.; Meneses, K.; Cuesta, G. América Latina: ¿Un paraíso de la contaminación ambiental? Rev. Cienc. Ambient. 2021, 55, 1–18. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A.; Guevara-García, F.J. Fuel Poverty Potential Risk Index in the context of climate change in Chile. Energy Policy 2018, 113, 157–170. [Google Scholar] [CrossRef]
- Alonso, A.; Suárez, R.; Patricio, J.; Escandón, R.; Sendra, J.J. Acoustic retrofit strategies of windows in facades of residential buildings: Requirements and recommendations to reduce exposure to environmental noise. J. Build. Eng. 2021, 41, 102773. [Google Scholar] [CrossRef]
- Fernandez-Guzman, D.; Lavarello, R.; Yglesias-González, M.; Hartinger, S.M.; Rojas-Rueda, D. A scoping review of the health co-benefits of climate mitigation strategies in South America. Lancet Reg. Health–Am. 2023, 26, 100602. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 14 December 2023).
- GB/T18883-2002; Indoor Air Quality Standard. Standardisation Administration of the People’s Republic of China: Beijing, China, 2002. Available online: https://www.codeofchina.com/standard/GBT18883-2022.html (accessed on 16 December 2023).
- World Health Organization. Global Air Quality Guidelines 2021; World Health Organization: Geneva, Switzerland, 2021; pp. 1–16. [Google Scholar]
- Ministerio de Transportes, Movilidad y Agenda Urbana. Conceptos Básicos Sobre la Modificación del Código Técnico de la Edificación; Ministerio de Transportes, Movilidad y Agenda Urbana: Madrid, Spain, 2019; p. 35. Available online: https://www.codigotecnico.org/pdf/GuiasyOtros/Conceptos_basicos_RD_732_2019.pdf (accessed on 14 December 2023).
- Ministerio de la Presidencia. Reglamento de Instalaciones Térmicas en los Edificios. Boletín Off. Estado 2007, 207, 35931–35984. Available online: https://www.boe.es/eli/es/rd/2007/07/20/1027 (accessed on 12 December 2021).
- Hu, Q.; Xue, J.; Liu, R.; Shen, G.Q.; Xiong, F. Green building policies in China: A policy review and analysis. Energy Build. 2023, 278, 112641. [Google Scholar] [CrossRef]
- NOM-020-ENER-2011; Mexican Official Standard. Diario Oficial de la Federación: Mexico City, Mexico, 2011. Available online: https://www.gob.mx/cms/uploads/attachment/file/187244/Resoluci_n_NOM-020-ENER-2011.pdf (accessed on 6 April 2021).
- PROY-NOM-172-SEMARNAT-2023; Guidelines for Obtaining and Communicating the Air Quality and Health Risk Index. Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2023. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5685417&fecha=12/04/2023#gsc.tab=0 (accessed on 13 December 2023).
- NOM-024-ENER-2012; Thermal and Optical Characteristics of Glass and Glazing Systems for Buildings. Labeling and Test Methods. Secretaría de Energía: Mexico City, Mexico, 2012. Available online: https://www.gob.mx/cms/uploads/attachment/file/181663/NOM_024_ENER_2012.pdf (accessed on 13 December 2023).
- NMX-C-460-ONNCCE-2009; Building Industry–Insulation–‘r’ Value for the Housing Envelope by Thermal Zone for Mexican Republic—Specification and Verification. Diario Oficial de la Federación: Mexico City, Mexico, 2009.
- NMX-U-125-SCFI-2016; Building Industry-Buildings-Roof Surfaces with High Solar Reflectance Index-Specifications and Test Methods. Secretaría de Economía: Mexico City, Mexico, 2016. Available online: http://www.economia-nmx.gob.mx/normas/nmx/2010/nmx-u-125-scfi-2016.pdf (accessed on 13 December 2023).
- NOM-018-ENER-2011; Thermal Insulation for Buildings. Characteristics and Test Methods. Secretaría de Energía: Mexico City, Mexico, 2011. Available online: https://www.gob.mx/cms/uploads/attachment/file/181658/NOM_018_ENER_2011.pdf (accessed on 13 December 2023).
- NOM-008-ENER-2001; Mexican Official Standard. National Standardisation Programme: Mexico City, Mexico, 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/181648/NOM_008_ENER_2001.pdf (accessed on 13 December 2023).
- EM. 110 Thermal and Lighting Comfort with Energy Efficiency, Reglamento Nacional de Edificaciones—Licencia de Edificación, Gobierno de Perú; Municipalidad Distrital de Santa María del Mar: Santa María del Mar, Peru, 2016. Available online: https://www.gob.pe/institucion/munisantamariadelmar/informes-publicaciones/2619729-em-110-confort-termico-y-luminico-con-eficiencia-energetica (accessed on 13 December 2023).
- IRAM 11900; Energy Efficiency Label for Heating Buildings. Ministerio de Energía y Minería: Buenos Aires, Argentina, 2017. Available online: https://www.argentina.gob.ar/sites/default/files/vi-_norma_iram_11900-_prestaciones_energeticas_en_viviendas-_ing._veronica_roncoroni_0.pdf (accessed on 13 December 2023).
- IRAM 11605; Acondicionamiento Térmico de Edificios Condiciones de Habitabilidad en Edificios. Instituto Argentino de Normalización: Buenos Aires, Argentina, 2015. Available online: https://arquitectoserdeiro.files.wordpress.com/2015/04/iram-11605.pdf (accessed on 13 December 2023).
- IRAM 11549; Thermal Insulation Building. Instituto Argentino de Normalización: Buenos Aires, Argentina, 2012. Available online: https://materialidad2012.files.wordpress.com/2012/03/11549.pdf (accessed on 13 December 2023).
- IRAM 1739; Thermal Insulation of Building. Instituto Argentino de Normalización: Buenos Aires, Argentina, 2015. Available online: https://arquitectoserdeiro.files.wordpress.com/2015/04/iram-11625.pdf (accessed on 13 December 2023).
- NCh3309-2014; Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings. Instituto Nacional de Normalización: Santiago, Chile, 2014.
- NCh3308:2013; Ventilation—Acceptable Indoor Air Quality. Instituto Nacional de Normalización: Santiago, Chile, 2013. Available online: www.inn.cl (accessed on 13 December 2023).
- Santana, E.A.; Mariano, J.B. Políticas y Programas de Eficiencia Energética. 2023. Available online: https://www.ariae.org/sites/default/files/2017-05/Pol%C3%ADticas%20y%20programas%20de%20eficiencia%20energ%C3%A9tica%20en%20Brasil.pdf (accessed on 14 December 2023).
- Diario Oficial. Ley 1955; Imprenta Nacional de Colombia: Bogotá, Colombia, 2019. Available online: https://downloads.ctfassets.net/27p7ivvbl4bs/2hQ2JUx93yk6ZL6HDC2AsA/3c21426b85bfeeb66eb7f0e2a8d064fe/Ley1955de2019_PND.pdf (accessed on 14 December 2023).
- González-Sancha, R.; Marín-García, D.; Duarte-Pinheiro, M.; Oliveira, M.J. Legal regulation of ventilation rates in homes in Europe 2010–2022: Evolution and comparison study regarding Covid-19 recommendations. Build. Environ. 2022, 226, 109696. [Google Scholar] [CrossRef] [PubMed]
- NMX-C-460-ONNCCE-2009; Industria de la Construccion-Aislamiento Termico-Valor “r” para las Envolventes de Vivienda por Zona Termica para la Republica Mexicana-Especificaciones y Verificacion. Diario Oficial de la Federación: Ciudad de México, Mexico, 2009. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5145106&fecha=03/06/2010#gsc.tab=0 (accessed on 13 December 2023).
- Ministerio de Vivienda Construcción y Saneamiento. Código Técnico de Construcción Sostenible. Available online: https://cdn.www.gob.pe/uploads/document/file/2211934/C%C3%B3digo%20T%C3%A9cnico%20de%20Construcci%C3%B3n%20Sostenible%20-%20Roberto%20Prieto.pdf (accessed on 13 December 2023).
- Presidência da República. LEI No 10.295. Dispõe sobre a Política Nacional de Conservação e Uso Racional de Energia e dá Outras Providências. Available online: https://www.planalto.gov.br/ccivil_03/LEIS/LEIS_2001/L10295.htm (accessed on 14 December 2023).
- NOM-020-ENER-2002; Calculation Tool. Comisión Nacional para el Uso Eficiente de la Energía: Mexico City, Mexico, 2002. Available online: https://www.gob.mx/conuee/acciones-y-programas/herramienta-calculo-nom-020-ener-2001 (accessed on 13 December 2023).
- Christopher, S.; Vikram, M.; Bakli, C.; Thakur, A.K.; Ma, Y.; Ma, Z.; Xu, H.; Cuce, P.M.; Cuce, E.; Singh, P. Renewable energy potential towards attainment of net-zero energy buildings status—A critical review. J. Clean. Prod. 2023, 405, 136942. [Google Scholar] [CrossRef]
- Kear, M.; Wilder, M.O.; Martinez-Molina, K.G.; McCann, L.; Meyer, D. Home thermal security, energy equity and the social production of heat in manufactured housing. Energy Res. Soc. Sci. 2023, 106, 103318. [Google Scholar] [CrossRef]
- Tori, F.; Bustamante, W.; Vera, S. Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries. Energy Policy 2022, 161, 112707. [Google Scholar] [CrossRef]
- Macías, J.S.; Valenzuela, A.L.; Ramírez, A.A.; Escobedo, P.R.; Puente, A.R. Reduction of energy poverty in Mexico by applying an optimization model to residential energy tariffs. Energy Rep. 2023, 9, 3431–3439. [Google Scholar] [CrossRef]
- Segovia-Hernández, J.G.; Hernández, S.; Cossío-Vargas, E.; Sánchez-Ramírez, E. Tackling sustainability challenges in Latin America and Caribbean from the chemical engineering perspective: A literature review in the last 25 years. Chem. Eng. Res. Des. 2022, 188, 483–527. [Google Scholar] [CrossRef]
- Bashir, M.A.; Dengfeng, Z.; Amin, F.; Mentel, G.; Raza, S.A.; Bashir, M.F. Transition to greener electricity and resource use impact on environmental quality: Policy based study from OECD countries. Util. Policy 2023, 81, 101518. [Google Scholar] [CrossRef]
- Gutiérrez Rodríguez, R. Los límites de la política social durante el sexenio de Peña Nieto. Economía. UNAM 2016, 13, 26–62. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-952X2016000300026 (accessed on 26 July 2024). [CrossRef]
- Pereira Jardim, L.; Heredia Martínez, H.L. Conjeturas Sobre el Derecho Social y la Salud en Venezuela. Rev. Latinoam. Derecho Soc. 2014, 18, 3–27. [Google Scholar] [CrossRef]
- Mahlknecht, J.; González-Bravo, R.; Loge, F.J. Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy 2020, 194, 116824. [Google Scholar] [CrossRef]
- Bravo-Orlandini, C.; Gómez-Soberón, J.M.; Valderrama-Ulloa, C.; Sanhueza-Durán, F. Energy, Economic, and Environmental Performance of a Single-Family House in Chile Built to Passivhaus Standard. Sustainability 2021, 13, 1199. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Oliveira, M.; Rubio-Bellido, C.; Marín, D. A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope. Sustainability 2019, 11, 5574. [Google Scholar] [CrossRef]
- Gonzalez-Caceres, A.; Bobadilla, A.; Karlshøj, J. Implementing post-occupancy evaluation in social housing complemented with BIM: A case study in Chile. Build. Environ. 2019, 158, 260–280. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Pulido-Arcas, J.; Rubio-Bellido, C.; Trebilcock, M.; Piderit, B.; Attia, S. Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy Build. 2018, 178, 94–106. [Google Scholar] [CrossRef]
- Fernandes, S. Energy Rehabilitation of Residential Buildings: Proposed Solutions for Bragança City. In Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022), Portalegre, Portugal, 10–12 May 2022; Duque de Brito, P.S., da Costa Sanches Galvão, J.R., Monteiro, P., Panizio, R., Calado, L., Assis, A.C., dos Santos Neves, F., Craveiro, F., de Amorim Almeida, H., Correia Vasco, J.O., et al., Eds.; Springer: Cham, Switzerland, 2023; pp. 68–77. [Google Scholar] [CrossRef]
- Mutani, G.; Alehasin, M.; Yang, H.; Zhang, X.; Felmer, G. Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile. Buildings 2024, 14, 185. [Google Scholar] [CrossRef]
- Rodríguez-Soria, B.; Domínguez-Hernández, J.; Pérez-Bella, J.M.; del Coz-Díaz, J.J. Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss. Renew. Sustain. Energy Rev. 2014, 34, 78–90. [Google Scholar] [CrossRef]
Thematic Axis | Search Codes | Results | Excluded | Included |
---|---|---|---|---|
Energy efficiency in housing | (residential sector or social hous* or hous* or dwelling or residential building) and (Latin America or South America or Southamerica or Mexico or Brazil or Argentina or Peru or Colombia or Venezuela or Chile or Paraguay or Ecuador or Guatemala or Cuba) and (energy systems or energy consumption or energy savings or passive systems or energy efficiency) and (comfort or thermal comfort) | 217 | 95 | 101 |
Indoor environmental quality | (indoor environmental quality or indoor air quality or human health or environmental pollution or pollutants) and (Latin America or South America or Southamerica or Mexico or Brazil or Argentina or Peru or Colombia or Venezuela or Chile or Paraguay or Ecuador or Guatemala or Cuba) and (residential sector or social hous* or hous* or dwelling or residential building) | 435 | 161 | 127 |
Regulations | (public policies or energy policies or environmental policies) and (Latin America or South America or Southamerica or Mexico or Brazil or Argentina or Peru or Colombia or Venezuela or Chile or Paraguay or Ecuador or Guatemala or Cuba) and (residential sector or social hous* or hous* or dwelling or residential building) and (energy systems or energy consumption or energy savings or energy efficiency) | 1148 | 552 | 501 |
Type | Description | Criterion |
---|---|---|
A | Equatorial climates (Tmin ≥ +18 °C) | |
Af | Equatorial rainforest fully humid | Pmin ≥ 60 mm |
Am | Equatorial monsoon | Pann ≥ 25 mm (100–Pmin) |
As | Equatoriral savannah with dry summer | Pmin ≥ 60 mm in summer |
Aw | Equatoriral savannah with dry winter | Pmin ≥ 60 mm in winter |
B | Arid climate (Pann < 10 Pth) | |
BS | Steppe climate | Pann > 5 Pth |
BSk | Cold steppe | Pann > 5 Pth, Tann < +18 °C |
BW | Desert climate | Pann ≤ 5 Pth |
BWh | Hot desert | Tann ≥ +18 °C |
C | Warm temperate climates (−3 °C < Tmin < +18 °C) | |
Cs | Warm temperate climate with dry summer | Psmin < Pwmin, Pwmax > 3 Psmin and Psmin < 40 mm |
Csb | Warm termperate climate with dry and warm (but not hot) summer | Cs precipitation and at least 4 months Tmon ≥ +10 °C |
Cw | Warm temperature climate with dry winter | Pwmin < Psmin and Psmax > 10 Pwmin |
Pollutant | Standard | Limits |
---|---|---|
PM2.5 | NAAQS/EPA [71] | 35 μg/m3 per 24 h |
PM10 | GB/T18883-2002 [76] | 0.15 mg/m3 |
NAAQS/EPA [71] | 150 μg/m3 per 24 h | |
SO2 | GB/T18883-2002 [76] | <0.5 mg/m3 |
NAAQS/EPA [71] | 0.14 ppm per 24 h | |
WHO [73] | 0.012 (1 year) | |
NO2 | GB/T18883-2002 [76] | 0.24 mg/m3 |
NAAQS/EPA [71] | 0.05 ppm per year | |
WHO [73] | 0.02 ppm (1 year) | |
CO | GB/T18883-2002 [76] | <10 mg/m3 |
NAAQS/EPA [71] | 9 ppm per year | |
Canada/WHO [73] | 25 ppm per 1 h | |
Pb | NAAQS/EPA [71] | 15 µg/m3 (3 months) |
WHO [73] | 0.5 µg/m3 (1 year) | |
O3 | NAAQS/EPA [71] | 0.12 ppm per hour |
WHO [73] | 0.064 ppm | |
Formaldehyde | WHO [73] | 0.081 ppm per 0.5 h |
Key Thematic Axis | Strategies |
---|---|
Energy efficiency in housing | Building systems and design factors for thermal comfort Air conditioning: Mexico, Chile [32,33] Passive strategies: Brazil, Chile, Colombia, Mexico, Venezuela, Argentina [36,41,43,44,45] Envelope treatment: Mexico [35,40] Alternative building materials: Mexico [42,47] Design features and bioclimatic design: Mexico, Chile [37,41,49] Building orientation: Ecuador, Mexico [41,42,48] Occupant perception and behaviour: Brazil [34] |
Indoor environmental quality | IEQ assessments to monitor indoor pollutants CO2 levels: Chile [55] Polycyclic aromatic hydrocarbons: Argentina [56] Radon: Ecuador [57] Lead and arsenic: Bolivia [58] Systems to improve IEQ Passive systems: Argentina, Mexico [36,61] Envelope layers and building systems: Mexico, Chile [62,63] Policies for cleaner technologies and energy sources Cleaner and safer cooking and heating systems: Chile [55,65] Improved cookers: Honduras [64] Accessibility and affordability of cleaner energy sources: Chile, Ecuador [17,65] |
Energy efficiency and indoor air quality regulations | Housing energy efficiency standards Building envelope: Mexico, Peru [77,80,84] Thermal insulation: Mexico, Argentina, Chile [80,86,87] Thermal insulating materials: Mexico [82] Double glazing: Mexico [79] Heating: Argentina [85,86] Energy conservation and energy efficiency: Brazil, Colombia [92,96] Indoor air quality standards Ventilation—acceptable indoor air quality: Chile [89,90] Indoor air quality and health risks: Mexico [78] Sustainable buildings Sustainable housing certification: Chile [81,82] Technical code for sustainable construction: Peru [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Torres, C.-E.; Ozawa-Meida, L.; Bienvenido-Huertas, D.; Bassam, A. Advancing Sustainable Housing in Latin America: A Critical Review of Energy Efficiency, Indoor Environmental Quality, and Policy. Sustainability 2025, 17, 6139. https://doi.org/10.3390/su17136139
Vázquez-Torres C-E, Ozawa-Meida L, Bienvenido-Huertas D, Bassam A. Advancing Sustainable Housing in Latin America: A Critical Review of Energy Efficiency, Indoor Environmental Quality, and Policy. Sustainability. 2025; 17(13):6139. https://doi.org/10.3390/su17136139
Chicago/Turabian StyleVázquez-Torres, Claudia-Eréndira, Leticia Ozawa-Meida, David Bienvenido-Huertas, and A. Bassam. 2025. "Advancing Sustainable Housing in Latin America: A Critical Review of Energy Efficiency, Indoor Environmental Quality, and Policy" Sustainability 17, no. 13: 6139. https://doi.org/10.3390/su17136139
APA StyleVázquez-Torres, C.-E., Ozawa-Meida, L., Bienvenido-Huertas, D., & Bassam, A. (2025). Advancing Sustainable Housing in Latin America: A Critical Review of Energy Efficiency, Indoor Environmental Quality, and Policy. Sustainability, 17(13), 6139. https://doi.org/10.3390/su17136139