Assessing the Resilience of Urban Social–Ecological–Technological Systems in the Beijing–Tianjin–Hebei Urban Agglomeration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analytical Framework and Indicator System
2.3. Data Source
2.4. Methods
2.4.1. Entropy–CRITIC Weight Method
2.4.2. Coupling Coordination Degree Model
2.4.3. Standard Deviation Ellipse Model
2.4.4. Modified Gravity Model
2.4.5. Obstacle Degree Model
3. Results
3.1. The SETS Resilience of the BTHUA
3.2. The Spatiotemporal Changes of Coupling Coordination Development in the BTHUA
3.3. Spatial Connection of CCD
3.4. Obstacle Factor Identification
4. Discussion
4.1. The Resilience of the BTHUA
4.2. Policy Implications
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights. 2019, (ST/ESA/SER.A/421). Available online: https://population.un.org/wup/ (accessed on 1 June 2025).
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; McPhearson, T.; Bai, X.; Bettencourt, L.; Brondizio, E.; Colding, J.; Daily, G.; Folke, C.; Grimm, N.; et al. Urbanization in and for the Anthropocene. Npj Urban Sustain. 2021, 1, 6. [Google Scholar] [CrossRef]
- Rose, A. Defining and Measuring Economic Resilience to Disasters. Disaster Prev. Manag. Int. J. 2004, 13, 307–314. [Google Scholar] [CrossRef]
- Tyler, S.; Moench, M. A Framework for Urban Climate Resilience. Clim. Dev. 2012, 4, 311–326. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the Resilient City: Concepts and Strategies for Coping with Climate Change and Environmental Risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Datola, G. Implementing Urban Resilience in Urban Planning: A Comprehensive Framework for Urban Resilience Evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Chen, T.-L.; Li, Y.-E. Building Urban Resilience: Lessons from the COVID-19 Pandemic for Future-Proofing City Infrastructure. J. Urban Manag. 2024. S2226585624001626, advance online publication. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. A/RES/70/1. Available online: https://digitallibrary.un.org/record/3923923?v=pdf (accessed on 1 June 2025).
- United Nations. New Urban Agenda. 2016. A/71/L.23. Available online: https://unhabitat.org/about-us/new-urban-agenda (accessed on 1 June 2025).
- Fang, C.; Yu, D. Urban Agglomeration: An Evolving Concept of an Emerging Phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, R.; Zhang, D.; Zhou, C. Urban Agglomerations in China: Characteristics and Influencing Factors of Population Agglomeration. Chin. Geogr. Sci. 2023, 33, 719–735. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Pena Jardim Gonçalves, L.A. Urban Resilience: A Conceptual Framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, G.; Ghisellini, P.; Yang, Z. Ecological Risk and Resilient Regulation Shifting from City to Urban Agglomeration: A Review. Environ. Impact Assess. Rev. 2024, 105, 107386. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Evol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining Urban Resilience: A Review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Amirzadeh, M.; Sobhaninia, S.; Sharifi, A. Urban Resilience: A Vague or an Evolutionary Concept? Sustain. Cities Soc. 2022, 81, 103853. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2004, 9, art5. [Google Scholar] [CrossRef]
- Allenby, B.; Fink, J. Toward Inherently Secure and Resilient Societies. Science 2005, 309, 1034–1036. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Gunderson, L.H. Emergence, Institutionalization and Renewal: Rhythms of Adaptive Governance in Complex Social-Ecological Systems. J. Environ. Manag. 2016, 165, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhai, G.; Xu, L.; Zhou, S.; Lu, Y.; Liu, H.; Huang, W. Assessment Methods of Urban System Resilience: From the Perspective of Complex Adaptive System Theory. Cities 2021, 112, 103141. [Google Scholar] [CrossRef]
- Adger, W.N. Social and Ecological Resilience: Are They Related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The Emergence of a Perspective for Social–Ecological Systems Analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Cumming, G.S.; Peterson, G.D. Unifying Research on Social–Ecological Resilience and Collapse. Trends Ecol. Evol. 2017, 32, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lei, Y.; Zhuang, M.; Ding, S. The Impact of Climate Change on Urban Resilience in the Beijing-Tianjin-Hebei Region. Sci. Total Environ. 2022, 827, 154157. [Google Scholar] [CrossRef] [PubMed]
- Büyüközkan, G.; Ilıcak, Ö.; Feyzioğlu, O. A Review of Urban Resilience Literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Kapucu, N.; Ge, Y.; Rott, E.; Isgandar, H. Urban Resilience: Multidimensional Perspectives, Challenges and Prospects for Future Research. Urban Gov. 2024, 4, 162–179. [Google Scholar] [CrossRef]
- Ahlborg, H.; Ruiz-Mercado, I.; Molander, S.; Masera, O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability 2019, 11, 2009. [Google Scholar] [CrossRef]
- McPhearson, T.; Cook, E.M.; Berbés-Blázquez, M.; Cheng, C.; Grimm, N.B.; Andersson, E.; Barbosa, O.; Chandler, D.G.; Chang, H.; Chester, M.V.; et al. A Social-Ecological-Technological Systems Framework for Urban Ecosystem Services. One Earth 2022, 5, 505–518. [Google Scholar] [CrossRef]
- Sharifi, A. Resilience of Urban Social-Ecological-Technological Systems (SETS): A Review. Sustain. Cities Soc. 2023, 99, 104910. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Eakin, H.; McPhearson, T. The Role of Infrastructure in Societal Transformations. Curr. Opin. Environ. Sustain. 2022, 57, 101207. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.J.; Olazabal, M.; Minucci, G. Resilience Trade-Offs: Addressing Multiple Scales and Temporal Aspects of Urban Resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef]
- Kaika, M. ‘Don’t Call Me Resilient Again!’: The New Urban Agenda as Immunology … or … What Happens When Communities Refuse to Be Vaccinated with ‘Smart Cities’ and Indicators. Environ. Urban. 2017, 29, 89–102. [Google Scholar] [CrossRef]
- Andersson, E.; Haase, D.; Kronenberg, J.; Langemeyer, J.; Mascarenhas, A.; Wolff, M.; Elmqvist, T. Based on Nature, Enabled by Social-Ecological-Technological Context: Deriving Benefit from Urban Green and Blue Infrastructure. Ecol. Soc. 2022, 27, 18. [Google Scholar] [CrossRef]
- Ariyaningsih; Shaw, R. Integration of SETS (Social–Ecological–Technological Systems) Framework and Flood Resilience Cycle for Smart Flood Risk Management. Smart Cities 2022, 5, 1312–1335. [Google Scholar] [CrossRef]
- Chester, M.V.; Miller, T.R.; Muñoz-Erickson, T.A.; Helmrich, A.M.; Iwaniec, D.M.; McPhearson, T.; Cook, E.M.; Grimm, N.B.; Markolf, S.A. Sensemaking for Entangled Urban Social, Ecological, and Technological Systems in the Anthropocene. Npj Urban Sustain. 2023, 3, 39. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J. Interactive Coercive Relationship and Spatio-Temporal Coupling Coordination Degree between Tourism Urbanization and Eco-Environment: A Case Study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Bixler, R.P.; Lieberknecht, K.; Leite, F.; Felkner, J.; Oden, M.; Richter, S.M.; Atshan, S.; Zilveti, A.; Thomas, R. An Observatory Framework for Metropolitan Change: Understanding Urban Social–Ecological–Technical Systems in Texas and Beyond. Sustainability 2019, 11, 3611. [Google Scholar] [CrossRef]
- Liu, L.; Caloz, C.; Chang, C.-C.; Itoh, T. Forward Coupling Phenomena between Artificial Left-Handed Transmission Lines. J. Appl. Phys. 2002, 92, 5560–5565. [Google Scholar] [CrossRef]
- Comfort, L.K.; Dunn, M.; Johnson, D.; Skertich, R.; Zagorecki, A. Coordination in Complex Systems: Increasing Efficiency in Disaster Mitigation and Response. Int. J. Emerg. Manag. 2004, 2, 62. [Google Scholar] [CrossRef]
- Lin, Y.; Peng, C.; Chen, P.; Zhang, M. Conflict or Synergy? Analysis of Economic-Social- Infrastructure-Ecological Resilience and Their Coupling Coordination in the Yangtze River Economic Belt, China. Ecol. Indic. 2022, 142, 109194. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Mu, H.; Miao, J.; Li, W.; Li, M. Assessment of Urban Resilience and Subsystem Coupling Coordination in the Beijing-Tianjin-Hebei Urban Agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, H.; Chen, L.; Huang, H.; Chang, M. Urban Resilience Assessment and Multi-Scenario Simulation: A Case Study of Three Major Urban Agglomerations in China. Environ. Impact Assess. Rev. 2025, 111, 107734. [Google Scholar] [CrossRef]
- McPhearson, T.; Haase, D.; Kabisch, N.; Gren, Å. Advancing Understanding of the Complex Nature of Urban Systems. Ecol. Indic. 2016, 70, 566–573. [Google Scholar] [CrossRef]
- Ma, X.; Chen, X.; Du, Y.; Zhu, X.; Dai, Y.; Li, X.; Zhang, R.; Wang, Y. Evaluation of Urban Spatial Resilience and Its Influencing Factors: Case Study of the Harbin–Changchun Urban Agglomeration in China. Sustainability 2022, 14, 2899. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, P.; Jiang, J.; Zhai, J.; Chen, Y. Temporal and Spatial Analysis of Coupling Coordination in Beijing–Tianjin–Hebei Urban Agglomeration: Ecology, Environment and Economy. Land 2024, 13, 512. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Folke, C.; Polasky, S.; Rockström, J.; Galaz, V.; Westley, F.; Lamont, M.; Scheffer, M.; Österblom, H.; Carpenter, S.R.; Chapin, F.S.; et al. Our Future in the Anthropocene Biosphere. Ambio 2021, 50, 834–869. [Google Scholar] [CrossRef] [PubMed]
- Omri, A. Technological Innovation and Sustainable Development: Does the Stage of Development Matter? Environ. Impact Assess. Rev. 2020, 83, 106398. [Google Scholar] [CrossRef]
- Krueger, E.H.; Constantino, S.M.; Centeno, M.A.; Elmqvist, T.; Weber, E.U.; Levin, S.A. Governing Sustainable Transformations of Urban Social-Ecological-Technological Systems. Npj Urban Sustain. 2022, 2, 10. [Google Scholar] [CrossRef]
- Wellmann, T.; Andersson, E.; Knapp, S.; Lausch, A.; Palliwoda, J.; Priess, J.; Scheuer, S.; Haase, D. Reinforcing Nature-Based Solutions through Tools Providing Social-Ecological-Technological Integration. Ambio 2023, 52, 489–507. [Google Scholar] [CrossRef]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Meza Prado, K.A.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-Ecological and Technological Factors Moderate the Value of Urban Nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Zhang, L.; Liu, X. Synergetic Development of “Water Resource–Water Environment–Socioeconomic Development” Coupling System in the Yangtze River Economic Belt. Water 2022, 14, 2851. [Google Scholar] [CrossRef]
- Cinner, J.E.; Barnes, M.L. Social Dimensions of Resilience in Social-Ecological Systems. One Earth 2019, 1, 51–56. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Dong, S.; Ren, G.; Xue, Y.; Liu, K. Urban Green Innovation’s Spatial Association Networks in China and Their Mechanisms. Sustain. Cities Soc. 2023, 93, 104536. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.; Wang, L.; Zhang, X.; Du, Y.; Liu, J. Key Indicators of High-Quality Urbanization Affecting Eco-Environmental Quality in Emerging Urban Agglomerations: Accounting for the Importance Variation and Spatiotemporal Heterogeneity. J. Clean. Prod. 2022, 376, 134087. [Google Scholar] [CrossRef]
- Ahmad, N.; Youjin, L.; Žiković, S.; Belyaeva, Z. The Effects of Technological Innovation on Sustainable Development and Environmental Degradation: Evidence from China. Technol. Soc. 2023, 72, 102184. [Google Scholar] [CrossRef]
- Balland, P.-A.; Rigby, D.; Boschma, R. The Technological Resilience of US Cities. Camb. J. Reg. Econ. Soc. 2015, 8, 167–184. [Google Scholar] [CrossRef]
- Zafar, S.; Alamgir, Z.; Rehman, M.H. An Effective Blockchain Evaluation System Based on Entropy-CRITIC Weight Method and MCDM Techniques. Peer Peer Netw. Appl. 2021, 14, 3110–3123. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Zang, X.; Gao, T.; Gu, H. Spatiotemporal Differentiation and Influencing Factors of the Degree of Resilience Coupling Coordination in the Beijing–Tianjin–Hebei Region, China. Sci. Rep. 2024, 14, 26394. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Duman, Z.; Mao, X.; Cai, B.; Zhang, Q.; Chen, Y.; Gao, Y.; Guo, Z. Exploring the Spatiotemporal Pattern Evolution of Carbon Emissions and Air Pollution in Chinese Cities. J. Environ. Manag. 2023, 345, 118870. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, A.; Jiang, C.; Chen, J.; An, Y.; Yang, P.; Ma, D. Coupling Coordination Analysis and Spatiotemporal Heterogeneity between Urban Land Green Use Efficiency and Ecosystem Services in Yangtze River Economic Belt, China. Humanit. Soc. Sci. Commun. 2024, 11, 1328. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the Spatial Association Network Structure of China’s Transportation Carbon Emissions and Its Driving Factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Capoani, L. Review of the Gravity Model: Origins and Critical Analysis of Its Theoretical Development. SN Bus. Econ. 2023, 3, 95. [Google Scholar] [CrossRef]
- Yin, Z.; Tang, Y.; Liu, H.; Dai, L. Coupling Coordination Relationship between Tourism Economy-Social Welfare-Ecological Environment: Empirical Analysis of Western Area, China. Ecol. Indic. 2023, 155, 110938. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of Ecological City and Analysis of Obstacle Factors under the Background of High-Quality Development: Taking Cities in the Yellow River Basin as Examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, S.; Xu, L.; Xu, H.; Guan, N. Resilience Assessment and Obstacle Factor Analysis of Urban Areas Facing Waterlogging Disasters: A Case Study of Shanghai, China. Environ. Sci. Pollut. Res. 2023, 30, 65455–65469. [Google Scholar] [CrossRef] [PubMed]
- Shah, W.U.H.; Hao, G.; Yan, H.; Yasmeen, R.; Xu, X. Natural Resources Utilization Efficiency Evaluation, Determinant of Productivity Change, and Production Technology Heterogeneity across Developed and Developing G20 Economies. Technol. Soc. 2024, 77, 102507. [Google Scholar] [CrossRef]
- Cao, L.; Wang, K.; Zhao, X.; Zhang, Y. Optimizing Composite Ecological Networks through Synergistic Risk Management, Ecological Conservation, and Recreational Integration: A Case Study of Beijing’s Shallow Mountain Regions. Ecol. Indic. 2025, 170, 113026. [Google Scholar] [CrossRef]
- Han, H.; Guo, L.; Zhang, J.; Zhang, K.; Cui, N. Spatiotemporal Analysis of the Coordination of Economic Development, Resource Utilization, and Environmental Quality in the Beijing-Tianjin-Hebei Urban Agglomeration. Ecol. Indic. 2021, 127, 107724. [Google Scholar] [CrossRef]
- Kim, Y.; Carvalhaes, T.; Helmrich, A.; Markolf, S.; Hoff, R.; Chester, M.; Li, R.; Ahmad, N. Leveraging SETS Resilience Capabilities for Safe-to-Fail Infrastructure under Climate Change. Curr. Opin. Environ. Sustain. 2022, 54, 101153. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Lin, W.; Yang, F.; Li, Y.; Tao, J.; Cheng, S. Urban Resilience Assessment from the Multidimensional Perspective Using Dynamic Bayesian Network: A Case Study of Fujian Province, China. Reliab. Eng. Syst. Saf. 2023, 238, 109469. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, J. Evaluation of Ecological Network Resilience Using OWA and Attack Scenario Simulation in the Gansu Section of the Yellow River Basin, NW China. Environ. Res. Commun. 2024, 6, 085016. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhang, H.; Yin, R.; Liu, C.; Wang, Z.; Fu, F.; Zhao, J. The Spatial-Temporal Evolution and Driving Mechanism of Urban Resilience in the Yellow River Basin Cities. J. Clean. Prod. 2024, 447, 141614. [Google Scholar] [CrossRef]
- Lo, C.-P. Technological Sanctions, Research Capacity, and Unintended Consequences. Int. Rev. Econ. Financ. 2025, 98, 103942. [Google Scholar] [CrossRef]
- Buettel, J.C.; Lindenmayer, D.B.; Scheele, B.C.; Evans, M.J. Maintaining Robust Terrestrial Ecological Monitoring amid Technological Advancements. Trends Ecol. Evol. 2025. S0169534725000928, advance online publication. [Google Scholar] [CrossRef]
Subsystem | Dimension | Indicator | Unit | Property * | Weight † |
---|---|---|---|---|---|
Social Resilience | Economic strength | Per capita GDP | yuan | Positive | 0.12 |
Per capita disposal income of urban resident | yuan | Positive | 0.10 | ||
Proportion of the secondary and tertiary industry added value in GDP | % | Positive | 0.08 | ||
Public service | Number of doctors per 10,000 people | person | Positive | 0.10 | |
Number of students in colleges and universities | person | Positive | 0.21 | ||
Number of employees participating in basic endowment insurance per 10,000 people | person | Positive | 0.11 | ||
Social stability | Index of urban–rural income gap | % | Negative | 0.08 | |
Annual growth rate of permanent resident population | % | Positive | 0.05 | ||
Proportion of financial expenditures on social security and employment | % | Positive | 0.14 | ||
Ecological Resilience | Resource endowment | Water resource per capita | m3 | Positive | 0.13 |
Landscape pattern | Land area per 10,000 people | km2 | Positive | 0.23 | |
Green space per capita | m2 | Positive | 0.10 | ||
Edge density index | - | Negative | 0.13 | ||
Aggregation Index | - | Positive | 0.10 | ||
Ratio of impervious area | % | Negative | 0.09 | ||
Ecological quality | PM 2.5 | μg/m3 | Negative | 0.08 | |
Gross primary productivity | gC/m2 | Positive | 0.10 | ||
Fraction Vegetation Coverage | % | Positive | 0.05 | ||
Technological Resilience | Infrastructure | Number of subscribers of internet per 10,000 household | number | Positive | 0.11 |
Urban road area per capita | m2 | Positive | 0.07 | ||
The density of water supply pipes in built-up areas | km/km2 | Positive | 0.11 | ||
Technological innovation | Number of patents granted per 10,000 people | piece | Positive | 0.19 | |
Proportion of financial expenditures on science and technology | % | Positive | 0.18 | ||
R&D investment intensity | % | Positive | 0.15 | ||
Technical performance | CO2 emissions per CNY 10,000 of GDP | ton | Negative | 0.07 | |
Water consumption per CNY 10,000 of GDP | ton | Negative | 0.06 | ||
Volume of sulfur dioxide emission per 10,000 GDP | ton | Negative | 0.05 |
Level | CCD Value | Stage |
---|---|---|
Extreme imbalance | 0.000~0.200 | Disorder stage |
High imbalance | 0.201~0.300 | |
Moderate imbalance | 0.301~0.400 | Transition stage |
Low imbalance | 0.401~0.500 | |
Primary coordination | 0.501~0.600 | |
Moderate coordination | 0.601~0.700 | Coordination stage |
Good coordination | 0.701~0.800 | |
Excellent coordination | 0.801~1.000 |
Year | CenterX | CenterY | XStdDist | YStdDist | Rotation (°) | Flatness (%) |
---|---|---|---|---|---|---|
2010 | 2,527,964.198 | 4,597,275.394 | 126.340 | 255.172 | 22.243 | 50.488 |
2014 | 2,525,369.788 | 4,590,548.178 | 128.740 | 259.588 | 21.791 | 50.406 |
2018 | 2,526,436.333 | 4,596,557.055 | 129.802 | 259.881 | 20.856 | 50.053 |
2022 | 2,525,910.888 | 4,596,941.887 | 130.568 | 259.767 | 20.864 | 49.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, L.; Xie, J.; Lei, S.; Mou, X.; Duan, C.; Wang, X. Assessing the Resilience of Urban Social–Ecological–Technological Systems in the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability 2025, 17, 6099. https://doi.org/10.3390/su17136099
Huang J, Zhang L, Xie J, Lei S, Mou X, Duan C, Wang X. Assessing the Resilience of Urban Social–Ecological–Technological Systems in the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability. 2025; 17(13):6099. https://doi.org/10.3390/su17136099
Chicago/Turabian StyleHuang, Jin, Liping Zhang, Jing Xie, Shuo Lei, Xuejie Mou, Cheng Duan, and Xiahui Wang. 2025. "Assessing the Resilience of Urban Social–Ecological–Technological Systems in the Beijing–Tianjin–Hebei Urban Agglomeration" Sustainability 17, no. 13: 6099. https://doi.org/10.3390/su17136099
APA StyleHuang, J., Zhang, L., Xie, J., Lei, S., Mou, X., Duan, C., & Wang, X. (2025). Assessing the Resilience of Urban Social–Ecological–Technological Systems in the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability, 17(13), 6099. https://doi.org/10.3390/su17136099