Assessment of Different Sampling, Sample Preparation and Analysis Methods Addressing Microplastic Concentration and Transport in Medium and Large Rivers Based on Research in the Danube River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Methodologies
2.1.1. Multi-Depth Net Method
2.1.2. Pressurized Fractionated Filtration
2.1.3. Sedimentation Box
2.2. Site Specific Parameter Selection
2.3. Sample Preparation and Analysis
2.3.1. Procedure for Collecting Net Samples
2.3.2. Procedure for Fractionated Filtration Samples
2.3.3. Procedure for Sedimentation Box Samples
3. Results
3.1. Comparison of Sampling Procedures
3.2. Comparison of Sample Preparation and Analysis
3.3. Comparison of Achieved Data
4. Discussion
5. Conclusions
- (1)
- The sedimentation box provides a methodology giving initial insights, allowing for cheap and quick studies concentrating on MP quality.
- (2)
- Sampling with pressurized fractionated filtration has advantages regarding practicability, costs and handling, addressing the smallest MP particles and the subsequent preparation of samples and their analysis. It can therefore be recommended for studies addressing the smallest MP share and the particle number.
- (3)
- With the net-based device it is possible to address both the MP particle and mass concentration. As it can be applied at various verticals and in multiple points over the whole water column, spatial variability is taken into account and therefore MP transport can be determined. When performing repeated measurements covering the discharge spectrum, rating curves can be established, creating a basis for MP yield calculations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waller, C.L.; Griffiths, H.J.; Waluda, C.M.; Thorpe, S.E.; Loaiza, I.; Moreno, B.; Pacherres, C.O.; Hughes, K.A. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 2017, 598, 220–227. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, H.H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.B.O.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-distance atmospheric transport of microplastic fibres influenced by their shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Liu, M.T.; Song, Y.; Lu, S.B.; Qiu, R.; Hu, J.N.; Li, X.Y.; Bigalke, M.; Shi, H.H.; He, D.F. A method for extracting soil microplastics through circulation of sodium bromide solutions. Sci. Total Environ. 2019, 691, 341–347. [Google Scholar] [CrossRef]
- Wong, J.K.H.; Lee, K.K.; Tang, K.H.D.; Yap, P.S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 2020, 719, 137512. [Google Scholar] [CrossRef]
- Yu, J.; Adingo, S.; Liu, X.; Li, X.; Sun, J.; Zhang, X. Micro plastics in soil ecosystem—A review of sources, fate, and ecological impact. Plant Soil Environ. 2022, 68, 1–17. [Google Scholar] [CrossRef]
- Wainkwa, C.h.R.; Lee, J.Y.; Kim, H.; Jang, J. Microplastic pollution in soil and groundwater: A review. Environ. Chem. Lett. 2021, 19, 4211–4224. [Google Scholar]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilala, M.; Barceló, D.; Iqbal, H. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics-the Facts 2018. An Analysis of European Plastics Production, Demand and Waste Data. 2018. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2018-Plastics-the-facts.pdf (accessed on 18 August 2020).
- Pathak, A.; Singh, L.K. Chapter 14-Impact of microplastics and nanoplastics interactions with other contaminants in environment. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 333–359. [Google Scholar]
- Narevski, A.; Novaković, M.; Petrović, M.; Mihajlović, I.; Maoduš, N.; Vujić, G. Occurrence of bisphenol A and microplastics in landfill leachate: Lessons from South East Europe. Environ. Sci. Pollut. Res. 2021, 28, 42196–42203. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Uddin, M.K.; Rahman, M.M. Microplastics contamination in the soil from urban landfill site, Dhaka, Bangladesh. Heliyon 2020, 6, e05572. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Wu, D.; Zhan, L.; Shi, H.; Xie, B. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res. 2019, 164, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.K.; Sachdeva, P. Microplastics’ origin, distribution, and rising hazard to aquatic organisms and human health: Socio-economic insinuations and management solutions. Reg. Stud. Mar. Sci. 2021, 48, 102018. [Google Scholar] [CrossRef]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef]
- Mani, T.; Burkhardt-Holm, P. Seasonal microplastics variation in nival and pluvial stretches of the Rhine River—From the Swiss catchment towards the North Sea. Sci. Total Environ. 2020, 707, 135579. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Lenz, S.; Mayerhofer, J.; Obersteiner, G. Study on Assessment of Microplastic Measurements Under Different Conditions in Fluvial Systems. Project Report Interreg DTP Tid(y)Up. Available online: https://www.interreg-danube.eu/uploads/media/approved_project_output/0001/56/fc78aec3f977dfe372db93ed0423f2bc559955cf.pdf (accessed on 13 June 2025).
- Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the ocean: Contamination of freshwater ecosystems with (micro-) plastic particles. Environ. Chem. 2015, 12, 539–550. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.K.; Roberts, S.; Jürgens, M.; Johnson, A.; Davis, C.; Gouin, T. Ensuring representative sample volume predictions in microplastic monitoring. Microplast. Nanoplast. 2025, 5, 5. [Google Scholar] [CrossRef]
- Giardino, M.; Balestra, V.; Janner, D.; Bellopede, R. Automated method for routine microplastic detection and quantification. Sci. Total Environ. 2023, 859, 160036. [Google Scholar] [CrossRef] [PubMed]
- Balestra, V.; Bellopede, R. Microplastic pollution in show cave sediments: First evidence and detection technique. Environ. Pollut. 2022, 292, 118261. [Google Scholar] [CrossRef]
- Cannas, S.; Fastelli, P.; Guerranti, C.; Renzi, M. Plastic litter in sediments from the coasts of south Tuscany (Tyrrhenian Sea). Mar. Pollut. Bull. 2017, 119, 372–375. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- International Organization for Standardization. ISO 24187:2023 Principles for the Analysis of Microplastics Present in the Environment, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2023; p. 21. [Google Scholar]
- International Organization for Standardization. ISO 5667-27:2025 Water Quality—Sampling, Part 27: Guidance on Sampling for Microplastics in Water, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2025. [Google Scholar]
- Syberg, K.; Khan, F.R.; Selck, H.; Palmqvist, A.; Banta, G.T.; Daley, J.; Sano, L.; Duhaime, M.B. Microplastics: Addressing ecological risk through lessons learned. Environ. Toxicol. Chem. 2015, 34, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trend Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- González-Fernández, D.; Hanke, G.; Tweehuysen, G.; Bellert, B.; Holzhauer, M.; Palatinus, A.; Hohenblum, P.; Oosterbaan, L. Riverine Litter Monitoring-Options and Recommendations; MSFD GES TG Marine Litter Thematic Report; JRC Technical Report; Joint Research Centre (JRC): Luxembourg, 2016. [Google Scholar]
- Besley, A.; Vijver, M.G.; Behrens, P.; Bosker, T. A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar. Pollut. Bull. 2017, 114, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Liedermann, M.; Gmeiner, P.; Pessenlehner, S.; Haimann, M.; Hohenblum, P.; Habersack, H. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water 2018, 10, 414. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Bordós, G.; Gergely, S.; Háhn, J.; Palotai, Z.; Szabó, É.; Besenyő, G.; Salgó, A.; Harkai, P.; Kriszt, B.; Szoboszlay, S. Validation of pressurized fractionated filtration microplastic sampling in controlled test environment. Water Res. 2021, 189, 116572. [Google Scholar] [CrossRef]
- Kittner, M.; Kerndorff, A.; Ricking, A.; Bednarz, M.; Obermaier, N.; Lukas, M.; Asenova, M.; Bordós, G.; Eisentraut, P.; Hohenblum Ph Hudcova, H.; et al. Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analaytical Approach. ACS ES&T Water 2022, 2, 1174–1181. [Google Scholar]
- ICPDR 2021. “The Danube River Basin—Facts and Figures.” Downloaded in February 2023. Available online: https://www.icpdr.org/main/danube-basin-facts-and-figures-brochure (accessed on 25 July 2024).
- UBA. Mikroplastik in der Umwelt; Umweltbundesamt: Vienna, Austria, 2015. [Google Scholar]
- Adomat, Y.; Grischek, T. Sampling and processing methods of microplastics in river sediments—A review. Sci. Total Environ. 2021, 758, 143691. [Google Scholar] [CrossRef]
- Berghammer, J. Mikroplastik in Flussproben-Qualitätssicherung und Qualitätskontrolle im Zuge der Probenaufbereitung und -Analytik; Institut für Abfall- und Kreislaufwirtschaft, Universität für Bodenkultur Wien: Wien, Austria, 2022. [Google Scholar]
- Mári, Á.; Bordós, G.; Gergely Sz Büki, M.; Háhn, J.; Palotai, Z.; Besenyő, G.; Szabó, É.; Salgó, A.; Kriszt, B.; Szoboszlay, S. Validation of microplastic sample preparation method for freshwater samples. Water Res. 2021, 202, 117409. [Google Scholar] [CrossRef]
- Brandner, S.M.; Renick, V.; Foley, M.M.; Steele, C.; Woo, M.; Lusher, A.; Carr, S.; Helm, P.; Box, C.; Cherniak, S.; et al. Sampling and quality assurance and quality control: A guide for scientists investigating the occurence of microplastics across matrices. Appl. Spectrosc. 2020, 74, 1099–1125. [Google Scholar] [CrossRef]
- Costa, M.F.; da Costa, P.J.; Duarte, A.C. Sampling of micro(nano)plastics in environmental compartments: How to define standard procedures. Environ. Sci. Health 2018, 1, 36–40. [Google Scholar] [CrossRef]
- van Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef]
- Fok, L.; Lam, T.W.L.; Li, H.-X.; Xu, X.-R. A meta-analysis of methodologies adopted by microplastic studies in China. Sci. Total Environ. 2020, 718, 135371. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Kroon, F.J.; Motti, C.A. Recovering microplastics from marine samples: A review of current practices. Mar. Pollut. Bull. 2017, 123, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Razeghi, N.; Hossein Hamidian, A.; Wu, C.; Zhang, Y.; Yang, M. Microplastic sampling techniques in freshwaters and sediments: A review. Environ. Chem. Lett. 2021, 19, 4225–4252. [Google Scholar] [CrossRef]
- Saravia, C.J.; Ricking, M.; Grathwohl, P.; Bannick, C.G.; Obermaier, N. SurfaceWater Monitoring with Sedimentation Boxes: Assessing the Sampling Performance and Its Effect on Microplastic Concentration. Water 2025, 17, 1152. [Google Scholar] [CrossRef]
Evaluation Criteria | Net Sampling | Fractionated Filtration | Sedimentation Box Shore/Boat |
---|---|---|---|
Practicability/handling | - | o | o |
Duration of | |||
measurement | 20–25 min | 30–40 min | 2 weeks |
preparation and cleaning | ~30 min | <10 min | ~30 min |
Sampling costs (mean values from Austria, Hungary, Serbia and Bulgaria 2021) | €4100 (€2100–€9900) | €1600 (€600–€3500) | €250/€750 (€150/€400–€350/€1800) |
Official approvals (e.g., bridge sampling) | - | o | o |
Necessary skills | - | o | + |
Captured particle size range | 500–5000 µm | 50–1000 µm | <10,000 µm |
Sampled water volume per sample (m3) | 420 (13–1956) | 1.4 (0.5–1.9) | ~200–400 |
Representative sampling over water column | + | + | - |
Representative sampling over river cross-section | + | + | - |
Monitoring targets | Particle number, particle quality and mass | Particle number and particle quality | Particle quality |
Evaluation Criteria | Net Sampling + “Manual” Method (BRUKER Alpha) | Net Sampling + “Automated” Method (BRUKER LUMUS II) | Pressurized Fractionated Filtration + “Automated” Method (Thermo Nicolet iN10 MX) | Sedimentation Box + “Automated” Method (Thermo Nicolet iN10 MX) |
---|---|---|---|---|
Captured particle size range | (250) 500–5000 µm | 500–1000 µm | 50–1000 µm | <1 cm |
Sample composition | − * | − *o | + ** | + *** |
Time for sample preparation | - | -o | + | + |
Time taken for measurement of microplastic particles | - ~1 min/particle | o >3 h/1 cm2 filter | o >3 h/1 cm2 filter | o >3 h/1 cm2 filter |
Estimated costs of sample preparation and analysis per sample | -o | -o | -o | -o |
Evaluation Criteria | Net Sampling + “Manual” Method (BRUKER Alpha) | Net Sampling + “Automated” Method (BRUKER LUMUS II) | Press. Fract. Filtration + “Automated” Method (Thermo Nicolet iN10 MX) | Sediment. Box + “Automated” Method (Thermo Nicolet iN10 MX) |
---|---|---|---|---|
Considered MP size range based on practicability | 500–5000 µm o * | 500–1000 µm o * | 50–1000 µm + * | 50–5000 µm + * |
Determination of MP number | + | + | + | + |
Determination of MP particle concentration (particles × m−3) | + | + | + | n.a. |
Particle shape/size | + | + | + | + |
Particle Weight | o + ** | - | - | - |
Determination of MP particle concentration (g·m−3) | + | - | n.a. | |
Detection of plastic type | o *** | o+ | o+ | o+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obersteiner, G.; Bordos, G.; Lenz, S.; Liedermann, M.; Mayerhofer, J.; Ottner, R.; Pessenlehner, S.; Petrović, M.; Ubavin, D. Assessment of Different Sampling, Sample Preparation and Analysis Methods Addressing Microplastic Concentration and Transport in Medium and Large Rivers Based on Research in the Danube River Basin. Sustainability 2025, 17, 5836. https://doi.org/10.3390/su17135836
Obersteiner G, Bordos G, Lenz S, Liedermann M, Mayerhofer J, Ottner R, Pessenlehner S, Petrović M, Ubavin D. Assessment of Different Sampling, Sample Preparation and Analysis Methods Addressing Microplastic Concentration and Transport in Medium and Large Rivers Based on Research in the Danube River Basin. Sustainability. 2025; 17(13):5836. https://doi.org/10.3390/su17135836
Chicago/Turabian StyleObersteiner, Gudrun, Gabor Bordos, Sabine Lenz, Marcel Liedermann, Johannes Mayerhofer, Reinhold Ottner, Sebastian Pessenlehner, Maja Petrović, and Dejan Ubavin. 2025. "Assessment of Different Sampling, Sample Preparation and Analysis Methods Addressing Microplastic Concentration and Transport in Medium and Large Rivers Based on Research in the Danube River Basin" Sustainability 17, no. 13: 5836. https://doi.org/10.3390/su17135836
APA StyleObersteiner, G., Bordos, G., Lenz, S., Liedermann, M., Mayerhofer, J., Ottner, R., Pessenlehner, S., Petrović, M., & Ubavin, D. (2025). Assessment of Different Sampling, Sample Preparation and Analysis Methods Addressing Microplastic Concentration and Transport in Medium and Large Rivers Based on Research in the Danube River Basin. Sustainability, 17(13), 5836. https://doi.org/10.3390/su17135836