Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. CASA Model
2.3.2. Sen Trend Analysis and Mann–Kendall Test
2.3.3. Hurst Index
2.3.4. OPGD Model
2.3.5. Residual Analysis
3. Results
3.1. Spatiotemporal Evolution Characteristics of Vegetation NPP
3.1.1. Temporal Change Characteristics
3.1.2. Spatial Change Characteristics
3.2. Driving Factor Influence Analysis
3.3. Analysis of Driving Factors for Vegetation NPP
3.3.1. Analysis of Driving Factor Influence
3.3.2. Impact of HAs and CC on the Spatiotemporal Evolution of NPP
4. Discussion
4.1. Spatiotemporal Changes in Vegetation NPP in the LanXi Urban Agglomeration
4.2. Analysis of Vegetation NPP Change Trends in Ecological Transition Zones
4.3. Comparison of Linear and Nonlinear Residual Analysis
4.4. Impact of HAs and CC on NPP in Ecological Transition Zones
4.5. Limitations and Future Prospects
- (1)
- Limited temporal scope: While data from 2000 to 2023 reveal discernible trends, this period is insufficient to fully capture the long-term variation patterns of vegetation NPP in the LanXi urban agglomeration. To improve future trend predictions, subsequent studies should incorporate longer time-series datasets, advanced modeling techniques, and scenario-based projections under various CC conditions.
- (2)
- Ecosystem complexity: This study primarily focuses on NPP changes, yet ecosystem dynamics are multi-factorial and multi-layered. Future research should explore the comprehensive impacts of additional ecological factors, such as soil types, water resource distribution, and others, on vegetation NPP, especially within complex ecological transition zones. It is also important to note that MODIS NPP data products inherently contain some uncertainties. Due to limitations, this study was unable to fully validate NPP results with field measurements, as performed in other studies. Enhancing validation with ground-truth data would improve the rigor of future work.
- (3)
- Refined spatial analysis: Although this study examined the LanXi urban agglomeration as a whole, it lacks detailed quantitative analysis of NPP changes in specific local areas, such as urban expansion zones and the Qinghai–Tibet Plateau–Loess Plateau junction. Future investigations should integrate remote sensing technologies with ground observations to conduct more detailed analyses of NPP variation across various LUs and climatic conditions, further elucidating the interactions between HAs and natural factors.
- (4)
- Integration of multiple models: Future studies should incorporate a broader range of climate and socioeconomic models to enable multi-scenario forecasting. The application of machine learning and other advanced computational techniques can enhance the precision of NPP change predictions. Additionally, improving the modeling of interaction effects among NPP drivers will further increase the accuracy and reliability of future predictions.
5. Conclusions
- (1)
- From 2000 to 2023, vegetation NPP showed an overall fluctuating upward trend, with an average annual increase of 4.26 g C m−2 a−1 and a multi-year mean of 260.23 g C m−2 a−1. Spatially, NPP exhibited significant heterogeneity, with higher values being concentrated in the central region and lower values in the east and west. The proportion of low-NPP areas declined notably, while high-NPP areas increased significantly.
- (2)
- Temporally, about 95% of the region experienced increasing NPP, especially in the central and southeastern zones, whereas slight declines appeared in the northwest and urban expansion areas. The upward trend demonstrated strong persistence.
- (3)
- OPGD analysis identified PRE, MAT, PET, and LU as key drivers explaining vegetation NPP variability. Their interactions further enhanced the explanatory power.
- (4)
- Comparing linear and nonlinear residual analyses revealed the nonlinear model’s clear superiority. Vegetation NPP was mainly governed by the combined influence of HAs and CC, jointly affecting 95.72% of the area. Sole influences of HAs and CC accounted for 1.03% and 3.35%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Peñuelas, J. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Li, J.; Cui, Y.; Liu, J.; Shi, W.; Qin, Y. Estimation and analysis of net primary productivity by integrating MODIS remote sensing data with a light use efficiency model. Ecol. Model. 2013, 252, 3–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J. Geogr. Sci. 2014, 24, 269–287. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Liu, Y. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena 2015, 125, 190–199. [Google Scholar] [CrossRef]
- McGuire, A.D.; Melillo, J.M.; Kicklighter, D.W.; Joyce, L.A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeogr. 1995, 22, 785–796. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Xie, C.; Wu, S.; Zhuang, Q.; Zhang, Z.; Hou, G.; Luo, G.; Hu, Z. Where anthropogenic activity occurs, anthropogenic activity dominates vegetation net primary productivity change. Remote Sens. 2022, 14, 1092. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, Z.Y.; Tong, L.J.; Wang, Q.; Zhou, W.; Wang, Z.Q.; Li, J.L. Spatiotemporal dynamics of China’s grassland NPP and its driving factors. Chin. J. Ecol. 2020, 39, 349–363. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Dai, H.; Geng, G.; Yuan, W.; Chen, J.; Shen, G.; Zhang, T.; Zhu, J.; Liao, H. Recovery of ecosystem productivity in China due to the Clean Air Action plan. Nat. Geosci. 2024, 17, 1233–1239. [Google Scholar] [CrossRef]
- Lv, G.; Li, X.; Fang, L.; Peng, Y.; Zhang, C.; Yao, J.; Ren, S.; Chen, J.; Men, J.; Zhang, Q.; et al. Disentangling the Influential Factors Driving NPP Decrease in Shandong Province: An Analysis from Time Series Evaluation Using MODIS and CASA Model. Remote Sens. 2024, 16, 1966. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Gong, J.; Jin, T. Dynamic Variation of vegetation NPP and Its Driving Forces in the Yellow River Basin, China. Chin. Geogr. Sci. 2025, 35, 24–37. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal Pine-Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- He, L.; Guo, J.; Jiang, Q.; Zhang, Z.; Yu, S. How did the Chinese Loess Plateau turn green from 2001 to 2020? An explanation using satellite data. Catena 2022, 214, 106246. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, F.; Tian, P.; Liang, Y.; Li, Y.; Wen, Z.; Chen, Y. Spatial and Temporal Variability of Carbon Sequestration Capacity of vegetation in Beijing-Tianjin-Hebei and Its Influencing Factors from 2002 to 2020. Environ. Sci. 2022, 14, 3958. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Zhang, W.; Xi, M.; Liu, H.; Zheng, H. Low sensitivity of net primary productivity to climatic factors in three karst provinces in southwest China from 1981 to 2019. Ecol. Indic. 2023, 153, 110465. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Zhang, L.; Wang, Z. The relative roles of climate variations and HAs in vegetation change in North China. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 67–78. [Google Scholar] [CrossRef]
- Du, T.; Yang, F.; Li, J.; Zhang, C.; Cui, K.; Zheng, J. Long Time Series Spatiotemporal Variations in NPP Based on the CASA Model in the Eco-Urban Agglomeration Around Poyang Lake, China. Remote Sens. 2025, 17, 80. [Google Scholar] [CrossRef]
- Li, J.; Bi, M.; Wei, G. Investigating the Impacts of Urbanization on vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships. Land 2022, 11, 2077. [Google Scholar] [CrossRef]
- Mohammad, L.; Mondal, I.; Bandyopadhyay, J.; Pham, Q.B.; Nguyen, X.C.; Dinh, C.D.; Al-Quraishi, A.M.F. Assessment of spatio-temporal trends of satellite-based aerosol optical depth using Mann–Kendall test and Sen’s slope estimator model. Nat. Hazards Risk 2022, 13, 1270–1298. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Tan, S.; Liu, L.; Liu, F. Analysis of spatial and temporal evolution patterns and driving forces of ecological environment quality in Chengdu-Chongqing Economic Circle. Acta Ecol. Sin. 2025, 45, 319–333. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, Z.; Li, P.; Xu, Y.; Zhang, G.; Ma, W.; Ren, Z. Drivers of Net Primary Productivity Spatio-Temporal Variation in Ningxia, China. Forests 2023, 14, 1170. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. 2020, 17, 14915–14932. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Zhang, L.; Zhang, J. Quantifying the impacts of natural and human factors on changes in NPP using an optimal parameters-based geographical detector. Ecol. Indic. 2023, 115, 111018. [Google Scholar] [CrossRef]
- Xian, J.; Wang, Z.; Deng, Y. A Review of Machine Learning Classification Based on Random Forest Algorithm. Artif. Intell. Robot. Res. 2024, 13, 143–152. [Google Scholar] [CrossRef]
- Bai, W.; He, L.; He, Z.; Wang, X.; Zhao, Y.; Qu, R.; Luo, F.; Chen, X.; Wang, Z.; Liu, M. Analysis of spatial and temporal variation of vegetation NPP in Daning River Basin and its driving forces. Int. J. Remote Sens. 2023, 44, 6194–6218. [Google Scholar] [CrossRef]
- Li, X.; Gao, H.; Han, L.; Liu, J. Spatio-temporal variations in vegetation NPP and the driving factors in Taihang Mountain Area. Chin. J. Eeo-Agric. 2017, 25, 498–508. [Google Scholar] [CrossRef]
- Zhao, D.; Jia, W.; Liu, J. Dynamic Changes and Driving Mechanisms of Net Primary Production (NPP) in a Semi-Arid Region of China. Sustainability 2023, 15, 11829. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Liu, C.F.; Guo, Z.C.; Pang, S.F.; Zhang, J. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China. Acta Geogr. Sin. 2011, 77, 150–163. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Yang, R.; Ma, X.; Zhang, J.; Qi, W.; Guo, Q.; Wang, H. Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of vegetation in the Qinghai Lake Basin. Int. J. Environ. Res. Public Health 2023, 20, 2179. [Google Scholar] [CrossRef]
- Liu, G.; Shao, Q.; Fan, J.; Ning, J.; Rong, K.; Huang, H.; Liu, S.; Zhang, X.; Niu, L.; Liu, J. Change Trend and Restoration Potential of vegetation Net Primary Productivity in China over the Past 20 Years. Remote Sens. 2022, 14, 1634. [Google Scholar] [CrossRef]
- Tian, Y.C.; Huang, Y.L.; Zhang, Q.; Tao, J.; Zhang, Y.; Huang, H.; Zhou, G. Spatiotemporal distribution of net primary productivity and its driving factors in the Nanliu River basin in the Beibu Gulf. Acta Ecol. Sin. 2019, 39, 8156–8171. [Google Scholar] [CrossRef]
- Liu, H.; Song, X.; Wang, R.; Zhu, D.; He, X. Quantitative analysis of the spatiotemporal dynamics and driving forces of vegetation NPP in Wulan County of China from 1982 to 2020. Trans. Chin. Soc. Agric. Eng. 2024, 40, 328–334. [Google Scholar] [CrossRef]
- He, Y.; Lin, C.; Wu, C.; Pu, N.; Zhang, X. The urban hierarchy and agglomeration effects influence the response of NPP to climate change and HAs. Glob. Ecol. Conserv. 2024, 51, e02904. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Zhao, W.; Zhang, Y.; Liu, Y. Analysis of Spatiotemporal Change and Driving Factors of NPP in Qilian Mountains From 2000 to 2020. Rangel. Ecol. Manag. 2024, 96, 56–65. [Google Scholar] [CrossRef]
- Xue, H.; Chen, Y.; Dong, G.; Li, J. Quantitative analysis of spatiotemporal changes and driving forces of vegetation net primary productivity (NPP) in the Qimeng region of Inner Mongolia. Ecol. Indic. 2023, 145, 110610. [Google Scholar] [CrossRef]
- Zhou, N.F.; Gong, E.J.; Bai, T.H.; Zhao, T.; Bai, H.Y.; Wang, J. Analysis of temporal and spatial dynamics and its influencing factors of NPP in Qinba Mountain Area Based on the CASA model. Acta Ecol. Sin. 2025, 45, 1829–1843. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Dong, C.; MacDonald, G.M.; Willis, K.; Gillespie, T.W.; Okin, G.S.; Williams, A.P. Vegetation Responses to 2012–2016 Drought in Northern and Southern California. Geophys. Res. Lett. 2019, 46, 3810–3821. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Stohlgren, T.; Zheng, D.; Bachelet, D.; Prince, S.; Hibbard, K. Richard Olson Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 2008, 89, 2971. [Google Scholar] [CrossRef]
- Qian, F.; Lan, A.; Fan, Z.; Wang, R.; Tao, Q.; Zou, Y.C.; Xu, J.S. Spatiotemporal Variation Characteristics and Influencing Factors of NPP in Guizhou Province from 2000 to 2020. Res. Soil Water Conserv. 2023, 30, 408–416. [Google Scholar] [CrossRef]
- Wessels, K.; Prince, S.; Malherbe, J.; Small, J.; Frost, P.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid. Environ. 2006, 68, 271–297. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Sivakumar, B.; Li, J.; Wang, G. Attribution of growing season vegetation activity to climate change and HAs in the Three River Headwaters region. J. Hydroinform. 2020, 22, 186–204. [Google Scholar] [CrossRef]
- Bejagam, V.; Sharma, A. Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecol. Inform. 2022, 70, 101732. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Liu, C.; Xie, W.L.; Lao, T.F.; Yao, Y.T.; Zhang, J. Application of a novel grey forecasting model with time power term to predict China’s GDP. Grey Syst. Theory Appl. 2020, 11, 343–357. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yang, J. The spatial and temporal dynamics of phytoplankton community and their correlation with environmental factors in Wuliangsuhai Lake, China. Arab. J. Geosci. 2021, 14, 713. [Google Scholar] [CrossRef]
- Chen, T.; Tang, G.; Yuan, Y.; Guo, H.; Xu, Z.; Jiang, G.; Chen, X. Unraveling the relative impacts of climate change and HAs on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef] [PubMed]
- Ugbaje, S.U.; Odeh, I.O.A.; Bishop, T.F.A.; Li, J. Assessing the spatio-temporal variability of vegetation productivity in Africa: Quantifying the relative roles of climate variability and HAs. Int. J. Digit. Earth 2017, 10, 9. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Wang, Z.; Chen, Y.; Li, J.; Chen, J.; Qi, J.; Odeh, I.; Groisman, P.Y. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop Sci. 2015, 201, 57–68. [Google Scholar] [CrossRef]
Data Type | Data Source | Data Description |
---|---|---|
LU type | Chinese Academy of Sciences Resources Science Data Center (https://www.resdc.cn/, accessed on 5 April 2025) | 2000–2023 |
Soil data | World Soil Database (HWSD) | 2020 |
Dem data | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 5 April 2025) | 2020 |
Meteorological data | Tibetan Plateau Data Science Center (https://data.tpdc.ac.cn/, accessed on 5 April 2025) | 2000–2023 |
Socio-economic density | Chinese Academy of Sciences Resources Science Data Center (https://www.resdc.cn/, accessed on 5 April 2025) | 2000–2023 |
Basic geographic data | National Geomatics Center of China (https://www.ngcc.cn, accessed on 5 April 2025) | 2020 |
Vegetation NPP | MOD17A3HGF (https://lpdaac.usgs.gov, accessed on 5 April 2025) | 2000–2023 |
Change | Kp | Kh | CC Driving | Human Activity Driving | Type |
---|---|---|---|---|---|
Slope > 0 | > | > | CC&HA+ | ||
< | > | 0 | 100 | HA+ | |
> | < | 100 | 0 | CC+ | |
Slope < 0 | < | < | CC&HA- | ||
> | < | 0 | 100 | HA- | |
< | > | 100 | 0 | CC- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, T.; Wang, Y.; Jiang, Y.; Zhang, Y.; Wang, B. Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023. Sustainability 2025, 17, 5804. https://doi.org/10.3390/su17135804
Long T, Wang Y, Jiang Y, Zhang Y, Wang B. Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023. Sustainability. 2025; 17(13):5804. https://doi.org/10.3390/su17135804
Chicago/Turabian StyleLong, Tao, Yonghong Wang, Yunchao Jiang, Yun Zhang, and Bo Wang. 2025. "Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023" Sustainability 17, no. 13: 5804. https://doi.org/10.3390/su17135804
APA StyleLong, T., Wang, Y., Jiang, Y., Zhang, Y., & Wang, B. (2025). Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023. Sustainability, 17(13), 5804. https://doi.org/10.3390/su17135804