Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation
Abstract
1. Introduction
2. Materials and Methods
3. Reservoir Greenhouse Gas Emissions: What We Know Today
3.1. Known Pathways of Reservoir GHG Emission
3.2. Individual Reservoir Characteristics and Dynamics
3.3. Key Ongoing Studies in the United States
4. Estimating Hydropower Reservoir Greenhouse Gas Emissions: Advances in Measurement Techniques and Modeling Tools
4.1. Advances in Direct Measurement
4.2. Advances in Modeling
5. Discussion and Roadmap for Further Research on Assessing and Addressing Hydropower Reservoir Greenhouse Gas Emissions
5.1. Understanding and Reducing Uncertainties in Existing Reservoir GHG Estimation and Associated Publicly Accessible Estimation Tools
5.2. Reducing the Technical and Economic Barriers for Reservoir Managers to Use GHG Estimation Tools and Measurement Techniques
5.3. Setting Common Standards to Enable Consistent Monitoring, Allocation, and Reporting of Reservoir GHG Emissions
5.4. Supporting Research and Implementation of Reservoir GHG Mitigation Strategies, Including Watershed-Scale Strategies
6. Conclusions
- Understanding and reducing uncertainties in existing reservoir GHG estimation and associated publicly accessible estimation tools;
- Reducing the technical and economic barriers for reservoir managers to use GHG estimation tools and measurement techniques;
- Setting common standards to enable consistent monitoring, allocation, and reporting of reservoir GHG emissions; and
- Supporting research and implementation of reservoir GHG mitigation strategies, including watershed-scale strategies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse Gas |
IPCC | Intergovernmental Panel on Climate Change |
U.S. EPA | United States Environmental Protection Agency |
UNFCCC | United Nations Framework Convention on Climate Change |
ORNL | Oak Ridge National Laboratory |
G-res Tool | GHG Reservoir Tool |
PSH | Pumped Storage Hydropower |
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Beaulieu, J.J.; Waldo, S.; Balz, D.A.; Barnett, W.; Hall, A.; Platz, M.C.; White, K.M. Methane and Carbon Dioxide Emissions from Reservoirs: Controls and Upscaling. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005474. [Google Scholar] [CrossRef]
- Climate Group RE100. We Are Accelerating Change Towards Zero Carbon Grids at Scale. Available online: https://www.there100.org/ (accessed on 8 April 2025).
- United Nations. Net Zero Coalition. Available online: https://www.un.org/en/climatechange/net-zero-coalition (accessed on 8 April 2025).
- O’Connor, P.; Saulsbury, B.; Hadjerioua, B.; Smith, B.T.; Bevelhimer, M.; Pracheil, B.M.; Kao, S.-C.; Mcmanamay, R.A.; Samu, N.M.; Uria Martinez, R. Hydropower Vision: A New Chapter for America’s 1st Renewable Electricity Source; Oak Ridge National Lab: Oak Ridge, TN, USA, 2016. Available online: https://www.energy.gov/eere/water/articles/hydropower-vision-new-chapter-americas-1st-renewable-electricity-source (accessed on 13 February 2025).
- Wang, Y.; Levin, T.; Kwon, J.; Baker, E. The Value of Hydropower Flexibility for Electricity System Decarbonization. Energy Rep. 2025, 13, 2711–2721. [Google Scholar] [CrossRef]
- Dimanchev, E.G.; Hodge, J.L.; Parsons, J.E. The Role of Hydropower Reservoirs in Deep Decarbonization Policy. Energy Policy 2021, 155, 112369. [Google Scholar] [CrossRef]
- Raadal, H.L.; Gagnon, L.; Modahl, I.S.; Hanssen, O.J. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. Renew. Sustain. Energy Rev. 2011, 15, 3417–3422. [Google Scholar] [CrossRef]
- Schloemer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; et al. Annex III: Technology-Specific Cost and Performance Parameters. In Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1329–1356. [Google Scholar]
- Song, C.; Gardner, K.H.; Klein, S.J.W.; Souza, S.P.; Mo, W. Cradle-to-Grave Greenhouse Gas Emissions from Dams in the United States of America. Renew. Sustain. Energy Rev. 2018, 90, 945–956. [Google Scholar] [CrossRef]
- Maeck, A.; DelSontro, T.; McGinnis, D.F.; Fischer, H.; Flury, S.; Schmidt, M.; Fietzek, P.; Lorke, A. Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environ. Sci. Technol. 2013, 47, 8130–8137. [Google Scholar] [CrossRef]
- Maavara, T.; Lauerwald, R.; Regnier, P.; Van Cappellen, P. Global Perturbation of Organic Carbon Cycling by River Damming. Nat. Commun. 2017, 8, 15347. [Google Scholar] [CrossRef]
- Harrison, J.A.; Prairie, Y.T.; Mercier-Blais, S.; Soued, C. Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (G-res) Model. Glob. Biogeochem. Cycles 2021, 35, e2020GB006888. [Google Scholar] [CrossRef]
- Delwiche, K.B.; Harrison, J.A.; Maasakkers, J.D.; Sulprizio, M.P.; Worden, J.; Jacob, D.J.; Sunderland, E.M. Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006908. [Google Scholar] [CrossRef]
- Barros, N.; Cole, J.J.; Tranvik, L.J.; Prairie, Y.T.; Bastviken, D.; Huszar, V.L.M.; del Giorgio, P.; Roland, F. Carbon Emission from Hydroelectric Reservoirs Linked to Reservoir Age and Latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
- Abril, G.; Guérin, F.; Richard, S.; Delmas, R.; Galy-Lacaux, C.; Gosse, P.; Tremblay, A.; Varfalvy, L.; Dos Santos, M.A.; Matvienko, B. Carbon Dioxide and Methane Emissions and the Carbon Budget of a 10-Year Old Tropical Reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycles 2005, 19, 4. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; dos Santos, M.A.; Vonk, J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef]
- Santos, M.A.D. A Review of Greenhouse Gas Emissions by Hydropower Reservoirs. J. Geosci. Environ. Prot. 2023, 11, 203–215. [Google Scholar] [CrossRef]
- Jager, H.I.; Griffiths, N.A.; Hansen, C.H.; King, A.W.; Matson, P.G.; Singh, D.; Pilla, R.M. Getting Lost Tracking the Carbon Footprint of Hydropower. Renew. Sustain. Energy Rev. 2022, 162, 112408. [Google Scholar] [CrossRef]
- European Commission. Electricity Generation from Hydropower. Available online: https://ec.europa.eu/sustainable-finance-taxonomy/activities/activity/291/view (accessed on 13 March 2025).
- Climate Bonds Initiative. The Hydropower Criteria for the Climate Bonds Standard & Certification Scheme Version 1.0. Available online: https://www.climatebonds.net/files/documents/Sector-Crtiera/Climate-Bonds_Hydropower_Criteria-document_Mar-2021.pdf (accessed on 13 March 2025).
- International Hydropower Association. Hydropower Sustainability Assessment Protocol. 2020. Available online: https://static1.squarespace.com/static/645122e2ac6c1a215629849c/t/667ae1e65dfd1f67a691d612/1719329257179/Hydropower%2BSustainability%2BAssessment%2BProtocol%2B07-05-20.pdf (accessed on 13 March 2025).
- United Nations Framework Convention on Climate Change. Annex 5: Thresholds and Criteria for the Eligibility of Hydroelectric Power Plants with Reservoirs as CDM Project Activities. In CDM Executive Board Report (EB 23); United Nations Framework Convention on Climate Change: Bonn, Germany, 2006; Available online: https://cdm.unfccc.int/EB/023/eb23_repan5.pdf (accessed on 9 April 2025).
- California Code, Public Utilities Code—PUC § 380. Available online: https://codes.findlaw.com/ca/public-utilities-code/puc-sect-380/ (accessed on 9 April 2025).
- European Union. Directive (EU) 2022/2464 of the European Parliament and of the Council of 14 December 2022 Amending Regulation (EU) No 537/2014, Directive 2004/109/EC, Directive 2006/43/EC and Directive 2013/34/EU, as Regards Corporate Sustainability Reporting. 2022. Available online: https://eur-lex.europa.eu/eli/dir/2022/2464/oj/eng (accessed on 9 April 2025).
- Greenhouse Gas Protocol. Land Sector and Removals Guidance Pilot Testing and Review Part 2: Calculation Guidance, Draft for Pilot Testing and Review. Supplement to the GHG Protocol Corporate Standard and Scope 3 Standard. 2022. Available online: https://ghgprotocol.org/sites/default/files/2022-12/Land-Sector-and-Removals-Guidance-Pilot-Testing-and-Review-Draft-Part-2.pdf (accessed on 9 April 2025).
- Stanford Woods Institute for the Environment. Uncommon Dialogue on Hydropower, River Restoration, and Public Safety. Available online: https://woods.stanford.edu/research/hydropower-home (accessed on 15 May 2025).
- Soued, C.; Harrison, J.A.; Mercier-Blais, S.; Prairie, Y.T. Reservoir CO2 and CH4 Emissions and Their Climate Impact over the Period 1900–2060. Nat. Geosci. 2022, 15, 700–705. [Google Scholar] [CrossRef]
- Ion, I.V.; Ene, A. Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review. Sustainability 2021, 13, 11621. [Google Scholar] [CrossRef]
- Pilla, R.M.; Faehndrich, C.S.; Fortner, A.M.; Jett, R.T.; Jones, M.W.; Jones, N.J.; Phillips, J.R.; Hansen, C.H.; Iftikhar, B.; Jager, H.I.; et al. Shifts in Carbon Emissions Versus Sequestration From Hydropower Reservoirs in the Southeastern United States. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007580. [Google Scholar] [CrossRef]
- Pilla, R.M.; Griffiths, N.A.; Hansen, C.; Turner, D.; Fortner, A.M.; Trent Jett, R.; Jones, M.W.; Jones, N.J.; Phillips, J.R. Comparison of Greenhouse Gas Emission Estimates from Six Hydropower Reservoirs Using Modeling Versus Field Surveys. Biogeochemistry 2025, 168, 28. [Google Scholar] [CrossRef]
- Uria Martinez, R.; Johnson, M. US Hydropower Market Report 2023; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023. Available online: https://www.osti.gov/biblio/2006921 (accessed on 27 March 2025).
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK; Sterling, VA, USA, 2000; Available online: https://awsassets.panda.org/downloads/wcd_dams_final_report.pdf (accessed on 6 March 2025).
- Soukhaphon, A.; Baird, I.G.; Hogan, Z.S. The Impacts of Hydropower Dams in the Mekong River Basin: A Review. Water 2021, 13, 265. [Google Scholar] [CrossRef]
- Randell, H.; Curley, A. Dams and Tribal Land Loss in the United States. Environ. Res. Lett. 2023, 18, 094001. [Google Scholar] [CrossRef]
- Karambelkar, S. Hydropower on the Colorado River: Examining Institutions, Conflicts, and Consequences of Changing Dam Operations. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2020. Available online: https://repository.arizona.edu/handle/10150/642062 (accessed on 6 March 2025).
- Rudd, J.W.; Harris, R.; Kelly, C.A.; Hecky, R.E. Are Hydroelectric Reservoirs Significant Sources of Greenhouse Gases? Ambio 1993, 22, 246–248. [Google Scholar]
- St. Louis, V.L.; Kelly, C.A.; Duchemin, É.; Rudd, J.W.M.; Rosenberg, D.M. Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate: Reservoirs are Sources of Greenhouse Gases to the Atmosphere, and Their Surface Areas Have Increased to the Point Where They Should Be Included in Global Inventories of Anthropogenic Emissions of Greenhouse Gases. BioScience 2000, 50, 766–775. [Google Scholar] [CrossRef]
- Fearnside, P.M. Hydroelectric Dams in the Brazilian Amazon as Sources of ‘Greenhouse’ Gases. Environ. Conserv. 1995, 22, 7–19. [Google Scholar] [CrossRef]
- Rosa, L.P.; Santos, M.A.D.; Matvienko, B.; Sikar, E.; Santos, E.O.D. Scientific Errors in the Fearnside Comments on Greenhouse Gas Emissions (GHG) from Hydroelectric Dams and Response to His Political Claiming. Clim. Change 2006, 75, 91–102. [Google Scholar] [CrossRef]
- Prairie, Y.T.; Alm, J.; Beaulieu, J.; Barros, N.; Battin, T.; Cole, J.; Del Giorgio, P.; DelSontro, T.; Guérin, F.; Harby, A.; et al. Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See? Ecosystems 2018, 21, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, A.; Mercier-Blais, S.; Prairie, Y.T.; Tremblay, A.; Turpin, C. Improving the Accuracy of Electricity Carbon Footprint: Estimation of Hydroelectric Reservoir Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 136, 110433. [Google Scholar] [CrossRef]
- Jager, H.I.; Pilla, R.M.; Hansen, C.H.; Matson, P.G.; Iftikhar, B.; Griffiths, N.A. Understanding How Reservoir Operations Influence Methane Emissions: A Conceptual Model. Water 2023, 15, 4112. [Google Scholar] [CrossRef]
- Tremblay, A.; Varfalvy, L.; Roehm, C.; Garneau, M. (Eds.) Greenhouse Gas Emissions—Fluxes and Processes; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-23455-5. [Google Scholar]
- Keller, P.S.; Marcé, R.; Obrador, B.; Koschorreck, M. Global Carbon Budget of Reservoirs is Overturned by the Quantification of Drawdown Areas. Nat. Geosci. 2021, 14, 402–408. [Google Scholar] [CrossRef]
- Harrison, J.A.; Deemer, B.R.; Birchfield, M.K.; O’Malley, M.T. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environ. Sci. Technol. 2017, 51, 1267–1277. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Carbon Emission from Global Hydroelectric Reservoirs Revisited. Environ. Sci. Pollut. Res. 2014, 21, 13636–13641. [Google Scholar] [CrossRef]
- Wang, Z.; Chan, F.K.S.; Feng, M.; Johnson, M.F. Greenhouse Gas Emissions from Hydropower Reservoirs: Emission Processes and Management Approaches. Environ. Res. Lett. 2024, 19, 073002. [Google Scholar] [CrossRef]
- Hansen, C.H.; Matson, P.G.; Griffiths, N.A. Diversity in Reservoir Surface Morphology and Climate Limits Ability to Compare and Upscale Estimates of Greenhouse Gas Emissions. Sci. Total Environ. 2023, 893, 164851. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.M.; Griffiths, N.A. Integrating Reservoirs into the Dissolved Organic Matter Versus Primary Production Paradigm: How Does Chlorophyll-a Change Across Dissolved Organic Carbon Concentrations in Reservoirs? Ecosystems 2024, 27, 137–150. [Google Scholar] [CrossRef]
- Bevelhimer, M.S.; Stewart, A.J.; Fortner, A.M.; Phillips, J.R.; Mosher, J.J. CO2 is Dominant Greenhouse Gas Emitted from Six Hydropower Reservoirs in Southeastern United States During Peak Summer Emissions. Water 2016, 8, 15. [Google Scholar] [CrossRef]
- Deshmukh, C.; Guérin, F.; Labat, D.; Pighini, S.; Vongkhamsao, A.; Guédant, P.; Rode, W.; Godon, A.; Chanudet, V.; Descloux, S.; et al. Low Methane (CH4) Emissions Downstream of a Monomictic Subtropical Hydroelectric Reservoir (Nam Theun 2, Lao PDR). Biogeosciences 2016, 13, 1919–1932. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Smolenski, R.L.; Nietch, C.T.; Townsend-Small, A.; Elovitz, M.S. High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed. Environ. Sci. Technol. 2014, 48, 11100–11108. [Google Scholar] [CrossRef] [PubMed]
- Open Hydro. Hydropower Reporting Guideline Climate-Change Mitigation. 2022. Available online: https://openhydro.net/wp-content/uploads/2022/11/Hydropower-Reporting-Guideline-Climate-change-Mitigation.pdf (accessed on 2 February 2025).
- Pacca, S. Impacts from Decommissioning of Hydroelectric Dams: A Life Cycle Perspective. Clim. Change 2007, 84, 281–294. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Balz, D.A.; Birchfield, M.K.; Harrison, J.A.; Nietch, C.T.; Platz, M.C.; Squier, W.C.; Waldo, S.; Walker, J.T.; White, K.M.; et al. Effects of an Experimental Water-Level Drawdown on Methane Emissions from a Eutrophic Reservoir. Ecosystems 2018, 21, 657–674. [Google Scholar] [CrossRef]
- Krey, V.; Masera, O.; Blanford, G.; Bruckner, T.; Cooke, R.; Fisher-Vanden, K.; Haberl, H.; Hertwich, E.; Kriegler, E.; Mueller, D. Annex II-Metrics and Methodology. In Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Virginia Scientist-Community Interface. Reservoirs in Alabama Are Sources of Greenhouse Gas Emissions. 2022. Available online: https://hydroreform.org/wp-content/uploads/2023/03/V-SCI-Final-Report_revisions-Oct.-2022.pdf (accessed on 7 April 2025).
- United States Environmental Protection Agency. Emissions from U.S. Reservoirs. Available online: https://www.epa.gov/air-research/research-emissions-us-reservoirs (accessed on 7 April 2025).
- United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022; EPA 430-R-24-004; United States Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/system/files/documents/2024-04/us-ghg-inventory-2024-main-text_04-18-2024.pdf (accessed on 13 February 2025).
- Oak Ridge National Laboratory. Improving Understanding of Greenhouse Gas Emissions from Reservoirs. Available online: https://www.ornl.gov/reservoiremissions (accessed on 7 April 2025).
- Prairie, Y.T.; Mercier-Blais, S.; Harrison, J.A.; Soued, C.; del Giorgio, P.; Harby, A.; Alm, J.; Chanudet, V.; Nahas, R. A New Modelling Framework to Assess Biogenic GHG Emissions from Reservoirs: The G-Res Tool. Environ. Model. Softw. 2021, 143, 105117. [Google Scholar] [CrossRef]
- Waldo, S.; Beaulieu, J.J.; Barnett, W.; Balz, D.A.; Vanni, M.J.; Williamson, T.; Walker, J.T. Temporal Trends in Methane Emissions from a Small Eutrophic Reservoir: The Key Role of a Spring Burst. Biogeosciences 2021, 18, 5291–5311. [Google Scholar] [CrossRef]
- International Energy Agency. Hydropower Annex XII: Guidelines for Quantitative Analysis of Net GHG Emissions from Reservoirs—Volume 1: Measurement Programs and Data Analysis. 2012. Available online: https://www.ieahydro.org/media/992f6848/GHG_Guidelines_22October2012_Final.pdf (accessed on 13 February 2025).
- International Energy Agency. Hydropower Annex XII: Guidelines for Quantitative Analysis of Net GHG Emissions from Reservoirs—Volume 3: Management, Mitigation and Allocation. 2018. Available online: https://www.ieahydro.org/media/691aaaa8/AnnexXII_Guidelines_Volume_3_Final_10Jan2018.pdf (accessed on 13 February 2025).
- Goldenfum, J.A.; International Hydropower Association; UNESCO/IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project (Eds.) GHG Measurement Guidelines for Freshwater Reservoirs: Derived from: The UNESCO/IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project; International Hydropower Association (IHA): London, UK, 2010; ISBN 978-0-9566228-0-8. [Google Scholar]
- United States Environmental Protection Agency. New Monitoring Method Improves Ability to Measure Methane Emissions from Reservoirs. Available online: https://www.epa.gov/sciencematters/new-monitoring-method-improves-ability-measure-methane-emissions-reservoirs (accessed on 11 March 2025).
- NASA Jet Propulsion Laboratory California Institute of Technology. NASA Mission Excels at Spotting Greenhouse Gas Emission Sources—EMIT. Available online: https://earth.jpl.nasa.gov/emit/news/26/nasa-mission-excels-at-spotting-greenhouse-gas-emission-sources/ (accessed on 13 February 2025).
- Jervis, D.; McKeever, J.; Durak, B.O.A.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D Imaging Spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- Deblois, C.P.; Demarty, M.; Bilodeau, F.; Tremblay, A. Automated CO2 and CH4 Monitoring System for Continuous Estimation of Degassing Related to Hydropower. Front. Environ. Sci. 2023, 11, 1194994. [Google Scholar] [CrossRef]
- Chavaillaz, Y.; Tremblay, A.; Bilodeau, F. Automated Greenhouse Gas Measuring System (SAGES). 2022. Available online: https://www.hydroquebec.com/data/developpement-durable/pdf/2022g797-automated-greenhouse-gas-measuring-system-sages.pdf (accessed on 12 March 2025).
- Prairie, Y.T.; Alm, J.; Harby, A.; Mercier-Blais, S.; Nahas, R. The GHG Reservoir Tool (Gres) Technical Documentation v2.1 (2019-08-21); UNESCO/IHA research project on the GHG status of freshwater reservoirs; Joint Publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association; 2017; p. 76. Available online: https://cdn.prod.website-files.com/64f9d0036cb97160cc26feba/64f9d0036cb97160cc270fe1_g-res_technical_document_v2.1.pdf (accessed on 13 February 2025).
- De Sarkar, K.; Ghosh, S.; Bhattacharyya, S.; Chowdhury, A.; Holmatov, B. Assessing GHG Emissions of a Tropical Large Hydropower Reservoir Using G-Res and GEE. J. Indian Soc. Remote. Sens. 2024, 53, 1053–1064. [Google Scholar] [CrossRef]
- Hansen, C.; Pilla, R.; Matson, P.; Skinner, B.; Griffiths, N.; Jager, H. Variability in Modelled Reservoir Greenhouse Gas Emissions: Comparison of Select US Hydropower Reservoirs against Global Estimates. Environ. Res. Commun. 2023, 4, 121008. [Google Scholar] [CrossRef]
- Bluemethane Methane Measurement Reservoirs Project. Reservoir Methane Measurement Project. 2024. Available online: https://www.bluemethane.com/methane-measurement-reservoirs-project/ (accessed on 13 March 2025).
- Lovelock, C.E.; Evans, C.; Barros, N.; Prairie, Y.; Alm, J.; Bastviken, D.; Beaulieu, J.J.; Garneau, M.; Harby, A.; Harrison, L.M.; et al. Chapter 7: Wetlands. In 2019 Refinement to the 2006 Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Open Hydro. Opening Hydropower to Climate Resilience. Available online: https://openhydro.net/ (accessed on 9 April 2025).
- United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020; EPA 430-R-22-003; United States Environmental Protection Agency: Washington, DC, USA, 2022. Available online: https://www.epa.gov/system/files/documents/2022-04/us-ghg-inventory-2022-main-text.pdf (accessed on 13 February 2025).
- United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021; EPA 430-R-23-002; United States Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (accessed on 13 February 2025).
- Beaulieu, J. Reservoirs in the U.S. GHG Inventory; Methane Emissions from Reservoirs; The United States Department of Energy’s Water Power Technologies Office’ Hydropower Environmental & Industry R&D Summit Talks: online, USA, 2024. [Google Scholar]
- Karambelkar, S.; Cantor, A.; Bui, T.-K.; Turley, B.; Fischer, M.; Ames, S. Pumped Storage Hydropower in the United States: Emerging Importance, Environmental and Social Impacts, and Critical Considerations. WIREs Water 2025, 12, e70017. [Google Scholar] [CrossRef]
- Simon, T.R.; Inman, D.; Hanes, R.; Avery, G.; Hettinger, D.; Heath, G. Life Cycle Assessment of Closed-Loop Pumped Storage Hydropower in the United States. Environ. Sci. Technol. 2023, 57, 12251–12258. [Google Scholar] [CrossRef]
- OpenEI. Pumped Storage Hydro Life Cycle Assessment. Available online: https://apps.openei.org/psh-lca/ (accessed on 9 April 2025).
- United States Department of Energy Water Power Technologies Office. New Technical Assistance Opportunity Now Open to Hydropower Developers. Available online: https://www.energy.gov/eere/water/articles/new-technical-assistance-opportunity-now-open-hydropower-developers (accessed on 26 March 2025).
- United States Department of Energy Water Power Technologies Office. Hydrologic Systems Science. Available online: https://www.energy.gov/eere/water/hydrologic-systems-science (accessed on 27 March 2025).
- Hansen, C.H.; Iftikhar, B.; Pilla, R.M.; Griffiths, N.A.; Matson, P.G.; Jager, H.I. Temporal Variability in Reservoir Surface Area is an Important Source of Uncertainty in GHG Emission Estimates. Water Resour. Res. 2025, 61, e2024WR037726. [Google Scholar] [CrossRef]
- Kumar, A.; Yu, Z.-G.; Klemeš, J.J.; Bokhari, A. A State-of-the-Art Review of Greenhouse Gas Emissions from Indian Hydropower Reservoirs. J. Clean. Prod. 2021, 320, 128806. [Google Scholar] [CrossRef]
- International Hydropower Association. Carbon Emissions from Hydropower Reservoirs: Facts and Myths. Available online: https://www.hydropower.org/blog/carbon-emissions-from-hydropower-reservoirs-facts-and-myths (accessed on 27 March 2025).
- Almeida, R.M.; Shi, Q.; Gomes-Selman, J.M.; Wu, X.; Xue, Y.; Angarita, H.; Barros, N.; Forsberg, B.R.; García-Villacorta, R.; Hamilton, S.K.; et al. Reducing Greenhouse Gas Emissions of Amazon Hydropower with Strategic Dam Planning. Nat. Commun. 2019, 10, 4281. [Google Scholar] [CrossRef] [PubMed]
- Flecker, A.S.; Shi, Q.; Almeida, R.M.; Angarita, H.; Gomes-Selman, J.M.; García-Villacorta, R.; Sethi, S.A.; Thomas, S.A.; Poff, N.L.; Forsberg, B.R.; et al. Reducing Adverse Impacts of Amazon Hydropower Expansion. Science 2022, 375, 753–760. [Google Scholar] [CrossRef]
- Shi, W.; Maavara, T.; Chen, Q.; Zhang, J.; Ni, J.; Tonina, D. Spatial Patterns of Diffusive Greenhouse Gas Emissions from Cascade Hydropower Reservoirs. J. Hydrol. 2023, 619, 129343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karambelkar, S.; Fischer, M.; Ames, S. Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation. Sustainability 2025, 17, 5794. https://doi.org/10.3390/su17135794
Karambelkar S, Fischer M, Ames S. Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation. Sustainability. 2025; 17(13):5794. https://doi.org/10.3390/su17135794
Chicago/Turabian StyleKarambelkar, Surabhi, Maryalice Fischer, and Shannon Ames. 2025. "Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation" Sustainability 17, no. 13: 5794. https://doi.org/10.3390/su17135794
APA StyleKarambelkar, S., Fischer, M., & Ames, S. (2025). Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation. Sustainability, 17(13), 5794. https://doi.org/10.3390/su17135794