Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector
Abstract
1. Introduction
2. Analytical Methods
2.1. Data Input
2.1.1. Unit-Level Coal Power Database
- Static data: geographical location, installed capacity, cooling types, etc.
- Operational data: annual utilization hours, coal consumption rates, power generation, auxiliary power consumption, boiler heat consumption, etc.
- Technological parameters: retrofit application matrix indicating the implementation status of retrofit technologies.
2.1.2. Decarbonization Technology Database
Technology | Marker | Target Period | Capture Rate 1 | Co-Firing Rate 1 | Initial Investment (CNY/kW) 2 | O&M (CNY/tCO2) | Citation |
---|---|---|---|---|---|---|---|
CCUS | T9 | 2025–2035 | 100 million tons 3 | - | 3417–3925 | 380–500 4 | [20,48] |
2036–2045 | 90% of total emissions | - | 2050–2355 | 228–300 | |||
2046–2060 | 100% of total emissions | - | 1367–1570 | 152–200 | |||
Biomass-Cofiring | T10 | 2025–2035 | - | 10% | 573.3 | 74.7 5 | [23,48] |
2036–2045 | - | 20% | |||||
2046–2060 | - | 30% | |||||
Ammonia-Cofiring | T11 | 36–54.5 | - | 10% | 49–60 | 3087–3773 6 | [47,49] |
2036–2045 | - | 20% | 49–60 | 1852–2023 | |||
2046–2060 | - | 35% | 49–60 | 1234–1509 |
2.2. Methodology
2.2.1. Analysis of Phaseout Trajectory
2.2.2. Analysis of New Construction
2.2.3. Analysis of Retrofit Portfolio
2.3. Scenario Setup
3. Results
3.1. Analysis of Capacity Composition and Phaseout Schedule
3.2. Analysis of Carbon Emissions
3.3. Analysis on Deployment of Technology Retrofits (T1–T8)
3.4. Analysis of Transition Costs
4. Discussion
4.1. Weights in the Policy-Driven Phaseout
4.2. Variations in O&M Costs of Green-Ammonia Retrofit
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
AC | Air Cooling |
APS | Announced Pledges Scenario |
BECCS | Bio-energy with Carbon Capture and Storage |
BCNS | Baseline Coal Neutrality Scenario |
CRP | Carbon Reduction Potential |
CETO | China Energy Transformation Outlook |
CCUS | Carbon Capture, Usage, and Storage |
CEC | China Electricity Council |
CHP | Combined Heat and Power |
CRT | Carbo Reduction Technologies |
EDGAR | Emissions Database for Global Atmospheric Research |
GHG | Greenhouse Gases |
ICNS | Intensive Coal Neutrality Scenario |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
LCOC | Levelized Cost of Carbon Reduction |
NDRC | National Development and Reform Commission |
NDCs | Nationally Determined Contributions |
NEA | National Energy Administration |
NZE | Net Zero Emissions by 2050 |
USC | Ultra-supercritical |
O&M | Operational and Maintenance cost |
PC | Pure Condensation |
SBC | Subcritical |
SCP | Supercritical |
STEPS | Stated Policies Scenario |
UNFCC | United Nations Framework Convention on Climate Change |
WC | Water Cooling |
Acronyms | Definition |
CO2 | Carbon Dioxide |
MW | Megawatts |
gce/kWh | grams of standard coal equivalent per kilowatt-hour |
gCO2/kWh | grams of CO2 per kilowatt-hour |
CNY/t | CNY per ton |
km | Kilo-meter |
Gt | Gigatons |
Initial Investment | |
Unpaid Bank Loans | |
Lost Equity Returns | |
Lifespan Constraints | |
Installed Capacity | |
Utilization Hours | |
Operational and Maintenance cost | |
Total Annual Investment | |
Emissions from Coal Power in year | |
Emission Factor for Coal | |
The carbon budget from coal-fired power generation | |
TWh | Terawatt Hours |
Total Transition Costs | |
Capital Investments in newly Installed Power Generation | |
Expenditures associated with Technology Retrofits | |
Total Capacity of newly built Units |
Appendix A
Appendix A.1
Appendix A.2
Appendix B
Power | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
---|---|---|---|---|---|---|---|---|
Coal | 4.12 | 4.03 | 3.95 | 3.87 | 3.81 | 3.73 | 3.66 | 3.59 |
Natural Gas | 2.23 | 2.14 | 2.09 | 2.06 | 2.03 | 2.00 | 1.96 | 1.93 |
Nuclear | 14.77 | 14.37 | 13.90 | 13.42 | 12.94 | 12.44 | 11.94 | 11.43 |
Hydropower | 14.21 | 14.43 | 14.64 | 14.86 | 15.09 | 15.32 | 15.54 | 15.77 |
Wind | 6.73 | 6.06 | 5.59 | 5.30 | 5.00 | 4.70 | 4.40 | 4.09 |
Solar | 4.87 | 3.82 | 3.31 | 3.16 | 3.01 | 2.86 | 2.70 | 2.55 |
Biomass | 8.65 | 8.53 | 8.38 | 8.23 | 8.07 | 7.91 | 7.74 | 7.57 |
Appendix C
Data | Source Link | Citation |
---|---|---|
EDGAR | https://edgar.jrc.ec.europa.eu/country_profile/CHN | [3] |
Global Coal Power Tracker | https://globalenergymonitor.org/projects/global-coal-plant-tracker | [24] |
bp statistical review of world energy Year 2022 | https://www.bp.com/en/global/corporate/energy-economics.html | [77] |
Statistical review of world energy Year 2024 | https://assets.kpmg.com/content/dam/kpmg/az/pdf/2024/Statistical-Review-of-World-Energy.pdf | [78] |
World Energy Outlook 2024 | https://www.iea.org/reports/world-energy-outlook-2024 | [78] |
Global Carbon Budget 2024 | https://globalcarbonbudget.org/gcb-2024 | [2] |
China Energy Statistical Yearbook 2022 | - | [6] |
China’s Electric Power Industry Statistical Yearbook 2010–2023 | - | [79] |
Annual Development Report of China’s Power Industry Year 2024 | - | [5] |
China Energy Statistical Yearbook 2022 | - | [6] |
China Energy Transformation Outlook Year 2024 | https://www.cet.energy/ | [8] |
Decarbonization Technology Database | - | [23] |
Factor | Value | Unit | Factor | Value | Unit |
---|---|---|---|---|---|
25 (units below 300 MW) | Years | Coal Heat Value | 29.3 | MJ/kg | |
35 (300-MW units, 600-MW units) | Biomass Heat Value | 14.65 | MJ/kg | ||
40 (1000-MW units) | NH3 Heat Value | 16.9 | MJ/kg | ||
Heating Raduis Constraints | 30 before 2030 | km | Emission Factor | 2.77 | tCO2/tce |
50 (2030–2035) | Initial Temperature | 1000 | Simulated Annealing Algorithm | ||
80(2035–2040) | Final Temperature | 1 × 10−3 | |||
Score Assignment | Details in Table 4 | - | Number of Iterations | 1000 | |
New Construction Ratio | 40:55:5 (1000 MW:600 MW:300 MW) | - | Cooling Rate | 0.95 | |
Discount Ratio | 0.08(r) | - | Advanced Coal Consumption Rate | 273 | gce/kWh |
Technology Lifetime | 30 | Years | Capacity investments | see Table A1 | CNY/MW |
Technology Investment | see Table 3 | CNY/MW |
Appendix D. Structure of Forecasting in the Capacity Structure
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. Global Carbon Budget 2024. Earth Syst. Sci. Data 2024, 2024, 965–1039. [Google Scholar] [CrossRef]
- Global Carbon Project. Supplemental data of Global Carbon Budget 2024 (Version 1.0) [Data set]. Glob. Carbon Proj. 2024. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Banja, M.; Muntean, M.; Schaaf, E.; Monforti-Ferrario, F.; Becker, W.; Quadrelli, R.; Risquez Martin, A.; et al. GHG emissions of all world countries [Data set]. In EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database; 2024; Available online: https://edgar.jrc.ec.europa.eu/report_2024 (accessed on 9 June 2025).
- International Energy Agency. An Energy Sector Roadmap to Carbon Neutrality in China; OECD Publishing: Paris, France, 2021. [Google Scholar]
- China Electricity Council. Annual Development Report of China’s Power Industry 2024; China Architecture & Building Press: Beijing, China, 2024. (In Chinese) [Google Scholar]
- Department of Industry and Transport Statistics, National Bureau of Statistic. China Energy Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2023. (In Chinese) [Google Scholar]
- Global Energy Monitor; CREA; E3G; Sierra Club; SFOC; Kiko Network; CAN Europe; LIFE; Bangladesh Groups. When Coal Won’t Step Aside: The Challenge of Scaling Clean Energy in China; Technical report; Global Energy Monitor: San Francisco, CA, USA, 2025. [Google Scholar]
- Lyu, W.; Bai, Q.; Zhao, Y.; Gu, L.; Fu, G.; Zhang, J.; Yi, W.; Pei, Q.; Tian, Y.; Liu, Z.; et al. China Energy Transformation Outlook 2024 Executive Summary; Technical report; Energy Research Institute of Chinese Academy of Macroeconomic Research: Beijing, China, 2024. [Google Scholar]
- Cui, R.Y.; Hultman, N.; Edwards, M.R.; He, L.; Sen, A.; Surana, K.; McJeon, H.; Iyer, G.; Patel, P.; Yu, S.; et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 2019, 10, 4759. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Tong, D.; Zheng, Y.; Liu, Y.; Chen, S.; Qin, X.; Chen, C.; Xu, R.; Cheng, J.; Shi, Q.; et al. Cost-effectiveness uncertainty may bias the decision of coal power transitions in China. Nat. Commun. 2024, 15, 2272. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Geng, G.; Zhang, Q.; Cheng, J.; Qin, X.; Hong, C.; He, K.; Davis, S.J. Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls. Nat. Clim. Change 2021, 11, 1077–1083. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Q.; Yu, X.; Wang, Q.; Tan, J. Exploring phase-out path of China’s coal power plants with its dynamic impact on electricity balance. Energy Policy 2024, 187, 114021. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Gong, Z.; Kang, J.; Zhao, C.; Meng, Z.; Zhang, J.; Zhang, T.; Yuan, J. Quantifying stranded assets of the coal-fired power in China under the Paris Agreement target. Clim. Policy 2023, 23, 11–24. [Google Scholar] [CrossRef]
- Wang, P.; Lin, C.K.; Wang, Y.; Liu, D.; Song, D.; Wu, T. Location-specific co-benefits of carbon emissions reduction from coal-fired power plants in China. Nat. Commun. 2021, 12, 6948. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Kang, J.N.; Liu, L.C.; Wei, Y.M. Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry. Appl. Energy 2024, 371, 123649. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Ye, N.; Zhang, Z.; Wu, X.; Fan, H. A review on flexible peak shaving development of coal-fired boilers in China under the carbon peak and carbon neutrality goals. Therm. Sci. Eng. Prog. 2024, 55, 103004. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Opinions on Strengthening the Clean and Efficient Utilisation of Coal, NDRC Operation [2024] No. 1345 (Chinese version). Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/202409/t20240929_1393429.html (accessed on 9 June 2025).
- National Development and Reform Commission. National Industrial Energy Saving Technology Application Guide and Cases (2023). Available online: https://www.ndrc.gov.cn/xwdt/ztzl/2023qhjnxcz/bfjncx/202307/t20230707_1358203.html (accessed on 9 June 2025).
- Sun, B.; Fan, B.; Wu, C.; Xie, J. Exploring incentive mechanisms for the CCUS project in China’s coal-fired power plants: An option-game approach. Energy 2024, 288, 129694. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Y.; Zhang, W.; Zhang, J. Mapping the economy of coal power plants retrofitted with post-combustion and biomass co-firing carbon capture in China. Environ. Sci. Pollut. Res. 2023, 30, 47438–47454. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.L.; Fu, J.; Zhang, X.; Li, K.; Zhou, W.; Hubacek, K.; Urpelainen, J.; Shen, S.; Chang, S.; Guo, S.; et al. Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nat. Clim. Change 2023, 13, 807–815. [Google Scholar] [CrossRef]
- Chen, H.; Kang, J.N.; Liao, H.; Tang, B.J.; Wei, Y.M. Costs and potentials of energy conservation in China’s coal-fired power industry: A bottom-up approach considering price uncertainties. Energy Policy 2017, 104, 23–32. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Yang, Y.; Shao, Y.; Zhang, L.; Ni, Y.; Pan, J.; Zhang, Y.; Zheng, C.; Gao, X. Comprehensive analysis of carbon emission reduction technologies (CRTs) in China’s coal-fired power sector: A bottom-up approach. Renew. Sustain. Energy Rev. 2024, 202, 114696. [Google Scholar] [CrossRef]
- Global Coal Plant Tracker. Global Energy Monitor. Available online: https://globalenergymonitor.org/ (accessed on 9 June 2025).
- National Energy Administration. Solar Power Installed Capacity Exceeded 600 Million Kilowatts, and the Share of Coal Power Installed Capacity Fell Below 40% for the First Time (Chinese Version). Available online: https://www.nea.gov.cn/2024-02/02/c_1310763217.htm (accessed on 13 June 2025).
- National Energy Administration. Notice on Transformation and Upgrading of National Coal Fired Power Plants (Chinese Version). Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/202111/t20211103_1302856_ext.html (accessed on 9 June 2025).
- Li, Q.; Li, X.; Gong, W.; Ping, B.; Li, Q.; Li, X.; Gong, W. Handbook for Energy Conservation and Emission Reduction in Thermal Power Plants/Energy Conservation Technology and Comprehensive Upgrading and Renovation, 2nd ed.; China Electric Power Publishing House: Nanjing, China, 2019. [Google Scholar]
- National Development and Reform Commission. National Industrial Energy Saving Technology Application Guide and Cases (2020)). Available online: https://www.miit.gov.cn/jgsj/jns/wjfb/art/2020/art_9c7238e38a004f97a13977c793c136e9.html (accessed on 9 June 2025).
- National Development and Reform Commission. National Industrial Energy Saving Technology Application Guide and Cases (2022). Available online: https://wap.miit.gov.cn/jgsj/jns/nyjy/art/2022/art_27a666e59bbc4acebded38a1cba213db.html (accessed on 9 June 2025).
- Liu, A.; Zhang, J.; Zhao, S. Economic Study on Flow Passage Retrofits of 300 MW-Class and 600 MW-Class Steam Turbines. Energy Eng. 2021, 6, 69–73. (In Chinese) [Google Scholar]
- Sun, Y.; Zheng, H.; Kong, H. Key technologies and prospects of coal power transformation under carbon neutrality background. J. Chin. Soc. Power Eng. 2022, 42, 1013–1023. [Google Scholar] [CrossRef]
- Bao, W.; Lu, L.; Zeng, X. Thermal economy analysis of a 1000 MW ultra supercritical unit with external steam cooler. Power Equip. 2015, 29, 173–175. (In Chinese) [Google Scholar]
- Su, X.; Lu, L.; Zeng, X. Economic analysis of adding external steam cooler to thermal power generating units. Power Syst. Eng. 2019, 35, 73–74. (In Chinese) [Google Scholar]
- Chen, X.; Huang, F. Economic comparison of speed regulation operation of condensate pump of 600 MW units. Shanxi Electr. Power 2022, 29, 57–60. (In Chinese) [Google Scholar]
- Wu, Y.c. Application of Double Condensing Pump Depth Frequency Control Strategy in 1000 MW Units. Power Syst. Eng. 2018, 52–54. (In Chinese) [Google Scholar]
- Gu, W. Reconstruction and Operation Optimization of Flue Gas Waste Heat System of 1000 MW Power Plant. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2021. (In Chinese). [Google Scholar]
- Yu, W.; Yang, P.; Wang, F.; Li, Q.; Zhao, G.; Ma, J.; Ma, S. Research and challenge of coal power technology development in China under the background of dual carbon strategy. J. China Coal Soc. 2023, 48, 2641–2656. [Google Scholar]
- Lu, D. Typical Application of High Back Pressure Heating in Air Cooling Unit. Energy Conserv. Technol. 2020, 5, 422–426. (In Chinese) [Google Scholar]
- Zhang, J.; Du, X.; Zhang, W. Economic Analysis of Heating Reform of 300 MW Condensing Power Plant. Power Gener. Technol. 2019, 1, 71–73. (In Chinese) [Google Scholar]
- Chen, J.; Deng, M.; Gao, X. Technical and economical comparison and selection of 1000 MW pure condensing unit for heat supply. Energy Conserv. 2018, 1, 65–67. [Google Scholar]
- Feng, W.; Li, L. The Introduction and Analysis of the World’s First High-Temperature Retrofit Project on a Subcritical Coal-Fired Power Unit. In Proceedings of the ASME Power Conference. American Society of Mechanical Engineers, Virtual, 20–22 July 2021; Volume 85109, p. V001T08A004. [Google Scholar]
- National Development and Reform Commission. Action Plan for Low-Carbon Transformation of Coal-Fired Power Generation (2024–2027) (Chinese Version). Available online: https://www.gov.cn/zhengce/zhengceku/202407/content_6963501.htm (accessed on 9 June 2025).
- Wang, P.; Shi, B.; Li, N.; Kang, R.; Li, Y.; Wang, G.; Yang, L. CCUS development in China and forecast its contribution to emission reduction. Sci. Rep. 2023, 13, 17811. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.L.; Li, Z.; Huang, X.; Li, K.; Zhang, X.; Lu, X.; Wu, J.; Hubacek, K.; Shen, B. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage. Nat. Commun. 2023, 14, 5972. [Google Scholar] [CrossRef]
- Tan, H.; Wang, X.; Yang, F.; Deng, S.; Ruan, R. Progress in low carbon technologies for large-scale coal-fired power plants. J. China Coal Soc. 2024, 49, 1052–1066. [Google Scholar] [CrossRef]
- Zhao, H. The role of green ammonia in meeting challenges towards a sustainable development in China. Energy 2024, 310, 133283. [Google Scholar] [CrossRef]
- Yong, R.; Yang, C.; Xue, M.; Nie, F.; Zhao, X. Application Status and Prospect of Ammonia Energy. Enginnering 2023, 25, 111–121. [Google Scholar] [CrossRef]
- Jia-Hai, Y.; Yao, W.; Wei-Rong, Z.; Jian, Z. Economic analysis of carbon capture and bioenergy with carbon capture retrofitting of Chinese coal-fired power plants. Adv. Clim. Change Res. 2022, 18, 764. [Google Scholar] [CrossRef]
- Si, T.; Huang, Q.; Yang, Y.; Ma, P.; Lei, X.; Li, S. Advancements and future outlook in fundamental research and technological applications for ammonia co-firing with coal. J. China Coal Soc. 2024, 49, 2876–2886. [Google Scholar]
- National Energy Administration. Proposal on High-Quality Development of the Coal Power Industry Under the Carbon Neutrality Goal (Chinese Version). Available online: https://zfxxgk.nea.gov.cn/2021-08/27/c_1310486070.htm (accessed on 9 June 2025).
- Cui, R.; Hultman, N.; Cui, D.; McJeon, H.; Yu, S.; Edwards, M.; Sen, A.; Song, K.; Bowman, C.; Clarke, L.; et al. A plant-by-plant strategy for high-ambition coal power phaseout in China. Nat. Commun. 2021, 12, 1468. [Google Scholar] [CrossRef]
- The National State Council. Three Year Plan of Action for Winning the War to Protect Blue Skies (Chinese Version). Available online: https://www.gov.cn/xinwen/2018-07/03/content_5303212.htm (accessed on 9 June 2025).
- The National State Council. Air Quality Improvement Action Plan (2023–2025) (Chinese Version). Available online: https://www.gov.cn/zhengce/content/202312/content_6919000.htm (accessed on 9 June 2025).
- Wu, D.; Zhang, Y.; Liu, B.; Wang, K.; Wang, Z.; Kang, J. Optimization of coal power phaseout pathways ensuring energy security: Evidence from Shandong, China’s largest coal power province. Energy Policy 2024, 192, 114180. [Google Scholar] [CrossRef]
- Lin, B.; Liu, Z. Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example. Energy Policy 2024, 188, 114071. [Google Scholar] [CrossRef]
- The National State Council. Coal-Fired Power Plant Planning and Construction Risk Early Warning Notice (2018) (Chinese Version). Available online: http://zfxxgk.nea.gov.cn/auto84/201805/t20180524_3186.htm (accessed on 9 June 2025).
- China Electric Power Planning & Engineering Institute (EPPEI). Referenced Cost Indices for Fired-Based Power Plant Project; China Power Press: Beijing, China, 2023. (In Chinese) [Google Scholar]
- Zhao, C.; Zhang, W.; Wang, Y.; Liu, Q.; Guo, J.; Xiong, M.; Yuan, J. The economics of coal power generation in China. Energy Policy 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Zhao, D.; Yuan, J.; Fu, S.; Song, Y.; Wang, Y.; Liu, Y.; Zhang, J. Does economic growth stimulate energy consumption? New evidence from national and regional levels in China. Chin. J. Popul. Resour. Environ. 2023, 21, 60–70. [Google Scholar] [CrossRef]
- Shen, B.; Hove, A.; Hu, J.; Dupuy, M.; Bregnbæk, L.; Zhang, Y.; Zhang, N. Coping with power crises under decarbonization: The case of China. Renew. Sustain. Energy Rev. 2024, 193, 114294. [Google Scholar] [CrossRef]
- Research Office of the State Council. Urging Efforts to Built an Economic System Featuring Green, Low-Carbon, and Circular Development, to Promote Comprehensive Green Transition of Economic and Social Development. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/jxpl/202411/t20241107_1394323.html (accessed on 9 June 2025).
- Xin, B.; Chen, M.; Zhao, P.; Sun, H.; Zhou, Q.; Qin, X. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China. Proc. CSEE 2022, 42, 6919–6931. [Google Scholar] [CrossRef]
- Wu, G.; Niu, D. A study of carbon peaking and carbon neutral pathways in China’s power sector under a 1.5 °C temperature control target. Environ. Sci. Pollut. Res. 2022, 29, 85062–85080. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2024. Technical Report, Licence: Creative Commons Attribution CC BY-NC-SA 4.0. 2024. Available online: https://iea.blob.core.windows.net/assets/140a0470-5b90-4922-a0e9-838b3ac6918c/WorldEnergyOutlook2024.pdf (accessed on 9 June 2025).
- Zhuo, Z.; Du, E.; Zhang, N.; Nielsen, C.P.; Lu, X.; Xiao, J.; Wu, J.; Kang, C. Cost increase in the electricity supply to achieve carbon neutrality in China. Nat. Commun. 2022, 13, 3172. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. The Updated Nationally Determined Contribution (NDC) to COP26 by China. Available online: https://www.iea.org/policies/14693-the-updated-nationally-determined-contribution-ndc-to-cop26-by-china (accessed on 9 June 2025).
- International Energy Agency. Understanding GEC Model Scenarios. Available online: https://www.iea.org/reports/global-energy-and-climate-model/understanding-gec-model-scenarios (accessed on 9 June 2025).
- International Energy Agency. Second Revised/Updated NDC of European Union. Available online: https://www.iea.org/policies/24121-second-revisedupdated-ndc-of-european-union (accessed on 9 June 2025).
- Soergel, B.; Kriegler, E.; Weindl, I.; Rauner, S.; Dirnaichner, A.; Ruhe, C.; Hofmann, M.; Bauer, N.; Bertram, C.; Bodirsky, B.L.; et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 2021, 11, 656–664. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. World Energy Transitions Outlook 2023: Achieving the 1.5 °C Goal. Technical report, Licence: Creative Commons Attribution CC BY-NC-SA 4.0. 2024. Available online: https://www.worldenergy.org.tr/irena-world-energy-transition-outlook-2023-2/ (accessed on 9 June 2025).
- Shu, Y.; Zhang, L.; Zhang, Y.; Wang, Y.; Lv, G.; Yuan, B.; Xia, P. Carbon Peak and Carbon Neutrality Path for China’s Power Industry. Engineering 2021, 23, 1. [Google Scholar] [CrossRef]
- Wang, R.; Cai, W.; Cui, R.Y.; Huang, L.; Ma, W.; Qi, B.; Zhang, J.; Bian, J.; Li, H.; Zhang, S.; et al. Reducing transition costs towards carbon neutrality of China’s coal power plants. Nat. Commun. 2025, 16, 241. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Zhang, H.; Li, N. Modeling of power sector decarbonization in China: Comparisons of early and delayed mitigation towards 2-degree target. Clim. Change 2020, 162, 1843–1856. [Google Scholar] [CrossRef]
- Wang, H.; Dong, W.; Li, H.; Du, E. Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China. Sustainability 2023, 15, 4630. [Google Scholar] [CrossRef]
- Ma, L.; Ghorbani, Y.; Kongar-Syuryun, C.B.; Khayrutdinov, M.M.; Klyuev, R.V.; Petenko, A.; Brigida, V. Dynamics of backfill compressive strength obtained from enrichment tails for the circular waste management. Resour. Conserv. Recycl. Adv. 2024, 23, 200224. [Google Scholar] [CrossRef]
- Belhadi, A.; Venkatesh, M.; Kamble, S.; Abedin, M.Z. Data-driven digital transformation for supply chain carbon neutrality: Insights from cross-sector supply chain. Int. J. Prod. Econ. 2024, 270, 109178. [Google Scholar] [CrossRef]
- Dale, S.; Energy Economic, Centre for Energy Economics Research and Policy. bp Statistical Review of World Energy 2022; British Petroleum: London, UK, 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 9 June 2025).
- Dale, S.; Energy Economic, Centre for Energy Economics Research and Policy. Statistical Review of World Energy 2024; British Petroleum: London, UK, 2014; Available online: https://assets.kpmg.com/content/dam/kpmg/az/pdf/2024/Statistical-Review-of-World-Energy.pdf (accessed on 9 June 2025).
- Yang, K.; Wang, Y.; Shen, W.; Wang, Y.; Ma, S.; Ma, H. China’s Electric Power Industry Statistical Yearbook 2010–2023; Technical report; China Electricity Council: Beijing, China, 2023. (In Chinese) [Google Scholar]
Marker | Installed Capacity | Combustion Technology | Cooling Type | Function |
---|---|---|---|---|
U1 | 1000 MW | USC | WC | CHP |
U2 | USC | WC | PC | |
U3 | USC | AC | CHP | |
U4 | USC | AC | PC | |
U5 | 600 MW | USC | WC | CHP |
U6 | USC | WC | PC | |
U7 | USC | AC | CHP | |
U8 | USC | AC | PC | |
U9 | SCP | WC | CHP | |
U10 | SCP | WC | PC | |
U11 | SCP | AC | CHP | |
U12 | SCP | AC | PC | |
U13 | SBC | WC | CHP | |
U14 | SBC | WC | PC | |
U15 | SBC | AC | CHP | |
U16 | SBC | AC | PC | |
U17 | 300 MW | SCP | WC | CHP |
U18 | SCP | WC | PC | |
U19 | SCP | AC | CHP | |
U20 | SCP | AC | PC | |
U21 | SBC | WC | CHP | |
U22 | SBC | WC | PC | |
U23 | SBC | AC | CHP | |
U24 | SBC | AC | PC | |
U25 | below 300 MW | - | - | - |
System | Representative Technology | Marker | Capacity Level | Initial Investment (CNY/kW) | Reduction in Coal Consumption Rate (gce/kWh) | Reduction in Auxiliary Rate (%) | Reference |
---|---|---|---|---|---|---|---|
S1: Boiler System | Boiler Combustion Optimization 1 | T1 | 300 600 1000 | 8–9.1 11.7–19 6.4–8 | 1–1.5 1.2–20 0.5–0.8 | - - - | [18,27,28,29] |
S2: Steam System | Flow Path Transformation | T2 | 300 600 1000 | 166.7–200 140–150 165–180 | 8–15 8–12 7–10 | - - - | [27,30,31] |
Optimization of Cold End | T3 | 300 600 1000 | 166.7–200 140–150 165–180 | 8–15 8–12 7–10 | - - - | [27,32,33] | |
S3: Auxiliary System 2 | Fan System Speed Control | T4 | 300 600 1000 | 18–25 20–25 17–20 | - - - | 30–40% | [18,27] |
Pump System Retrofit | T5 | 300 600 | 36–42 38.3–45 | - - - | 30–40% | [18,27,34,35] | |
S4: Full System | Flue gas waste heat recovery | T6 | 300 600 1000 | 36.7–45 36.8–50 30.9–44.6 | 1–2.5 1.2–3 1–2 | - - - | [18,27,28,29,36] |
Heating System Retrofit | T7 | 300 600 1000 | 71.5–105 58–66.7 90–105 | 10–15 7–13 6–10 | - - - | [37,38,39,40] | |
Unit parameter upgrade 3 | T8 | 300 600 | 167.7–181.8 161.7–170 | 7.5–12.5 6.5–11 | - - - | [18,28,29,41] |
Aspects | Index | Data Type | Details | Score Assignment | Weight |
---|---|---|---|---|---|
Environmental | Emissions | Quantitative | Emissions per generation | [0,1] | 25% |
Technical | Utilization hours | Quantitative | Utilization hours relative to theoretical maximum value of 8760 | [0,1] | 15% |
Age factor | Quantitative | Ratio of remaining lifespan to predefined value | [0,1] | 15% | |
Combustion technology | Categorical | USC | 1 | 5% | |
SPC | 0.75 | ||||
SBC | 0.5 | ||||
Other | 0.25 | ||||
Capacity level | Categorical | ≥1000 MW | 1 | 10% | |
≥600 MW | 0.67 | ||||
≤300 MW | 0.33 | ||||
Usage type | Categorical | Self-Use | 0.5 | 5% | |
CHP | 1 | ||||
Power | 1 | ||||
Economic | Profitability | Quantitative | Strand Assets per generation | (0,1) | 25% |
Scenarios | Description |
---|---|
BCNS [8] |
|
ICNS [8] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, L.; Wang, X.; Wang, K.; Pan, J.; Tian, X.; Yang, L.; Wang, Y.; Ni, Y.; Zheng, C. Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector. Sustainability 2025, 17, 5766. https://doi.org/10.3390/su17135766
Zhao X, Zhang L, Wang X, Wang K, Pan J, Tian X, Yang L, Wang Y, Ni Y, Zheng C. Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector. Sustainability. 2025; 17(13):5766. https://doi.org/10.3390/su17135766
Chicago/Turabian StyleZhao, Xinxu, Li Zhang, Xutao Wang, Kun Wang, Jun Pan, Xin Tian, Liming Yang, Yaoxuan Wang, Yu Ni, and Chenghang Zheng. 2025. "Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector" Sustainability 17, no. 13: 5766. https://doi.org/10.3390/su17135766
APA StyleZhao, X., Zhang, L., Wang, X., Wang, K., Pan, J., Tian, X., Yang, L., Wang, Y., Ni, Y., & Zheng, C. (2025). Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector. Sustainability, 17(13), 5766. https://doi.org/10.3390/su17135766