Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera
Abstract
:1. Introduction
2. Topography and Geological Setting
2.1. Topography
- Temperature: The average temperature in the Kayu Tanam area, Pariaman Regency, and surrounding regions typically ranges from 24.4 °C to 25.7 °C. Due to its proximity to the equator, temperatures in the region remain relatively stable year-round, with slight decreases at night [37].
- Humidity: Humidity is relatively high, around 86.75% [37], mainly due to the presence of tropical forests and beaches not far from the area.
- Winds and Monsoon Influences: The climate in this area is influenced by the monsoon winds, which come from the Indian and Pacific Oceans. The southwest monsoon (June to September) brings dry winds and larger sea waves, while the northeast monsoon (December to March) brings rain from the sea [38].
- Surface (Superficial) Aquifers: A subsurface layer containing water located near the Earth’s surface, typically at a depth of less than 15–30 m. This layer consists of porous and permeable materials, such as sand, gravel, or sedimentary rock, which facilitate the storage and flow of groundwater efficiently [39]. At the study area, the phreatic surface of the shallow aquifer occurs at 4 m above mean sea level (m a.s.l.).
- Deep (Closed) Aquifers: These aquifers are usually composed of sedimentary or volcanic rocks that have pores or fissures that allow groundwater to move, albeit at a slower rate [39].
2.2. Geological Setting
3. Methods
3.1. Laboratory Testing
- Uniaxial Compressive Strength Test
- Specific Mass Test
3.2. Assess and Design Rock Slopes in the Open-Pit Mine
- Δh = Elevation difference between two points (in meters).
- d = Horizontal distance between two points (in meters).
- Δh = Cross-sectional elevation difference between road edges (m).
- W = Total road width (m).
- e = Superelevation rate (dimensionless).
- f = Side friction factor.
- V = Design speed (km/h).
- R = Curve radius (m).
4. Results and Discussion
Rock Type | Compressive Strength (MPa) | Specific Mass (KN/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | Cohesion (MPa) | Internal Friction Angle (°) | Average Thickness (m) |
---|---|---|---|---|---|---|---|
Andesite | 26.00 | 25.62 | 20.40 | 0.30 | 1.17 | 28.51 | 23.50 |
Claystone | 12.00 | 22.00 | 10.10 | 0.27 | 0.28 | 8.17 | 6.50 |
- A tension fracture is present at the slope’s summit. When the material that makes up the slope slides in the direction of the pit, a crack is created. The likelihood of slope instability will increase if rainwater fills the crevice.
- A tiny section of the crest is present and slopes vertically. This is visually noticeable near the slope’s summit, indicating partial slope movement.
- Unexpected changes in groundwater conditions, such as seepage at the slope’s base (toe), are caused by rising groundwater or persistent rain. As a result, the water pressure on the slope will increase together with the weight of the slope material.
- At the base of the slope (toe), there is a minor collapse. As a result, the material on it will overhang and may also collapse.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denissova, N.; Nurakynov, S.; Petrova, O.; Chepashev, D.; Daumova, G.; Yelisseyeva, A. Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems. Atmosphere 2024, 15, 1343. [Google Scholar] [CrossRef]
- Thakur, V.; Depina, I.; Degago, S.A.; Alene, G.H.; Oguz, E.A.; Singh, M.; Chandel, A. Landslide Mitigation of Urbanized Slopes for Sustainable Growth: A Summary of Recent Developments in Structural and Non-structural Countermeasures to Manage Water-Triggered Landslides. Indian Geotech. J. 2024, 54, 1751–1766. [Google Scholar] [CrossRef]
- Arrogante-Funes, P.; Bruzón, A.G.; Arrogante-Funes, F.; Ramos-Bernal, R.N.; Vázquez-Jiménez, R. Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 11987. [Google Scholar] [CrossRef]
- Al-Adhadh, A.R.; Abbas, B.J.; Hamza, A.J. Analysis and Evaluation of Landslide Failure and Using Different Techniques to the Mitigation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1090, 012008. [Google Scholar] [CrossRef]
- Lan, H.; Zhao, X.; Macciotta, R.; Peng, J.; Li, L.; Wu, Y.; Zhu, Y.; Liu, X.; Zhang, N.; Liu, S.; et al. The cyclic expansion and contraction characteristics of a loess slope and implications for slope stability. Sci. Rep. 2021, 11, 2250. [Google Scholar] [CrossRef] [PubMed]
- WLiu, W.; Sheng, G.; Kang, X.; Yang, M.; Li, D.; Wu, S. Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects. Appl. Sci. 2024, 14, 8449. [Google Scholar] [CrossRef]
- Kolapo, P.; Oniyide, G.O.; Said, K.O.; Lawal, A.I.; Onifade, M.; Munemo, P. An Overview of Slope Failure in Mining Operations. Mining 2022, 2, 350–384. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Wang, C. Prediction of stability coefficient of open-pit mine slope based on artificial intelligence deep learning algorithm. Sci. Rep. 2023, 13, 12017. [Google Scholar] [CrossRef]
- Popescu, F.D.; Andras, A.; Radu, S.M.; Brinas, I.; Iladie, C.-M. Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method. Appl. Sci. 2024, 14, 9875. [Google Scholar] [CrossRef]
- Enge, W.; Jianjun, Z.; Qiyi, L.; Jianle, Y.; Jie, D.; Qingmiao, L.; Jianxian, H. Influence of different mining locations on deformation characteristics of overlying strata on gently anti-dip high-steep mining slope. Sci. Rep. 2024, 14, 23415. [Google Scholar] [CrossRef]
- Durukan, S. Evaluation of the Antecedent Saturation and Rainfall Conditions on the Slope Failure Mechanism Triggered by Rainfalls. Appl. Sci. 2024, 14, 9478. [Google Scholar] [CrossRef]
- Arriola, C.; Aronés, E.; Vega, V.; Esenarro, D.; Salas, G.; Romero, A.; Raymundo, V. Physical Slope Stability: Factors of Safety Under Static and Pseudo-Static Conditions. Infrastructures 2025, 10, 53. [Google Scholar] [CrossRef]
- Simangunsong, G.M.; Prassetyo, S.H.; Pinem, R.S. Relationship between blasting operation and slope stability: A case study at Borneo Indo Bara open pit coal mine. Sci. Rep. 2024, 14, 29890. [Google Scholar] [CrossRef]
- Guo, L.; Chen, G.; Ding, L.; Zheng, L.; Gao, J. Numerical simulation of full desiccation process of clayey soils using an extended DDA model with soil suction consideration. Comput. Geotech. 2022, 153, 105107. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Guo, J.; Wu, Z.-W.; Liu, K. Stability analysis of soft–hard-interbedded anti-inclined rock slope. Sci. Rep. 2023, 13, 1643. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, C.; Wang, T.; Zhang, Z. Quantification of Geological Strength Index Based on Discontinuity Volume Density of Rock Masses. Int. J. Heat Technol. 2015, 33, 255–261. [Google Scholar] [CrossRef]
- Bezie, G.; Chala, E.T.; Jilo, N.Z.; Birhanu, S.; Berta, K.K.; Assefa, S.M.; Gissila, B. Rock slope stability analysis of a limestone quarry in a case study of a National Cement Factory in Eastern Ethiopia. Sci. Rep. 2024, 14, 18541. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Xu, X.; Qu, X. Study on the differences between Hoek–Brown parameters and equivalent Mohr–Coulomb parameters in the calculation slope critical acceleration and permanent displacement. Sci. Rep. 2024, 14, 15128. [Google Scholar] [CrossRef]
- Li, L.; Yang, G.; Liu, H.; Song, S.; Fan, H. A quantitative model for the geological strength index based on attribute mathematics and its application. Bull. Eng. Geol. Environ. 2021, 80, 6897–6911. [Google Scholar] [CrossRef]
- You, L.K.; Rahim, I.A. Prediction of Rock Mass Properties, Tunnel Stability and Support Pressure by Geological Strength Index (Gsi) in Crocker Formation: A Case Study. Geol. Behav. 2017, 1, 31–33. [Google Scholar] [CrossRef]
- Sengani, F.; Mulenga, F. Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability. Sustainability 2020, 12, 8870. [Google Scholar] [CrossRef]
- Abdulai, M.; Sharifzadeh, M. Probability Methods for Stability Design of Open Pit Rock Slopes: An Overview. Geosciences 2021, 11, 319. [Google Scholar] [CrossRef]
- Azarafza, M.; Akgün, H.; Ghazifard, A.; Asghari-Kaljahi, E.; Rahnamarad, J.; Derakhshani, R. Discontinuous rock slope stability analysis by limit equilibrium approaches—A review. Int. J. Digit. Earth 2021, 14, 1918–1941. [Google Scholar] [CrossRef]
- Faramarzi, L.; Zare, M.; Azhari, A.; Tabaei, M. Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the limit equilibrium method and numerical modeling. Bull. Eng. Geol. Environ. 2016, 76, 783–794. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Yeh, H.-F.; Ke, C.-C.; Wei, L.-W.; Chen, N.-C. The Evaluation of Rainfall Warning Thresholds for Shallow Slope Stability Based on the Local Safety Factor Theory. Geosciences 2024, 14, 274. [Google Scholar] [CrossRef]
- Chuaiwate, P.; Jaritngam, S.; Panedpojaman, P.; Konkong, N. Probabilistic Analysis of Slope against Uncertain Soil Parameters. Sustainability 2022, 14, 14530. [Google Scholar] [CrossRef]
- Nata, R.A.; Ren, G.; Ge, Y.; Fadhly, A.; Muzer, F.; Ramadhan, M.F.; Syahmer, V. The Role of LEM in Mine Slope Safety: A Pre- and Post-Blast Perspective. Safety 2024, 10, 101. [Google Scholar] [CrossRef]
- Irwan, A.G.; Wiati, I.T. Reconstruction of Natural Slope Stability by Limit Equilibrium Methods and Finite Element Methods. DTS 2023, 16, 43–49. [Google Scholar] [CrossRef]
- Leshchinsky, B.; Ambauen, S. Limit Equilibrium and Limit Analysis: Comparison of Benchmark Slope Stability Problems. J. Geotech. Geoenviron. Eng. 2015, 141, 04015043. [Google Scholar] [CrossRef]
- Fu, B.; Ji, H.; Pei, J.; Wei, J. Numerical Computation-Based Analysis of Blasting Vibration Effects and Slope Stability in an Open-Pit Quarry. Fire 2024, 7, 420. [Google Scholar] [CrossRef]
- Ronda, G.; Santi, P.; Pope, I.E.; Luque, A.L.V.; Paria, C.J.B. Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru. Geosciences 2024, 14, 315. [Google Scholar] [CrossRef]
- Nata, R.A.; Ren, G.; Fadhilah; Syahmer, V. Sustainable Slope Stability Analysis Using Finite Element Method on Clay and Andesite Materials. paperASIA 2024, 40, 192–206. [Google Scholar] [CrossRef]
- Göktepe, F.; Keskin, I. A Comparison Study between Traditional and Finite Element Methods for Slope Stability Evaluations. J. Geol. Soc. India 2018, 91, 373–379. [Google Scholar] [CrossRef]
- Hosseini, S.; Astaraki, F.; Imam, S.M.R.; Chalabii, J.; Movahedi Rad, M. Investigation of Shear Strength Reduction Method in Slope Stability of Reinforced Slopes by Anchor and Nail. Buildings 2024, 14, 432. [Google Scholar] [CrossRef]
- Rusmanawati, D.; Indrawan, I.G.B.; Setiawan, H. Slope Stability Analysis Using Finite Element Method on Tepus-Jerukwudel Road. ARCEE 2022, 3, 150–162. [Google Scholar] [CrossRef]
- Amalia, A.R.; Amalita, N.; Kurniawati, Y.; Martha, Z. Fuzzy K-Nearest Neighbor to Predict Rainfall in Padang Pariaman District. Unp J. Stat. Data Sci. 2024, 2, 64–70. [Google Scholar] [CrossRef]
- Azmiada, Z.; Elizal, E.; Mulyadi, A. The Relationship of The Distribution of Sea Surface Temperature with Rainfall and Wind in The Waters of West Sumatra. Asian J. Aquat. Sci. 2024, 7, 33–43. [Google Scholar] [CrossRef]
- Yusra, R.D.; Afdal, A. Pendugaan Instrusi Air Laut Terhadap Air Tanah Dangkal di Pantai Kecamatan Pariaman Utara Kota Pariaman. J. Fis. Unand 2022, 12, 35–41. [Google Scholar] [CrossRef]
- Ulni, A.Z.P.; Rezki, A.; Juita, E.; Zuriyani, E. Sosialisasi Dampak Konversi Lahan terhadap Perubahan Iklim di Nagari Sungai Durian Padang Pariaman. INCOME Indones. J. Community Serv. Engagem. 2023, 2, 86–93. [Google Scholar] [CrossRef]
- Dahrin, D.; Amir, H.; Suryanata, P.B.; Bijaksana, S.; Fajar, S.J.; Ibrahim, K.; Harlianti, U.; Arisbaya, I.; Pebrian, M.Q.; Rahman, A.A.; et al. Subsurface structures of Sianok Segment in the GSF (Great Sumatran Fault) inferred from magnetic and gravity modeling. Front. Earth Sci. 2022, 10, 1012286. [Google Scholar] [CrossRef]
- Trimulyati, W.; Putra, A. Identifikasi Struktur Bawah Permukaan Gunung Tandikat Menggunakan Metode Gravitasi Berdasarkan Data Satelit. J. Fis. Unand 2022, 11, 366–372. [Google Scholar] [CrossRef]
- Widyani, K.; Ridwansyah, I.; Syahrulyati, T. Paleolimnology analysis: The reconstruction of Lake Maninjau with pollen as the proxy. IOP Conf. Ser. Earth Environ. Sci. 2020, 535, 012005. [Google Scholar] [CrossRef]
- C01 Committee, Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Available online: https://doi.org/10.1520/C0109_C0109M-21 (accessed on 1 January 2025).
- C09 Committee, Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. Available online: https://doi.org/10.1520/C0127-12 (accessed on 1 January 2025).
- Slide_TutorialManual. Available online: https://www.rocscience.com/help/slide2/tutorials/tutorials-overview/quick-start-tutorial (accessed on 5 December 2024).
- Saade, A.; Abou-Jaoude, G.; Wartman, J. Regional-scale co-seismic landslide assessment using limit equilibrium analysis. Eng. Geol. 2016, 204, 53–64. [Google Scholar] [CrossRef]
- Ramadhani, S.; Martini, A.; Chauf, K.; Dwijaka, A.; Bierhofa, M.Z.; Gagaramusu, Y. Slope stability using Simplified Bishop method in Kebun Kopi area Donggala regency, central Sulawesi province. IOP Conf. Ser. Earth Environ. Sci. 2022, 1075, 012027. [Google Scholar] [CrossRef]
- Pandey, B.R.; Knoblauch, H.; Zenz, G. Slope Stability Evaluation Due to Reservoir Draw-Down Using LEM and Stress-Based FEM along with Mohr–Coulomb Criteria. Water 2023, 15, 4022. [Google Scholar] [CrossRef]
- Fang, R.; Deng, L.; Fan, W.; Yang, G.; Tang, D.; Mohammad, A. Research on response characteristics of loess slope and disaster mechanism caused by structural plane extension under excavation. Sci. Rep. 2024, 14, 28700. [Google Scholar] [CrossRef]
- Wu, P.; Wu, H.; Chen, Y. Simulation Accuracy Analysis of Slope Stability Based on Finite Element Shear Strength Reduction (SSR) Method. Int. J. Min. Sci. 2017, 3, 52–59. [Google Scholar] [CrossRef]
- Chang, C.; Zoback, M.D.; Khaksar, A. Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 2006, 51, 223–237. [Google Scholar] [CrossRef]
- Nata, R.A.; Ren, G.; Ge, Y.; Tanjung, A.A.; Muzer, F.; Syahmer, V. Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes. Safety 2024, 10, 70. [Google Scholar] [CrossRef]
Code | Mass (m) (g) | Length (L) (cm) | Width (w) (cm) | Height (h) (cm) | Area (A) (cm2) | Maximum Load (P) (Ton) | Compressive Strength (σc) (kPa) |
---|---|---|---|---|---|---|---|
S-1 | 311.60 | 5.00 | 5.04 | 4.87 | 25.20 | 6.40 | 24,905.78 |
311.80 | 5.02 | 5.05 | 4.98 | 25.35 | 6.60 | 25,531.10 | |
311.70 | 5.01 | 5.04 | 4.86 | 25.25 | 6.50 | 25,244.44 | |
S-2 | 293.90 | 5.00 | 4.97 | 5.00 | 24.85 | 6.50 | 25,651.20 |
294.50 | 5.01 | 4.98 | 5.01 | 24.95 | 6.70 | 26,334.70 | |
294.10 | 5.00 | 4.97 | 4.98 | 24.85 | 6.40 | 25,256.56 | |
S-3 | 349.40 | 5.02 | 5.01 | 4.97 | 25.15 | 6.44 | 25,111.06 |
351.20 | 5.03 | 5.02 | 5.02 | 25.25 | 6.68 | 25,943.31 | |
350.30 | 5.02 | 5.01 | 5.02 | 25.15 | 6.53 | 25,461.99 | |
S-4 | 353.00 | 5.03 | 5.00 | 5.03 | 25.15 | 6.80 | 26,515.00 |
355.70 | 5.04 | 5.01 | 5.04 | 25.25 | 7.20 | 27,963.07 | |
352.20 | 5.02 | 5.00 | 5.02 | 25.10 | 6.80 | 26,567.82 | |
S-5 | 313.10 | 5.04 | 4.96 | 4.99 | 25.00 | 6.16 | 24,165.13 |
314.50 | 5.03 | 5.00 | 5.03 | 25.15 | 6.23 | 24,292.42 | |
313.80 | 5.03 | 4.99 | 5.03 | 25.10 | 6.12 | 23,911.32 | |
S-6 | 369.70 | 5.02 | 4.97 | 5.02 | 24.95 | 7.24 | 28,457.66 |
371.20 | 5.04 | 5.01 | 5.04 | 25.25 | 7.35 | 28,545.64 | |
365.80 | 5.01 | 4.96 | 5.01 | 24.85 | 7.15 | 28,216.77 | |
SD | 27.70 | 0.01 | 0.03 | 0.05 | 0.16 | 0.37 | 1462.83 |
Average | 332.08 | 5.02 | 5.00 | 5.00 | 25.10 | 6.66 | 26,004.17 |
CoV | 8.34 | 0.27 | 0.55 | 1.04 | 0.62 | 5.61 | 5.63 |
Min | 293.90 | 5.00 | 4.96 | 4.86 | 24.85 | 6.12 | 23,911.32 |
Max | 371.20 | 5.04 | 5.05 | 5.04 | 25.35 | 7.35 | 28,545.64 |
Code | Mass in Saturated Surface Dry (A) (g) | Mass in Water (B) (g) | Total Separated Water Volume (C) = A − B (mL) | Specific Mass (ρ) = A:C (kN/m3) |
---|---|---|---|---|
S-1 | 2400.20 | 1502.30 | 897.90 | 26.22 |
2400.35 | 1502.60 | 897.75 | 26.23 | |
2400.10 | 1502.15 | 897.95 | 26.22 | |
S-2 | 2367.10 | 1468.10 | 899.00 | 25.83 |
2367.65 | 1468.40 | 899.25 | 25.83 | |
2367.05 | 1468.05 | 899.00 | 25.83 | |
S-3 | 2339.10 | 1488.40 | 850.70 | 26.97 |
2339.75 | 1488.95 | 850.80 | 26.98 | |
2339.05 | 1488.20 | 850.85 | 26.97 | |
S-4 | 2473.80 | 1511.10 | 962.70 | 25.21 |
2473.90 | 1511.40 | 962.50 | 25.21 | |
2473.60 | 1511.05 | 962.55 | 25.21 | |
S-5 | 2332.10 | 1450.80 | 881.30 | 25.96 |
2332.40 | 1450.95 | 881.45 | 25.96 | |
2332.05 | 1450.70 | 881.35 | 25.96 | |
S-6 | 2251.60 | 1416.90 | 834.70 | 26.46 |
2551.85 | 1416.95 | 1134.90 | 22.06 | |
2551.50 | 1416.80 | 1134.70 | 22.06 | |
SD | 81.09 | 33.14 | 86.30 | 1.41 |
Average | 2394.06 | 1472.99 | 921.08 | 25.62 |
CoV | 3.39 | 2.25 | 9.37 | 5.49 |
Min | 2251.60 | 1416.80 | 834.70 | 22.06 |
Max | 2551.85 | 1511.40 | 1134.90 | 26.98 |
Code Slope | GSI Value | Hoek–Brown Criterion | Mohr–Coulomb Fit | |||
---|---|---|---|---|---|---|
mb | s | A | Cohesion (c) (MPa) | Internal Friction Angle (°) | ||
STS-1 | 25 | 0.41 | 0.00002 | 0.53 | 0.64 | 19.13 |
STS-2 | 65 | 3.65 | 0.0063 | 0.5 | 1.66 | 37.17 |
STS-3 | 44 | 1.15 | 0.0003 | 0.51 | 1.07 | 27.46 |
STS-4 | 35 | 0.7 | 0.0001 | 0.52 | 0.92 | 23.47 |
STS-5 | 69 | 4.55 | 0.0112 | 0.50 | 1.68 | 39.03 |
STS-6 | 38 | 0.83 | 0.0001 | 0.51 | 1.04 | 24.79 |
SD | 17.44 | 1.76 | 0.00 | 0.01 | 0.42 | 7.92 |
Average | 46.00 | 1.88 | 0.00 | 0.51 | 1.17 | 28.51 |
CoV | 37.90 | 93.42 | 156.97 | 2.28 | 35.71 | 27.80 |
Min | 25.00 | 0.41 | 0.00 | 0.50 | 0.64 | 19.13 |
Max | 69.00 | 4.55 | 0.01 | 0.53 | 1.68 | 39.03 |
Code Slope | LEM | FEM | |||||
---|---|---|---|---|---|---|---|
Fellenius | Bishop Simplified | Janbu Corrected | Spencer | Lowe–Karfiath | Morgenstern–Price | ||
STS-1 | 1.24 | 1.3 | 1.29 | 1.3 | 1.28 | 1.3 | 1.59 |
STS-2 | 2.03 | 2.14 | 2.12 | 2.15 | 2.1 | 2.14 | 3.11 |
STS-3 | 1.99 | 2.09 | 2.07 | 2.1 | 2.05 | 2.09 | 2.3 |
STS-4 | 1.53 | 1.6 | 1.59 | 1.61 | 1.58 | 1.61 | 1.96 |
STS-5 | 2.4 | 2.53 | 2.51 | 2.55 | 2.49 | 2.54 | 3.27 |
STS-6 | 1.64 | 1.72 | 1.71 | 1.73 | 1.69 | 1.72 | 2.08 |
SD | 0.41 | 0.44 | 0.44 | 0.45 | 0.43 | 0.44 | 0.67 |
Avg | 1.81 | 1.9 | 1.88 | 1.91 | 1.87 | 1.9 | 2.39 |
CoV | 22.65 | 23.16 | 23.40 | 23.56 | 22.99 | 23.16 | 27.95 |
Min | 1.24 | 1.3 | 1.29 | 1.3 | 1.28 | 1.3 | 1.59 |
Max | 2.4 | 2.53 | 2.51 | 2.55 | 2.49 | 2.54 | 3.27 |
Condition | Rock Type | Slope Height (m) | Slope Angle (°) | Factor of Safety (FoS) |
---|---|---|---|---|
Single Slope | Andesite | 10 | 65 | 2.84 |
70 | 2.41 | |||
75 | 2.07 | |||
80 | 1.62 | |||
Single Slope | Claystone | 27 | 20 | 1.48 |
50 | 1.34 | |||
30 | 20 | 1.27 | ||
50 | 0.92 | |||
35 | 20 | 1.04 | ||
50 | 0.89 | |||
Overall Slope | Andesite and Claystone | 30 | 40 | 1.72 |
45 | 1.51 | |||
50 | 1.39 | |||
55 | 1.3 | |||
60 | 1.23 | |||
65 | 1.09 |
Design Type | Parameter | Dimension | Unit |
---|---|---|---|
Pit Mine | Area of the Open Pit | 2.88 | Ha |
Bench Height | 10 | Meter | |
Berm Width | 10 | Meter | |
Single Slope | 80 | Degree | |
Overall Slope | 60 | Degree | |
Road Geometry | Ramp | 10 | Meter |
Distance to Disposal | 300–350 | Meter | |
Distance to Soil Bank | 300–350 | Meter | |
Distance to Stock ROM | 200–250 | Meter | |
Grade of the Road | 8 | % | |
Cross-slope | 2 | % | |
Superelevation | 4 | % | |
Radius of Corners | 20 | Meter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nata, R.A.; Ren, G.; Ge, Y.; Zhang, C.; Zhang, L.; Kang, P.; Syahmer, V. Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera. Sustainability 2025, 17, 5711. https://doi.org/10.3390/su17135711
Nata RA, Ren G, Ge Y, Zhang C, Zhang L, Kang P, Syahmer V. Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera. Sustainability. 2025; 17(13):5711. https://doi.org/10.3390/su17135711
Chicago/Turabian StyleNata, Refky Adi, Gaofeng Ren, Yongxiang Ge, Congrui Zhang, Luwei Zhang, Pulin Kang, and Verra Syahmer. 2025. "Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera" Sustainability 17, no. 13: 5711. https://doi.org/10.3390/su17135711
APA StyleNata, R. A., Ren, G., Ge, Y., Zhang, C., Zhang, L., Kang, P., & Syahmer, V. (2025). Designing Stable Rock Slopes in Open-Pit Mines: A Case Study of Andesite Mining at Anugerah Berkah Sejahtera. Sustainability, 17(13), 5711. https://doi.org/10.3390/su17135711