Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country
Abstract
:1. Introduction
2. Landslide Case Study
2.1. Engineering Geological Overview of the Landslide
2.2. Sampling and Basic Physical Properties of the Samples
3. Shear Mechanical Properties of the Samples
3.1. Direct Shear Test
3.2. Ring Shear Test
4. Impact of Rainfall Infiltration on Landslide Stability
4.1. Numerical Model and Parameter Selection
4.2. Simulation Conditions
4.3. Results and Analysis
5. Simulation of the Movement Process After Landslide Destruction
5.1. Numerical Model and Micro-Parameter Calibration
5.2. Simulation Results and Analysis
6. Discussion
6.1. Implications for the Landslide Prediction and Early Warning in Yuexi Country
6.2. Implications for the Assessment of Post-Failure Movement of Landslides in Yuexi Country
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Amarasinghe, M.P.; Kulathilaka, S.A.S.; Robert, D.J.; Zhou, A.; Jayathissa, H.A.G. Risk assessment and management of rainfall-induced landslides in tropical regions: A review. Nat. Hazards 2024, 120, 2179–2231. [Google Scholar] [CrossRef]
- Miao, H.B.; Chai, S.F.; Wang, G.H. Influence factors for failure of cohesionless soil slopes triggered by heavy rainfall. Chin. J. Geotech. Eng. 2021, 43, 300–308. [Google Scholar]
- Ma, H.; Wang, F. Inventory of shallow landslides triggered by extreme precipitation in July 2023 in Beijing, China. Sci. Data 2024, 11, 1083. [Google Scholar] [CrossRef]
- Zhan, L.T.; Li, H.; Chen, Y.M.; Fredlund, D.G. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China. Rock Soil Mech. 2012, 33, 872–880. [Google Scholar]
- Wen, H.J.; Zhang, Y.Y.; Fu, H.M.; Xie, P.; Hu, J. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods. China J. Highw. Transp. 2018, 31, 15–29+96. [Google Scholar]
- Bai, H.; Feng, W.; Yi, X.; Fang, H.; Wu, Y.; Deng, P.; Dai, H.; Hu, R. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei village, Longchuan County, Guangdong Province, China. Nat. Hazards 2021, 108, 3181–3201. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rainfall infiltration. Water Resour. Res. 2013, 36, 1897–1910. [Google Scholar] [CrossRef]
- Springman, S.M.; Jommi, C.; Teysseire, P. Instabilities on moraine slopes induced by loss of suction: A case history. Géotechnique 2003, 53, 3–10. [Google Scholar] [CrossRef]
- Cuomo, S.; Della Sala, M. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng. Geol. 2013, 162, 118–127. [Google Scholar] [CrossRef]
- Wang, G.; Sun, P.; Wu, L.Z.; Shi, L.Y.; Zhu, E.Z. Experimental study on mechanism of shallow loess landslides induced by rainfall. J. Eng. Geol. 2017, 25, 1252–1263. [Google Scholar]
- Dou, H.Q.; Xie, S.H.; Wang, H.; Jian, W.B. Numerical analysis of seepage characteristics and stability for spheroidal weathered granite-like soil slopes under rainfall conditions. J. Eng. Geol. 2023, 31, 638–649. [Google Scholar]
- Cui, P.; Guo, C.X.; Zhou, J.W.; Hao, M.H.; Xu, F.G. The mechanisms behind shallow failures in slopes comprised of landslide deposits. Eng. Geol. 2014, 180, 34–44. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.L.; Cheng, Y.; Wang, J.H. Slope stability under rainfall infiltration considering internal erosion. Chin. J. Geotech. Eng. 2014, 36, 1680–1687. [Google Scholar]
- Cui, Y.F.; Zhou, X.J.; Guo, C.X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. J. Mt. Sci. 2017, 14, 417–431. [Google Scholar] [CrossRef]
- Cui, Y.F.; Jiang, Y.; Guo, C.X. Investigation of the initiation of shallow failure in widely graded loose soil slopes considering interstitial flow and surface runoff. Landslides 2019, 16, 815–828. [Google Scholar] [CrossRef]
- Huang, Y.T.; Li, D. 1:50000 geological hazard risk assessment of Yuexi County, Anqing City, Anhui Province. Geol. Anhui 2023, 33, 303–306. [Google Scholar]
- Broeckx, J.; Rossi, M.; Lijnen, K.; Campforts, B.; Poesen, J.; Vanmaercke, M. Landslide mobilization rates: A global analysis and model. Earth-Sci. Rev. 2020, 201, 102972. [Google Scholar] [CrossRef]
- Mitchell, A.; McDougall, S.; Nolde, N.; Brideau, M.-A.; Whittall, J.; Aaron, J.B. Rock avalanche runout prediction using stochastic analysis of a regional dataset. Landslides 2020, 17, 777–792. [Google Scholar] [CrossRef]
- Zhang, H.; He, S.; Liu, W.; Deng, Y.; Hu, W. Creep-to-runout transition of large landslides controlled by frictional velocity strengthening and weakening (Vajont 1963, Italy). Rock Mech. Rock Eng. 2023, 56, 8471–8483. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Zhang, Q.; Gao, F.; Xiao, L. A theoretical model about the runout distance of bedding rock landslide. Earth Sci. 2024, 49, 2851–2861. [Google Scholar]
- He, X.R.; Yin, Y.P.; Zhao, L.M.; Hu, X.W.; Wang, W.P.; Zhang, S.L. Disintegration and fragmentation effect of high position rock landslide debris flow based on large scale physical model test. Earth Sci. 2024, 49, 2650–2661. [Google Scholar]
- Zhang, S.; Shi, W.; Wang, Y.; Liang, F.; Zhang, J.; Wang, X. Numerical evaluation of the deformation and failure mechanisms and movement processes of the Guanling landslide in Guizhou, China. Landslides 2023, 20, 1747–1762. [Google Scholar] [CrossRef]
- Zhang, W.J.; Zhang, W.; Chen, Y.; Du, Y.; Ji, J.; Gao, Y.F. Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides. Rock Soil Mech. 2024, 45, 1039–1050+1080. [Google Scholar]
- Zhang, W.; Yan, F.; Wang, Z.F.; Li, S.J. Numerical analysis of landslides based on coupling model of material point method and depth integral. Rock Soil Mech. 2024, 45, 2515–2526. [Google Scholar]
- Guo, Z.; Zhou, X.; Huang, D.; Zhai, S.; Tian, B.; Li, G. Dynamic simulation insights into friction weakening effect on rapid long-runout landslides: A case study of the Yigong landslide in the Tibetan Plateau, China. China Geol. 2024, 7, 222–236. [Google Scholar] [CrossRef]
- Kuenza, K.; Towhata, I.; Orense, R.P.; Wassan, T.H. Undrained torsional shear tests on gravelly soils. Landslides 2004, 1, 185–194. [Google Scholar] [CrossRef]
- Cen, D.F.; Liu, C.; Huang, D. Experimental and numerical study on tensile-shear strength and rupture characteristics of sandstone. Chin. J. Rock Mech. Eng. 2020, 39, 1333–1342. [Google Scholar]
- Song, Y.J.; Sun, Y.W.; Li, C.J.; Yang, H.M.; Zhang, L.T.; Xie, L.J. Meso-fracture evolution characteristics of freeze-thawed sandstone based on discrete element method simulation. Rock Soil Mech. 2023, 44, 3602–3616. [Google Scholar]
- Ma, Y.; Yu, B.; He, Y.; Ma, X.; Wu, Y.; Wu, Y.; Liu, K.; Ye, L. Rainfall threshold and development characteristics of shallow landslides induced by rainfall: A case study of the “June 10th, 2019” disaster in the Dajishan area, Quannan County, Jiangxi Province. Geol. Explor. 2023, 59, 1065–1073. [Google Scholar]
- Zhou, J.; Tang, M.; Xu, Q.; Wu, H.; Wang, X. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold. Mt. Res. 2022, 40, 847–858. [Google Scholar]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Sharma, A.; Sajjad, H.; Roshani Rahaman, M.H. A systematic review for assessing the impact of climate change on landslides: Research gaps and directions for future research. Spat. Inf. Res. 2024, 32, 165–185. [Google Scholar] [CrossRef]
- Wood, J.L.; Harrison, S.; Reinhardt, L.; Taylor, F.E. Landslide databases for climate change detection and attribution. Geomorphology 2020, 355, 107061. [Google Scholar] [CrossRef]
- Schulz, W.H.; Wang, G. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon US. J. Geophys. Res. Earth Surf. 2014, 119, 1617–1635. [Google Scholar] [CrossRef]
- Wang, G.; Suemine, A.; Schulz, W.H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan. Earth Surf. Process. Landf. 2010, 35, 407–416. [Google Scholar] [CrossRef]
- Miao, H.; Wang, G.; Yin, K.; Kamai, T.; Li, Y. Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng. Geol. 2014, 171, 59–69. [Google Scholar] [CrossRef]
- Scaringi, G.; Hu, W.; Xu, Q.; Huang, R. Shear-rate-dependent behavior of clayey bimaterial interfaces at landslide stress levels. Geophys. Res. Lett. 2018, 45, 766–777. [Google Scholar] [CrossRef]
- Miao, H.; Wand, G. Prediction of landslide velocity and displacement from groundwater level changes considering the shear rate-dependent friction of sliding zone soil. Eng. Geol. 2023, 327, 107361. [Google Scholar] [CrossRef]
- Cueva, M.; Kang, X.; Wand, S.; Soranzo, E.; Wu, W. Unveiling the role of saturation and displacement rate in the transition from slow movement to catastrophic failure in landslides. Eng. Geol. 2025, 352, 108042. [Google Scholar] [CrossRef]
Samples | ρd/ (g·cm−3) | Gs | w/ (%) | wL/ (%) | wP/ (%) | IP | Ks/ (cm·s−1) |
---|---|---|---|---|---|---|---|
S1 | / | 2.72 | / | 45.32 | 26.81 | 18.51 | 2.11 × 10−4 |
S2 | 1.30 | 2.71 | 19.16 | 35.51 | 19.95 | 15.56 | 1.12 × 10−4 |
S3 | / | 2.71 | / | 29.00 | 15.94 | 13.06 | 2.07 × 10−3 |
Samples | Quartz/% | Potassium Feldspar/% | Plagioclase/% | Clay Minerals/% | Components of Clay Minerals/% | ||||
---|---|---|---|---|---|---|---|---|---|
K | I | C | I/S | C/S | |||||
S1 | 6.0 | 5.8 | 1.3 | 86.2 | 50.9 | 2.8 | 4.6 | 41.7 | 0 |
S2 | 17.6 | 5.5 | 6.5 | 70.4 | 52.8 | 6.4 | 5.1 | 30.5 | 5.2 |
S3 | 15.2 | 6.0 | 9.1 | 69.7 | 53.6 | 7.7 | 5.8 | 25.4 | 7.5 |
Materials | γ/(kN·m−3) | c/kPa | φ/(°) | E/kPa | Ks/(cm·s−1) | θs |
---|---|---|---|---|---|---|
M1 | 17.5 | 7.0 | 19.83 | 2800 | 2.11 × 10−4 | 0.50 |
M2 | 21.0 | 21.0 | 35.00 | 2800 | 1.12 × 10−4 | 0.15 |
M3 | 23.0 | 30.0 | 70.00 | 5000 | 1.00 × 10−7 | 0.0022 |
Parameter Types | Values |
Particle density ρ/(kg·m−3) | 2000 |
Particle contact modulus Ec/MPa | 50 |
Particle stiffness ratio kn/ks | 1.0 |
Particle friction coefficient μ | 0.46 |
Parallel bond modulus Ep/MPa | 1.5 |
Parallel bond stiffness ratio knb/ksb | 1.0 |
Normal tensile strength of parallel bond/kPa | 34 |
Tangential tensile strength of parallel bond/kPa | 34 |
Parallel bond cohesion/kPa | 34 |
Parallel bond friction angle/(°) | 45 |
Parallel bond radius coefficient | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wei, L.; Liu, X. Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country. Sustainability 2025, 17, 5639. https://doi.org/10.3390/su17125639
Xiao Y, Wei L, Liu X. Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country. Sustainability. 2025; 17(12):5639. https://doi.org/10.3390/su17125639
Chicago/Turabian StyleXiao, Yonghong, Lu Wei, and Xianghong Liu. 2025. "Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country" Sustainability 17, no. 12: 5639. https://doi.org/10.3390/su17125639
APA StyleXiao, Y., Wei, L., & Liu, X. (2025). Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country. Sustainability, 17(12), 5639. https://doi.org/10.3390/su17125639