Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances
Abstract
1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Selected Indicators for Evaluating Regionalization Strategies: Localization, Mobility, and Cooperation
2.2.2. Endogenous Variable: Landscape Patterns
2.3. Methods
2.3.1. Trade-Off Between Economy and Ecology: ESs Supply, Demand, and Balance Index
2.3.2. Identify Imbalance of ESs Surplus or Deficit by BiLISA
2.3.3. Explore the MultiScale Geographical and Endogenous Relationship by MGWIVR
2.3.4. Local Scenario-Based Simulation for ESBI Change in 2025 by MGWIVR-PLUS
3. Results
3.1. Spatial Characteristics of Economy–Ecology Imbalance Measured by ESBI
3.2. The Endogenous and Heterogeneous Impact of Regionalization and Landscape Pattern Indicators on Supply–Demand by MGWIVR Estimates
3.2.1. Global 2SLS Model
3.2.2. Geographical Effect of PD in MGWIVR Models
3.2.3. The Regulation of Local Effect of Regionalization Strategies and Tendency of Supply–Demand Imbalance
3.3. Local Scenario-Based Strategies for Coordinating Imbalance Supported by PLUS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Feng, Z.; Yang, Y.; You, Z. Spatial patterns of ecological carrying capacity supply-demand balance in China at county level. J. Geogr. Sci. 2021, 21, 833–844. [Google Scholar] [CrossRef]
- Wei, Y.D. Spatiality of regional inequality. Appl. Geogr. 2015, 61, 1–10. [Google Scholar] [CrossRef]
- Lessmann, C.; Seidel, A. Regional inequality, convergence, and its determinants—A view from outer space. Eur. Econ. Rev. 2017, 92, 110–132. [Google Scholar] [CrossRef]
- You, S.; Chen, X. Regional integration degree and its effect on a city’s green growth in the Yangtze River Delta: Research based on a single-city regional integration index. Clean Technol. Environ. Policy 2021, 23, 1837–1849. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, N. The spatial and temporal evolution of coordinated ecological and socioeconomic development in the provinces along the Silk Road Economic Belt in China. Sustain. Cities Soc. 2019, 47, 101466. [Google Scholar] [CrossRef]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Cao, S.; Liu, Z.; Li, W.; Xian, J. Balancing ecological conservation with socioeconomic development. Ambio 2021, 50, 1117–1122. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, T.; He, X.; Kazak, J.K. Scenario Analysis for Resilient Urban Green Infrastructure. Land 2022, 11, 1481. [Google Scholar] [CrossRef]
- Alberti, M.; Asbjornsen, H.; Baker, L.; Brozović, N.; Drinkwater, L.; Drzyzga, S.; Jantz, C.; Fragoso, J.; Holland, D.; Kohler, T.; et al. Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies. Bull. Ecol. Soc. Am. 2011, 92, 218–228. [Google Scholar] [CrossRef]
- Xu, C. Economic inequality and carbon inequality: Multi-evidence from China’s cities and counties. J. Environ. Manag. 2023, 327, 116871. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Pruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Feng, S.; Wang, Y. Digital finance and sustainable development: Evidence from environmental inequality in China. Bus. Strategy Environ. 2022, 31, 3574–3594. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, X.; Wang, K.; Yuan, S.; Yang, L.; Skitmore, M. Urban–rural construction land transition and its coupling relationship with population flow in China’s urban agglomeration region. Cities 2020, 101, 102701. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, J. Spatially heterogeneity response of ecosystem services supply and demand to urbanization in China. Ecol. Eng. 2021, 169, 106303. [Google Scholar] [CrossRef]
- Schirpke, U.; Candiago, S.; Vigl, L.E.; Jager, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Luo, X.; Shen, J. A study on inter-city cooperation in the Yangtze river delta region, China. Habitat Int. 2009, 33, 52–62. [Google Scholar] [CrossRef]
- Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban mobility and urban form: The social and environmental costs of different patterns of urban expansion. Ecol. Econ. 2002, 40, 199–216. [Google Scholar] [CrossRef]
- Wei, Y.D.; Wu, Y.; Liao, F.H.; Zhang, L. Regional inequality, spatial polarization and place mobility in provincial China: A case study of Jiangsu province. Appl. Geogr. 2020, 124, 102296. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Luan, X.; Yuan, M. Understanding China’s city-regionalization: Spatial structure and relationships between functional and institutional spaces in the Pearl River Delta. Urban Geogr. 2021, 42, 312–339. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Gao, X. Towards a comprehensive understanding of intercity cooperation in China’s city-regionalization: A comparative study of Shenzhen-Hong Kong and Guangzhou-Foshan city groups. Land Use Policy 2021, 103, 105339. [Google Scholar] [CrossRef]
- Ettlinger, N. The Localization of Development in Comparative Perspective. Econ. Geogr. 1994, 70, 144–166. [Google Scholar] [CrossRef]
- Beaudry, C.; Schiffauerova, A. Who’s right, Marshall or Jacobs? The localization versus urbanization debate. Res. Policy 2009, 38, 318–337. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.O. Mobility as a response to environmental hazards in the urban context: A new perspective on mobility and inequality. Travel Behav. Soc. 2022, 27, 192–203. [Google Scholar] [CrossRef]
- Li, R.; Yan, J.-J.; Wang, X.-Y. Horizontal cooperation strategies for competing manufacturers in a capital constrained supply chain. Transp. Res. E Logist. Transp. Rev. 2024, 181, 103369. [Google Scholar] [CrossRef]
- Kang, J.; Xu, W.; Yu, L.; Ning, Y. Localization, urbanization and globalization: Dynamic manufacturing specialization in the YRD mega-city conglomeration. Cities 2020, 99, 102641. [Google Scholar] [CrossRef]
- Coe, N.M.; Townsend, A.R. Debunking the Myth of Localized Agglomerations: The Development of a Regionalized Service Economy in South-East England. Trans. Inst. Br. Geogr. 1998, 23, 1–20. [Google Scholar] [CrossRef]
- Anderson, W.P.; Gong, G.; Lakshmanan, T.R. Geographical Variation in Cost of Air Travel: Analysis of the Domestic Airline Fares Consumer Report. Transp. Res. Rec. 2002, 1788, 13–18. [Google Scholar] [CrossRef]
- Aratani, T.; Todoroki, T. Analysis of Regional Disparities in Intercity Mobility in Japan. Proc. East. Asia Soc. Transp. Stud. 2009, 7, 240. [Google Scholar]
- Qian, T.; Fu, Z.; Chen, J.; Qin, S.; Xi, C.; Wang, J. Evaluating multiscale and multimodal transport inequalities in Chinese cities with massive open-source path data. J. Geogr. Syst. 2023, 25, 237–264. [Google Scholar] [CrossRef]
- Eitoku, Y.; Mizokami, S. A Method on Evaluation of Differences in QoM among Regions. Infrastruct. Plan. Rev. 2008, 25, 109–119. [Google Scholar] [CrossRef]
- Chumchoke, N.; Keiichi, S.; Kunihiro, K. Comprehensive evaluation of transportation infrastructure systems efficiency using Data Envelopment Analysis. J. East. Asia Soc. Transp. Stud. 2005, 6, 573–585. [Google Scholar]
- Graham, D.J. Productivity and efficiency in urban railways: Parametric and non-parametric estimates. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 84–99. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F. Towards new regionalism? Case study of changing regional governance in the Yangtze River Delta. Asia Pac. Viewp. 2012, 53, 178–195. [Google Scholar] [CrossRef]
- Sun, R.; Jin, X.; Han, B.; Liang, X.; Zhang, X.; Zhou, Y. Does scale matter? Analysis and measurement of ecosystem service supply and demand status based on ecological unit. Environ. Impact Assess. Rev. 2022, 95, 106785. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Longhi, C.; Musolesi, A. European cities in the process of economic integration: Towards structural convergence. Ann. Reg. Sci. 2007, 41, 333–351. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, C.; Jiang, H.; Tian, D.; Lei, X.; Zhou, X. Land use change in Asia and the ecological consequences. Ecol. Res. 2006, 21, 890–896. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and progress of land use/cover change research during 1990–2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Potschin, M.; Haines-Young, R.; Montes, C. National Parks, buffer zones and surrounding lands: Mapping ecosystem service flows. Ecosyst. Serv. 2013, 4, 104–116. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Tian, Y.; Mao, Q. The effect of regional integration on urban sprawl in urban agglomeration areas: A case study of the Yangtze River Delta, China. Habitat Int. 2022, 130, 102695. [Google Scholar] [CrossRef]
- Nader, M.R.; Salloum, B.A.; Karam, N. Environment and sustainable development indicators in Lebanon: A practical municipal level approach. Ecol. Indic. 2008, 8, 771–777. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, Z.; Liang, Y.; Huang, Y. Assessing the Impact of Urbanization and Eco-Environmental Quality on Regional Carbon Storage: A Multiscale Spatio-Temporal Analysis Framework. Remote Sens. 2022, 14, 4007. [Google Scholar] [CrossRef]
- Etherington, D.; Jones, M. City-Regions: New Geographies of Uneven Development and Inequality. Reg. Stud. 2009, 43, 247–265. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Zhang, X.; Liu, Z.; Zhang, D. Will rapid urban expansion in the drylands of northern China continue: A scenario analysis based on the Land Use Scenario Dynamics-urban model and the Shared Socioeconomic Pathways. J. Clean. Prod. 2017, 165, 57–69. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, S. Public investment and regional inequality in rural China. Agric. Econ. 2004, 30, 89–100. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.; Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Chi, G.; Ho, H.C. Population stress: A spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001–2011. Land Use Policy 2018, 70, 128–137. [Google Scholar] [CrossRef]
- Ma, S.; Long, Y. Functional urban area delineations of cities on the Chinese mainland using massive Didi ride-hailing records. Cities 2020, 97, 102532. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Ling, L.; Wan, Y.; Luo, Z.; Huang, H. Drivers of changes in ecosystem service values in Ganjiang upstream watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Wu, S.; Liu, T. Stability and change in China’s geography of intercity migration: A network analysis. Popul. Space Place 2022, 28, e2570. [Google Scholar] [CrossRef]
- Long, Y.; Liu, L. How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View. PLoS ONE 2017, 12, e0171110. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. Fragstats; FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Ma, S.; Li, S.; Zhang, J. Diverse and nonlinear influences of built environment factors on COVID-19 spread across townships in China at its initial stage. Sci. Rep. 2021, 11, 12415. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Bilgel, F. Guns and Homicides: A Multiscale Geographically Weighted Instrumental Variables Approach. Geogr. Anal. 2020, 52, 588–616. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Akbari, K.; Winter, S.; Tomko, M. Spatial Causality: A Systematic Review on Spatial Causal Inference. Geogr. Anal. 2023, 55, 56–89. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Gunderson, L.H. Ecological Resilience—In Theory and Application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; McGrath, B.; Cadenasso, M.L.; Felson, A.J. Ecological resilience and resilient cities. Build. Res. Inf. 2014, 42, 143–157. [Google Scholar] [CrossRef]
- Zeng, J.; Cui, X.; Chen, W.; Yao, X. Impact of urban expansion on the supply-demand balance of ecosystem services: An analysis of prefecture-level cities in China. Environ. Impact Assess. Rev. 2023, 99, 107003. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Lin, Z.; Zhang, X.; Zhang, H. The delineation of urban growth boundaries in complex ecological environment areas by using cellular automata and a dual-environmental evaluation. J. Clean. Prod. 2020, 256, 120361. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Deng, L. Landscape pattern simulation for ecosystem service value regulation of Three Gorges Reservoir Area, China. Environ. Impact Assess. Rev. 2022, 95, 106798. [Google Scholar] [CrossRef]
- Wang, L.; Pijanowski, B.; Yang, W.; Zhai, R.; Omrani, H.; Li, K. Predicting multiple land use transitions under rapid urbanization and implications for land management and urban planning: The case of Zhanggong District in central China. Habitat Int. 2018, 82, 48–61. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Chen, Y.; Zhong, T.; Xu, G.; He, J.; Xu, Y.; Meng, H. The effect of land use planning (2006–2020) on construction land growth in China. Cities 2017, 68, 37–47. [Google Scholar] [CrossRef]
- Mumby, P.J.; Chollett, I.; Bozec, Y.-M.; Wolff, N.H. Ecological resilience, robustness and vulnerability: How do these concepts benefit ecosystem management? Curr. Opin. Environ. Sustain. 2014, 7, 22–27. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Gu, T.; Fang, C.; Pan, S.; Zeng, J.; Wu, J. Simulating the impact of urban expansion on ecosystem services in Chinese urban agglomerations: A multi-scenario perspective. Environ. Impact Assess. Rev. 2023, 103, 107275. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, C.; Huang, W.; Chen, W.; Gong, Q.; Yang, J.; Zhao, Y.; Zhuang, C.; Wang, J.; Yang, Z. Quantifying the supply-demand balance of ecosystem services and identifying its spatial determinants: A case study of ecosystem restoration hotspot in Southwest China. Ecol. Eng. 2022, 174, 106472. [Google Scholar] [CrossRef]
Independent Variables Classify | MGWIVR Model (2020) | Year | Data Source |
---|---|---|---|
Localization | Weibo check-in density | 2015, 2020 | https://api.weibo.com/2/place/nearby/photos.json (1 January 2024) |
Nighttime light | 2015, 2020 | http://www.resdc.cn (1 January 2024) | |
Population density | 2015, 2020 | http://www.resdc.cn/DOI/DOI.aspx?DOIid=32 (1 January 2024) | |
Built-up area | 2015, 2020 | WorldCover (https://esa-worldcover.org/en, 1 January 2024) | |
Mobility | Density of junction of road | 2015, 2020 | OpenStreetMap (https://download.geofabrik.de/, 1 January 2024) |
Train frequency | 2015, 2020 | www.12306.cn (1 January 2024) | |
Railway/highway length | 2020 | OpenStreetMap (https://download.geofabrik.de/, 1 January 2024) | |
Cooperation | POIs of Apple stores, KFC stores, water and electricity companies, logistics companies, and bike renting companies | 2015, 2020 | Amap electronic navigation map |
Pattern Metrics | Definition | Explanation |
---|---|---|
Patch density (PD) | is the number of patches; is the total area of landscape . | |
Landscape shape index (LSI) | is the total length of edge in the landscape between ith and kth patches. is the total area of landscape . | |
Patch cohesion index (COHESION) | is perimeter of patch which is the number of cell surfaces. is area of patch ; Z indicates number of cells in landscape, from 0 to 100. | |
Perimeter–area fractal dimension (PAFRAC) | is the area of patch , is the perimeter of patch , and indicates patch number. |
Variable | Min | Max | Quartile | ||
---|---|---|---|---|---|
25th | 50th | 75th | |||
Weibo location Density | −0.339 | 11.651 | −0.308 | −0.248 | −0.041 |
NTL | −1.084 | 8.533 | −0.631 | −0.227 | 0.314 |
Water and electricity infrastructure | −1.469 | 5.363 | −0.711 | −0.189 | 0.484 |
Population | −1.520 | 9.074 | −0.623 | −0.149 | 0.477 |
Build up area | −1.076 | 4.953 | −0.665 | −0.298 | 0.266 |
Density of junction of road | −1.302 | 8.194 | −0.648 | −0.159 | 0.469 |
Frequency of the high-speed train | −0.496 | 5.851 | −0.496 | −0.463 | −0.015 |
Railway length | −0.837 | 5.173 | −0.661 | −0.312 | 0.287 |
Highway length | −1.318 | 7.276 | −0.704 | −0.179 | 0.444 |
poi_apple | −0.818 | 9.389 | −0.596 | −0.300 | 0.291 |
poi_kfc | −0.729 | 7.847 | −0.555 | −0.382 | 0.224 |
poi_logistics | −0.845 | 7.563 | −0.561 | −0.343 | 0.188 |
poi_bike | −0.690 | 5.127 | −0.669 | −0.396 | 0.315 |
PD | −2.569 | 2.620 | −0.640 | 0.039 | 0.716 |
LSI | −2.379 | 3.015 | −0.681 | 0.024 | 0.585 |
PAFRAC | −6.171 | 1.942 | −0.296 | 0.092 | 0.532 |
COHESION20 | −5.905 | 0.976 | −0.372 | 0.304 | 0.692 |
First Class | Second Class | |||
---|---|---|---|---|
H–H | H–L | L–H | L–L | |
ESBI > 0 | Mild surplus | Surplus | Potential deficit | - |
ESBI < 0 | - | Potential surplus | Deficit | Mild deficit |
Outcome Variable | ESBI of 2020 |
---|---|
Constant | −0.000 (−0.000) |
Localization | |
Weibo location density | −0.207 (−3.795) *** |
NTL intensity | −0.076 (−0.489) |
Population | −0.131 (−1.215) |
Build up area | −0.244 (−2.595) *** |
Mobility | |
Road junctions | 0.393 (2.530) ** |
High-speed train frequency | −0.020 (−0.366) |
Highway length | 0.161 (1.859) * |
Railway length | 0.006 (0.009) |
Cooperation | |
Poi_apple store | 0.195 (1.762) * |
Poi_bike | −0.019 (−0.300) |
Poi_kfc | −0.473 (−4.731) *** |
Poi_logistics | −0.149 (−1.475) |
Landscape index | |
PD | −0.573 (−8.207) *** |
cohesion | −0.245 (−3.821) *** |
Landscape shape index (LSI) | 0.299 (4.320) *** |
patch fraction | 0.249 (4.478) *** |
Number of observations | 214 county areas |
Endogeneity tests | |
Robust score chi2 | 9.22 (p = 0.0024) |
RobustF | |
Patch density (PD) | 15.65 |
Weakiv | |
AR | 22.25 (p = 0.000) |
Wald | 13.93 (p = 0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ma, S.; Li, S.; Wang, J. Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances. Sustainability 2025, 17, 5589. https://doi.org/10.3390/su17125589
Wang K, Ma S, Li S, Wang J. Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances. Sustainability. 2025; 17(12):5589. https://doi.org/10.3390/su17125589
Chicago/Turabian StyleWang, Ke, Shuang Ma, Shuangjin Li, and Jue Wang. 2025. "Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances" Sustainability 17, no. 12: 5589. https://doi.org/10.3390/su17125589
APA StyleWang, K., Ma, S., Li, S., & Wang, J. (2025). Detecting and Predicting the Multiscale Geographical and Endogenous Relationship in Regional Economic–Ecological Imbalances. Sustainability, 17(12), 5589. https://doi.org/10.3390/su17125589