Quantifying the Effect of Non-Tariff Measures on Imports of Saudi Arabia Using a Panel ARDL Gravity Model
Abstract
:1. Introduction
2. Applied Non-Tariff Measures in Saudi Arabia
3. Literature Review
4. Methodology: Theoretical Framework
4.1. Data
4.2. Gravity Model
4.3. Empirical Model
5. Empirical Results
5.1. Unit Root Test
5.2. ARDL Bound Test for Cointegration
5.3. Long-Run and Short-Run Results of the Panel ARDL Model Using the Pooled Mean Group PMG Estimator
5.4. Cross-Sectional Error Correction Model
6. Discussion
7. Conclusions
Limitations of This Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NTMS | Non-Tariff Measures |
WTO | World Trade Organization |
SPS | Sanitary and Phytosanitary Measures |
TBT | Technical Barrier to Trade |
References
- World Bank and UNCTAD. The Unseen Impact of Non-Tariff Measures: Insights from a New Database. 2018. Available online: http://creativecommons.org/licenses/by/3.0/igo/ (accessed on 25 November 2024).
- UNCTAD. Non-Tariff Measures to Trade: Economic and Policy Issues for Developing Countries; United Nations Publication: New York, NY, USA, 2013. [Google Scholar]
- Cadot, O.; Gourdon, J. NTMs, Preferential Trade Agreements, and Prices: New Evidence; CEPII Working Paper; No. 2015-0; CEPII Research Center: Paris, France, 2015; ISSN 1293-2574. [Google Scholar]
- Dolabella, M. Bilateral Effects of Non-Tariff Measures on International Trade: Volume-Based Panel Estimates, International Trade Series; No. 155 (LC/TS.2020/107); Economic Commission for Latin America and the Caribbean (ECLAC): Santiago, Chile, 2020. [Google Scholar]
- Anderson, E.; van Wincoop, E. Gravity with Gravitas: A Solution to the Border Puzzle. Am. Econ. Rev. 2003, 93, 170–192. [Google Scholar] [CrossRef]
- Ngoc, N.B. The impacts of non-tariff measures embedded with sustainable development goals: Evidence from fishery and aquaculture in European Union market. Int. J. Trade Glob. Mark. 2024, 20, 217–238. [Google Scholar]
- General Authority for Statistics, Saudi Arabia. Available online: https://www.stats.gov.sa/en (accessed on 25 November 2024).
- World Bank, World Integrated Trade Solution (WITS) Data. Available online: https://wits.worldbank.org/ (accessed on 20 November 2024).
- WTO. World Trade Report 2012; WTO: Geneva, Switzerland, 2012. [Google Scholar]
- Fabio, S.; Emilia, L. On the Impact of Non-Tariff Measures on Trade Performances of African Agri-Food Sector. MPRA Paper; No. 91206. 2018. Available online: https://mpra.ub.uni-muenchen.de/91206/ (accessed on 12 December 2024).
- Andriamananjara, S.; Dean, J.M.; Ferrantino, M.J.; Feinberg, R.M.; Ludema, R.D.; Tsigas, M.E. The Effects of Non-Tariff Measures on Prices, Trade, and Welfare: CGE Implementation of Policy-Based Price Comparisons. 2004. Available online: https://ssrn.com/abstract=539705 (accessed on 12 December 2024).
- Khalid, M.; Ghafor, M. The impact of NTMs on trade: Evidence from developing countries. J. Def. Resour. Manag. 2019, 10, 110–126. [Google Scholar] [CrossRef]
- Otsuki, T.; Wilson, J.; Sewadeh, M. Saving two in a billion: Quantifying the trade effect of European food safety standards on African exports. Food Policy 2001, 26, 495–514. [Google Scholar] [CrossRef]
- Shepotylo, O. Effect of non-tariff measures on extensive and intensive margins of exports in seafood trade. Mar. Policy 2016, 68, 47–54. [Google Scholar] [CrossRef]
- Ghodsi, M.; Gruebler, J.; Reiter, O.; Stehrer, R. The Evolution of Non-Tariff Measures and Their Diverse Effects on Trade; Wiiw Research Report; No. 419; The Vienna Institute for International Economic Studies: Vienna, Austria, 2017. [Google Scholar]
- Beghin, J.; Disdier, A.; Marette, S.; Tongeren, F. Welfare costs and benefits of non-tariff measures in trade: A conceptual framework and application. World Trade Rev. 2012, 11, 356–375. [Google Scholar] [CrossRef]
- Bernini, F.; Lembergman, E.; Juarez, L. The Consequences of Non-Tariff Trade Barriers: Theory and Evidence from Import Licenses in Argentina (Preliminary Results); Discussion Paper No. IDB-DP-1063; Inter-American Development Bank: New York, NY, USA, 2024. [Google Scholar]
- Choudhri, E.; Marasco, A.; Nabi, I. Pakistan’s International Trade: The Potential for Expansion Towards East and West; Reference Number: F-37311-PAK-1; International Growth Centre: London, UK, 2017. [Google Scholar]
- Magrini, E.; Montalbano, P.; Nenci, S.; Salvatici, L. Agricultural (Dis)Incentives and Food Security: Is There a Link? Am. J. Agric. Econ. 2017, 99, 847–871. [Google Scholar] [CrossRef]
- Ferrantino, M. Quantifying the Trade and Economic Effects of Non-Tariff Measures; OECD Trade Policy Paper; No. 28; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef]
- Disdier, A.C.; Fontagné, L.; Mimouni, M. The Impact of Regulations on Agricultural Trade: Evidence from the SPS and TBT Agreements. Am. J. Agric. Econ. 2008, 90, 336–350. [Google Scholar] [CrossRef]
- Beghin, C.; Bureau, C. Quantitative policy analysis of sanitary, phytosanitary and technical barriers to trade. Econ. Int. 2001, 87, 107–130. [Google Scholar] [CrossRef]
- Nasrullah, M.; Rizwanullah, M.; Yu, X.; Jo, H.; Sohail, A.; Liang, L. Autoregressive distributed lag (ARDL) approach to study the impact of climate change and other factors on rice production in South Korea. J. Water Clim. Change 2021, 12, 2256–2270. [Google Scholar] [CrossRef]
- Duasa, J. Determinants of Malaysian trade balance: An ARDL bound testing approach. Glob. Econ. Rev. 2007, 36, 89–102. [Google Scholar] [CrossRef]
- Pesaran, H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, H.; Shin, Y.; Smith, R. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels on JSTOR. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Chen, W. Long-run aggregate Import Demand Function in Taiwan: An ARDL Bounds Testing approach. Appl. Econ. Lett. 2008, 15, 731–735. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khai, Z. An Estimation of Disaggregate Import Demand Function for Pakistan. World Appl. Sci. J. 2013, 21, 1050–1056. [Google Scholar]
- Cali, M.; Montfaucon, A. Non-Tariff Measures, Import Competition, and Exports Policy. Research Working Paper 9801. 2021. Available online: http://www.worldbank.org/prwp (accessed on 12 December 2024).
- Yue, K. Non-tariff measures, product quality and import demand. Econ. Inq. West. Econ. Assoc. Int. 2022, 60, 870–900. [Google Scholar] [CrossRef]
- Carrère, C.; de Melo, J. Notes on Detecting the Effects of Non-Tariff Measures. J. Econ. Integr. 2011, 26, 136–168. [Google Scholar] [CrossRef]
A | Sanitary and phytosanitary measures |
B | Technical barriers to trade |
C | Pre-shipment inspection and other formalities |
D | Price control measures |
E | Licenses, quotas, prohibitions, and other quantity control measures |
F | Charges, taxes, and other para-tariff measures |
G | Finance measures |
H | Anti-competitive measures |
I | Trade-related investment measures |
J | Distribution restrictions |
K | Restrictions on post-sales services |
L | Subsidies (excluding export subsidies) |
M | Government procurement restrictions |
N | Intellectual property |
O | Rules of origin |
P | Export-related measures |
Sector | NTM Coverage Ratio | NTM Frequency Ratio | NTM Affected Product–Count | Import Values (USD Million) | Import Share (%) |
---|---|---|---|---|---|
Textiles and Clothing | 100 | 100 | 729 | 5763 | 4.73 |
Animal | 100 | 100 | 185 | 6529 | 5.36 |
Vegetable | 100 | 99.68 | 309 | 8927 | 7.33 |
Miscellaneous | 96.84 | 93.41 | 312 | 8124 | 6.67 |
Footwear | 95.6 | 74.47 | 35 | 973 | 0.80 |
Transportation | 94.11 | 74.19 | 92 | 25,331 | 20.80 |
Machines and Electric | 90.29 | 87.39 | 672 | 38,8401 | 31.89 |
Food Products | 84.88 | 94.62 | 176 | 6667 | 5.47 |
Stone and Glass | 72.6 | 37.91 | 69 | 5167 | 4.24 |
Fuels | 67.23 | 37.14 | 13 | 1105 | 0.91 |
Chemicals | 60.5 | 33.7 | 247 | 8969 | 7.36 |
Plastic or Rubber | 51.56 | 83.33 | 170 | 2901 | 2.38 |
Wood | 46.92 | 46.93 | 107 | 1769 | 1.45 |
Hides and Skins | 44.95 | 61.11 | 33 | 249 | 0.20 |
Minerals | 5.05 | 25.26 | 24 | 77 | 0.06 |
Metals | 2.32 | 32 | 176 | 415 | 0.34 |
All Import Products | 75.45 | 70.28 | 3349 | 121,811 |
Sector | NTM Coverage Ratio | NTM Frequency Ratio | NTM Affected Product |
---|---|---|---|
Prohibition for TBT reasons (B110) | 46.31 | 25.54 | 1217 |
Testing requirement (B820) | 37.23 | 32.15 | 1532 |
Certification requirement (B830) | 34.6 | 32.13 | 1531 |
Product quality or performance requirement (B700) | 29.41 | 30.68 | 1462 |
Import license fee (F650) | 22.39 | 20.13 | 959 |
Packaging requirements (B330) | 19.68 | 31.69 | 1510 |
Marking requirements (B320) | 18.81 | 29.95 | 1427 |
Product identity requirement (B600) | 18.11 | 28.84 | 1374 |
Restricted use of certain substances in foods and feeds and their contact materials (A220) | 17.64 | 14.44 | 688 |
Special authorization requirement for SPS reasons (A140) | 17.21 | 18.03 | 859 |
Lnimport (USD Million ) | lnGDP (USD) | LnD (km) | |
---|---|---|---|
Mean | 29,260.90 | 19,178.52 | 5695.750 |
Median | 23,073.75 | 20,037.80 | 4889.500 |
Maximum | 222,317.9 | 34,454.13 | 12,110.00 |
Minimum | 1077.299 | 8643.400 | 894.0000 |
Standard deviation | 35,069.13 | 6757.746 | 4097.932 |
Skewness | 3.257730 | 0.032300 | 0.553408 |
Kurtosis | 15.45792 | 2.453346 | 2.019955 |
Jarque–Bera | 757.6625 | 1.161514 | 8.377862 |
Probability | 0.000000 | 0.559475 | 0.015162 |
Observations | 92 | 92 | 92 |
Variable | Method | t-Statistic | Prob. | Cross-Section | Obs. | Order of Integration |
---|---|---|---|---|---|---|
At level | ||||||
Lnimport | ADF PP | 10.488 7.009 | 0.2324 0.5358 | 4 | 84 88 | |
lnGDP | ADF PP | 0.875 0.526 | 0.998 0.999 | 4 | 84 88 | |
LnD | ADF PP | 10.488 7.007 | 0.232 0.535 | 4 | 84 88 | |
At first difference | ||||||
Lnimport | ADF PP | 48.616 71.263 | 0.000 0.000 | 4 | 80 84 | I(1) |
lnGDP | ADF PP | 18.699 25.871 | 0.016 0.001 | 4 | 80 84 | I(1) |
lnD | ADF PP | 48.616 71.263 | 0.000 0.000 | 4 | 80 84 | I(1) |
Cross-Section | Obs. | F-Stat. | t-Stat. | |||
---|---|---|---|---|---|---|
1 | 22 | 47.19251 | −9.250859 | |||
2 | 22 | 65.711 | −11.29263 | |||
3 | 22 | 25.98869 | −3.866673 | |||
4 | 22 | 23.92927 | −6.469296 | |||
10% | 5% | 1% | ||||
Sample Size | I(0) | I(1) | I(0) | I(1) | I(0) | I(1) |
F-statistic | ||||||
30 | −1 | −1 | −1 | −1 | −1 | −1 |
Asymptotic | 2.440 | 3.280 | 3.150 | 4.110 | 4.810 | 6.020 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Long-run (Pooled) Coefficients | ||||
Ln(GDP) | 1.328972 | 0.014676 | 90.55661 | 0.0000 |
Short-run (Mean-Group) Coefficients | ||||
−0.585099 | 0.132034 | −4.431437 | 0.0000 | |
NTM | −0.353038 | 0.030114 | −11.72338 | 0.0000 |
LnD | −0.394331 | 0.079276 | −4.974131 | 0.0000 |
Log-Likelihood | 32.66145 |
| ||||
---|---|---|---|---|
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
−0.296815 | 0.072287 | −4.106043 | 0.0006 | |
NTM | −0.433437 | 0.143197 | −3.026855 | 0.0069 |
LnD | −0.304038 | 0.087995 | −3.455157 | 0.0027 |
| ||||
−0.900082 | 0.076691 | −11.73654 | 0.0000 | |
NTM | −0.287392 | 0.053525 | −5.369355 | 0.0000 |
LnD | −0.624585 | 0.057986 | −10.77126 | 0.0000 |
| ||||
−0.456605 | 0.122540 | −3.726179 | 0.0014 | |
NTM | −0.345906 | 0.157734 | −2.192976 | 0.0410 |
LnD | −0.277166 | 0.094420 | −2.935465 | 0.0085 |
| ||||
−0.686895 | 0.099078 | −6.932864 | 0.0000 | |
NTM | −0.345417 | 0.101423 | −3.405723 | 0.0030 |
LnD | −0.371535 | 0.058281 | −6.374835 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousif, I.E.E.; Alhashim, J.; Bashir, K.A.; Alsultan, M.; Aljohani, E.S. Quantifying the Effect of Non-Tariff Measures on Imports of Saudi Arabia Using a Panel ARDL Gravity Model. Sustainability 2025, 17, 5567. https://doi.org/10.3390/su17125567
Yousif IEE, Alhashim J, Bashir KA, Alsultan M, Aljohani ES. Quantifying the Effect of Non-Tariff Measures on Imports of Saudi Arabia Using a Panel ARDL Gravity Model. Sustainability. 2025; 17(12):5567. https://doi.org/10.3390/su17125567
Chicago/Turabian StyleYousif, Imad Eldin Elfadil, Jawad Alhashim, Kamal Ali Bashir, Mahdi Alsultan, and Emad S. Aljohani. 2025. "Quantifying the Effect of Non-Tariff Measures on Imports of Saudi Arabia Using a Panel ARDL Gravity Model" Sustainability 17, no. 12: 5567. https://doi.org/10.3390/su17125567
APA StyleYousif, I. E. E., Alhashim, J., Bashir, K. A., Alsultan, M., & Aljohani, E. S. (2025). Quantifying the Effect of Non-Tariff Measures on Imports of Saudi Arabia Using a Panel ARDL Gravity Model. Sustainability, 17(12), 5567. https://doi.org/10.3390/su17125567