Spatiotemporal Trend of Hazardous Waste Sites and Risks in Urban Jakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hazardous Waste Data Collection
2.3. Hazardous Waste Criteria and Risk Analysis
2.4. Hazardous Waste Risk Matrix
2.5. Hazardous Waste Data Analysis
2.6. Hazardous Waste Risk Mapping
2.7. Spatial Statistical Analyses
2.8. Comparative Statistical Analyses
3. Results
3.1. Trends of Hazardous Waste Distributions by Sites, Total Amounts, and Averages in 2021 and 2022
3.2. Trends of Hazardous Waste Distributions by Sectors in 2021 and 2022
3.3. Trends of Hazardous Waste Distributions by Types and Characteristics in 2021 and 2022
3.4. Hazards, Vulnerability, and Capacity Trends in Each District in 2021 and 2022
3.5. Hazardous Waste Risks of Each District of Jakarta
3.6. Spatiotemporal Trends and LISA Cluster Maps of Hazardous Waste Distributions by Sites, Total Amounts, and Averages in 2021 and 2022
4. Discussion
4.1. Trends of Hazardous Waste Distributions by Site Locations in 2021 and 2022
4.2. Trends of Hazardous Waste Distributions by Sectors in 2021 and 2022
4.3. Trends of Hazardous Waste Distributions by Types and Characteristics in 2021 and 2022
4.4. Responses to Hazardous Waste Risks
4.5. Trends of Hazardous Waste Regulations
4.6. Spatiotemporal Trends of Hazardous Waste Distributions by Sites, Total Amounts, and Averages
4.7. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Categories of Hazardous Waste Generators. Available online: https://www.epa.gov/hwgenerators/categories-hazardous-waste-generators (accessed on 15 November 2022).
- U.S. Environmental Protection Agency. Introduction to United States Environmental Protection Agency Hazardous Waste Identification; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Pascarella, G.; Rossi, M.; Montella, E.; Capasso, A.; de Feo, G.; Snr, G.B.; Nardone, A.; Montuori, P.; Triassi, M.; D’auria, S.; et al. Risk analysis in healthcare organizations: Methodological framework and critical variables. Risk Manag. Healthc. Policy 2021, 14, 2897–2911. [Google Scholar] [CrossRef] [PubMed]
- Hassan Amal, I.; Saleh, H.M. Hazardous Waste Management. 2022. Available online: https://remote-lib.ui.ac.id:2075/10.1016/B978-0-12-824344-2.00012-4 (accessed on 2 December 2024).
- Xu, L.; Deng, Y.; Mancl, K. Environmental disaster risk reduction-oriented centralized treatment of hazardous wastes: A novel approach for production-distribution decision optimization in China. Int. J. Disaster Risk Reduct. 2019, 40, 101263. [Google Scholar] [CrossRef]
- Camacho, J.A.; Ruíz-Peñalver, S.M.; Rodríguez, M. Identification of leading hazardous waste-generating industries with high improvement potential in Spain. Sci. Total Environ. 2020, 731, 139207. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.E.; Feng, L.G.H. (Eds.) 2-The Biggest Generators of Hazardous Waste in the US. In Risks of Hazardous Wastes; William Andrew Publishing: Boston, MA, USA, 2011; pp. 11–22. [Google Scholar]
- Grzegorz, P.; Emilian, M.; Adrian, C.; Oana, I. Hazardous Waste Advanced Management in a Selected Region of Poland. Processes 2022, 10, 2032. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Waste Account, Australia, Experimental Estimates. Available online: https://www.abs.gov.au/statistics/environment/environmental-management/waste-account-australia-experimental-estimates/latest-release (accessed on 2 December 2024).
- Masoumi, A.; Yengejeh, R.J. Study of chemical wastes in the Iranian petroleum industry and feasibility of hazardous waste disposal. J. Environ. Health Sci. Eng. 2020, 18, 1037–1044. [Google Scholar] [CrossRef]
- Das, A.; Gupta, A.K.; Mazumder, T.N. Vulnerability assessment using hazard potency for regions generating industrial hazardous waste. J. Hazard. Mater. 2012, 209, 308–317. [Google Scholar] [CrossRef]
- Dihni, V.A. Indonesia Hasilkan 60 Juta Ton Limbah B3 Pada 2021. Databoks. Indonesia February 2022. Available online: https://databoks.katadata.co.id/datapublish/2022/02/09/indonesia-hasilkan-60-juta-ton-limbah-b3-pada-2021 (accessed on 3 December 2024).
- Maulida, A.; Oktaviani, A.; Pakpahan, H.S.; Wikaningrum, T. Hazardous Waste Should Be Managed Properly for Development of Better Waste Management Strategies. J. Penelit. Dan Karya Ilm. Lemb. Penelit. Univ. Trisakt 2022, 7, 193–209. [Google Scholar]
- Mohamed, A.F. Recycling System in Malaysia: Case studies on Industrial Waste. In 3R Policies for Southest and East Asia; Kojima, M., Damanhuri, E., Eds.; ERIA Res. Proj.; ERIA: Jakarta, Indonesia, 2009; Volume 6, pp. 53–72. [Google Scholar]
- PPLi. Waste Emergency, Save the Environment in the Era of Industrialization. Available online: https://ppli.co.id/news/waste-emergency-save-the-environment-in-the-era-of-industrialization/ (accessed on 13 April 2023).
- Caravanos, J.; Gualtero, S.; Dowling, R.; Ericson, B.; Keith, J.; Hanrahan, D.; Fuller, R. A Simplified Risk-Ranking System for Prioritizing Toxic Pollution Sites in Low- and Middle-Income Countries. Ann. Glob. Health 2014, 80, 278. [Google Scholar] [CrossRef]
- Setiyono. Potential Hazardous Waste in Jakarta City and Management Strategy. JAI 2005, 1, 304–317. [Google Scholar]
- Wardianto, F.; Wijayanti, A.; Purwaningrum, P. Study of Hazardous Wastes in West Jakarta Subdistrict. Infomatek J. Inform. Manaj. Dan Teknol. 2023, 25, 143–152. [Google Scholar]
- Lestari, F.; Setyowati, D.L.; Muzanni, A.; Kadir, A.; Zainal, I.; Adolf Liku, J.E.; Zulfikar, A.K.; Sari, I.P.; Mulya, W.; Yuliana, L.; et al. Industrial and Environmental Disaster Risk Assessment for Hazardous Materials in Balikpapan City, East Kalimantan, Indonesia. Sustainability 2023, 15, 9430. [Google Scholar] [CrossRef]
- Zakianis; Lestari, F.; Fauzia, S.; Fitria, L.; Zulys, A.; Hartono, B.; Muzanni, A.; Satyawardhani, S.A.; Shaw, R.; Prabowo, S. Identification of Hazardous Waste Risk Level in Central Java Province, Indonesia. Sustainability 2023, 15, 6390. [Google Scholar] [CrossRef]
- Ministry of Environment and Forestry of the Republic of Indonesia. Regulation No. 74 of 2019 on Roadmap for Waste Reduction by Producers. 2019. Available online: https://peraturan.bpk.go.id/Home/Details/123330/permen-lhk-no-74-tahun-2019 (accessed on 3 December 2024).
- Rusmili, S.H.A.; Mohamad Hamzah, F.; Choy, L.K.; Azizah, R.; Sulistyorini, L.; Yudhastuti, R.; Chandraning Diyanah, K.; Adriyani, R.; Latif, M.T. Ground-Level Particulate Matter (PM2.5) Concentration Mapping in the Central and South Zones of Peninsular Malaysia Using a Geostatistical Approach. Sustainability 2023, 15, 16169. [Google Scholar] [CrossRef]
- She, Y.; Chen, Q.; Ye, S.; Wang, P.; Wu, B.; Zhang, S. Spatial-temporal heterogeneity and driving factors of PM2.5 in China: A natural and socioeconomic perspective. Front. Public Health 2022, 10, 1051116. [Google Scholar] [CrossRef]
- Lin, Y.; Chu, H.; Wu, C.; Chang, T.; Chen, C. Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation and Geostatistical Techniques. Int. J. Environ. Res. Public Health 2011, 8, 75–88. [Google Scholar] [CrossRef]
- Ilkovičová, Ľ.; Ilkovič, J.; Meziani, Y. Industrial Clusters in Slovakia-Urban Development. Buildings 2023, 13, 2506. [Google Scholar] [CrossRef]
- Muharrom, R.H.A.; Supriyono, B.; Muluk, K. The Implementation of Industrial Cluster Development Program in Padurenan Village, Kudus. Wacana 2014, 17, 209–219. [Google Scholar]
- U.S. Manufacturing Output, Hours Worked, and Productivity Recover from COVID-19. Available online: https://www.bls.gov/opub/ted/2022/u-s-manufacturing-output-hours-worked-and-productivity-recover-from-covid-19.htm (accessed on 4 December 2024).
- Siggins, A.; Thorn, C.; Healy, M.G. Simultaneous Adsorption and Biodegradation of Trichloroethylene Occurs in A Biochar Packed Column Treating Contaminated Landfill Leachate. J. Hazard. Mater. 2021, 403, 5. [Google Scholar] [CrossRef]
- Alp, I.; Deveci, H.; Sungun, H. Utilization of Flotation Wastes of Copper Slag as Raw Material in Cement Production. J. Hazard. Mater. 2008, 159, 390–395. [Google Scholar] [CrossRef]
- Demir, A.T.; Moslem, S. Evaluating the Effect of the COVID-19 Pandemic on Medical Waste Disposal Using Preference Selection Index with CRADIS in A Fuzzy Environment. Heliyon 2024, 10, e26997. [Google Scholar] [CrossRef] [PubMed]
- Hanedar, A.; Cifci, D.I.; Zafer, N. The Impact of COVID-19 Pandemic in Medical Waste Amounts: A Case Study From A High-Populated City Of Turkey. J. Mater. Cycles Waste Manag. 2022, 24, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, P.A.; Jalilzadeh, H.; Hettiaratchi, P. The Impact of COVID-19 on Waste Infrastructure: Lessons Learned and Opportunities for a Sustainable Future. Int. J. Environ. Res. Public Health 2023, 20, 4310. [Google Scholar] [CrossRef] [PubMed]
- Adelodun, B.; Ajibade, F.O.; Ibrahim, R.G.; Ighalo, J.O.; Bakare, H.O.; Kumar, P.; Eid, E.M.; Kumar, V.; Odey, G.; Choi, K. Insights into hazardous solid waste generation during COVID-19 pandemic and sustainable management approaches for developing countries. J. Mater. Cycles Waste Manag. 2021, 23, 2077–2086. [Google Scholar] [CrossRef]
- Haque, M.S.; Uddin, S.; Sayem, S.M.; Mohib, K.M. Coronavirus disease 2019 (COVID-19) induced waste scenario: A short overview. J. Environ. Chem. Eng. 2020, 9, 104660. [Google Scholar] [CrossRef]
- Trancone, G.; Policastro, G.; Spasiano, D.; Race, M.; Parrino, F.; Fratino, U.; Fabbricino, M.; Pirozzi, F. Treatment of concrete waste from construction and demolition activities: Application of organic acids from continuous dark fermentation in moving bed biofilm reactors. Chem. Eng. J. 2025, 505, 159536. [Google Scholar] [CrossRef]
- Trancone, G.; Spasiano, D.; Race, M.; Luongo, V.; Petrella, A.; Pirozzi, F.; Fratino, U.; Piccinni, A. A combined system for asbestos-cement waste degradation by dark fermentation and resulting supernatant valorization in anaerobic digestion. Chemosphere 2022, 300, 134500. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Merchán-Sanmartín, B.; Caicedo-Potosí, J.; Bitar, J.B.; Berrezueta, E.; Carrión-Mero, P. A systematic review of coastal zone integrated waste management for sustainability strategies. Environ. Res. 2023, 245, 117968. [Google Scholar] [CrossRef]
- Gowda, N.R.; Siddharth, V.; Inquillabi, K.; Sharma, D.K. War on Waste: Challenges and experiences in COVID-19 waste management. Disaster Med. Public Health Prep. 2021, 16, 2358–2362. [Google Scholar] [CrossRef]
- Tushar, S.R.; Alam, M.F.B.; Bari, A.M.; Karmaker, C.L. Assessing the challenges to medical waste man-agement during the COVID-19 pandemic: Implications for the environmental sustainability in the emerging economies. Socio-Econ. Plan. Sci. 2023, 87, 101513. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Yasmeen, R.; Sarfraz, M.; Ivascu, L. The Repercussions of Economic Growth, Industrialization, Foreign Direct Investment, and Technology on Municipal Solid Waste: Evidence from OECD Economies. Sustainability 2023, 15, 836. [Google Scholar] [CrossRef]
No | Sectors | Sector Details |
---|---|---|
1 | Manufacture | Chemical industries, manufacture |
2 | Agroindustry | Agroindustry |
3 | Energy and Oil and Gas Mining | Energy, mining and oil and gas |
4 | Infrastructure | Infrastructure and construction |
5 | Services | Hazardous waste treatment and transports |
6 | Healthcare | Hospitals, community health services, health clinics, laboratories |
No | Components | Code | Hazards | Hazards Potential Level | ||
---|---|---|---|---|---|---|
Value = 1 | Value = 2 | Value = 3 | ||||
1 | Hazard | A | Hazardous waste generation | <10 tons | 10–30 tons | >30 tons |
B | Hazardous waste category | Hazardous waste category 2 | Hazardous waste category 1 | N/A | ||
2 | Vulnerability | C |
Number of affected population |
<16 million people | 16–32 million people |
>32 million people |
3 | Capacity | D | Hazardous waste management capacity | There are >2 areas contaminated by hazardous waste and emergency events | There are 1–2 areas contaminated by hazardous waste and emergency events | There is no areas contaminated by hazardous waste and emergency events |
E | The existence of institutional for hazardous waste emergency response | Not available | Available | |||
F | The existence of a potential hazardous waste emergency program at provincial scale | Not available | Available |
Variables | Parameters | |
---|---|---|
x2 | p-Value | |
Comparisons of the numbers of the hazardous waste sites in 2021 and 2022 | 50.943 | 0.00001 |
Comparisons of the total of hazardous waste amounts in 2021 and 2022 | 64,094.571 | 0.00001 |
Comparisons of the averages of hazardous waste amounts in 2021 and 2022 | 43.758 | 0.00001 |
Hazardous Waste Sectors | Amounts in Tons | Trends | |
---|---|---|---|
2021 | 2022 | ||
Manufacture | 238,649.97 | 224,045.80 | Decrease |
Agroindustry | 51,599.99 | 57,314.04 | Increase |
Energy and Oil and Gas Mining | 58,049.99 | 57,314.04 | Decrease |
Infrastructure | 6449.99 | 5210.36 | Decrease |
Services | 283,799.96 | 98,996.98 | Decrease |
Healthcare | 6449.99 | 78,155.51 | Increase |
Districts | Types | Characteristics | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
Central Jakarta | Medical waste | Medical waste | Infectious | Infectious |
North Jakarta | Trichloroethylene, fly ash | Medical waste, fly ash | Explosive | Infectious |
West Jakarta | Medical waste, copper slag | Medical waste, fly ash | Corrosive | Infectious |
South Jakarta | Medical waste, synthetic oil | Medical waste, synthetic oil | Infectious | Infectious |
East Jakarta | Sludge, mill scale | Sludge, mill scale | Toxic | Toxic |
Districts | Hazard | Vulnerability | Capacity | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Central Jakarta | 4 | 4 | 7 | 7 | 4 | 4 |
North Jakarta | 5 | 5 | 7 | 7 | 4 | 4 |
West Jakarta | 4 | 4 | 7 | 7 | 4 | 4 |
South Jakarta | 4 | 4 | 7 | 7 | 4 | 4 |
East Jakarta | 5 | 5 | 7 | 7 | 4 | 4 |
Districts | Scores | Remarks |
---|---|---|
Central Jakarta | 7 | Medium |
North Jakarta | 8.75 | Medium |
West Jakarta | 7 | Medium |
South Jakarta | 7 | Medium |
East Jakarta | 8.75 | Medium |
Average | 7.7 | Medium |
Year | Variables | Moran Parameters | |||
---|---|---|---|---|---|
I | Exp. | Var. | SD | ||
2021 | Hazardous waste sites | 0.96 | 0.250 | 0.038 | 0.789 |
Total of hazardous wastes | 0.87 | 0.250 | 0.004 | 0.987 | |
Averages of hazardous wastes | 0.93 | 0.250 | 0.006 | 1.520 | |
2022 | Hazardous waste sites | 0.69 | 0.250 | 0.041 | 0.890 |
Total of hazardous wastes | 0.85 | 0.250 | 0.025 | 0.971 | |
Averages of hazardous wastes | 0.83 | 0.250 | 0.017 | 1.176 |
Countries | Generated Daily Medical Hazardous Waste (Amounts in Tons/Day) |
---|---|
United States of America | 8055.03 |
Brazil | 2774.35 |
India | 2160.34 |
Colombia | 550.63 |
South Africa | 469.12 |
Argentina | 454.41 |
Bangladesh | 359.83 |
Mexico | 358.75 |
Egypt | 128.54 |
Iran | 81.31 |
Italy | 45.09 |
Jakarta, Indonesia (this study) | 2170.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestari, F.; Zakianis; Muzanni, A.; Wibowo, A.; Darmawan, A.; Kurniaputri, H.; Amalia, K.A.; Shaw, R. Spatiotemporal Trend of Hazardous Waste Sites and Risks in Urban Jakarta, Indonesia. Sustainability 2025, 17, 5548. https://doi.org/10.3390/su17125548
Lestari F, Zakianis, Muzanni A, Wibowo A, Darmawan A, Kurniaputri H, Amalia KA, Shaw R. Spatiotemporal Trend of Hazardous Waste Sites and Risks in Urban Jakarta, Indonesia. Sustainability. 2025; 17(12):5548. https://doi.org/10.3390/su17125548
Chicago/Turabian StyleLestari, Fatma, Zakianis, Adonis Muzanni, Andrio Wibowo, Adi Darmawan, Hikmah Kurniaputri, Khansa Alda Amalia, and Rajib Shaw. 2025. "Spatiotemporal Trend of Hazardous Waste Sites and Risks in Urban Jakarta, Indonesia" Sustainability 17, no. 12: 5548. https://doi.org/10.3390/su17125548
APA StyleLestari, F., Zakianis, Muzanni, A., Wibowo, A., Darmawan, A., Kurniaputri, H., Amalia, K. A., & Shaw, R. (2025). Spatiotemporal Trend of Hazardous Waste Sites and Risks in Urban Jakarta, Indonesia. Sustainability, 17(12), 5548. https://doi.org/10.3390/su17125548