A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting
Abstract
:1. Introduction
- We propose a novel segment-based method to align inter-segment dependencies and preserve intra-segment information, effectively addressing the challenge of capturing local temporal dynamics in EWP forecasting.
- The LT-Conformer represents an advancement in the field of EWP forecasting, specifically designed to capture local temporal patterns, simultaneously integrating global temporal and cross-feature information. By considering the characteristics of EWP, the parameters of the model are tailored to capture relevant features essential for accurate prediction.
- In our experimental evaluations within the Australian market context, the LT-Conformer not only outperforms baseline methods in terms of overall performance but also excels at capturing local temporal dependencies, achieving state-of-the-art (SOTA) results in short-term predictions and showcasing its adeptness at managing the dynamic nature of the energy sector.
2. Proposed Method
2.1. Problem Description
2.2. Overview
2.3. Local-Temporal 1D CNN Module
2.4. Global-Temporal Attention Module
2.5. Cross-Variable Attention Module
3. Experiment
3.1. Data Sets
3.2. Experimental Setup
3.3. Comparative Results on Forecasting Performance
3.3.1. Overall Results
3.3.2. Results for Varying Levels and Volatility of EWP and REG
3.4. Effectiveness of Local Temporal 1D CNN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgarlato, R.; Ziel, F. The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon. IEEE Trans. Power Syst. 2022, 38, 2500–2511. [Google Scholar] [CrossRef]
- Mousavi, F.; Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S. Energy market fundamentals and overview. In Energy Storage in Energy Markets; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–21. [Google Scholar]
- Stawska, A.; Romero, N.; de Weerdt, M.; Verzijlbergh, R. Demand response: For congestion management or for grid balancing? Energy Policy 2021, 148, 111920. [Google Scholar] [CrossRef]
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid. IEEE Trans. Big Data 2017, 5, 34–45. [Google Scholar] [CrossRef]
- Daly, J.; Zheng, L.; Xuan, M.; Yang, Y.; De Rosa, M.; Pallonetto, F. Comparative analyses of forecasting techniques for electricity wholesale price under high penetration of renewable energy systems. In Proceedings of the IET Conference Proceedings CP821, Valletta, Malta, 7–9 November 2022; pp. 520–525. [Google Scholar]
- Anwar, M.; Naeem, A.; Gul, H.; Arif, A.; Fareed, S.; Javaid, N. Electricity Price and Load Forecasting Using Data Analytics in Smart Grid: A Survey. In Proceedings of the Advances in Internet, Data and Web Technologies: The 8th International Conference on Emerging Internet, Data and Web Technologies (EIDWT-2020), Kitakyushu, Japan, 24–26 February 2020; Springer: Cham, Switzerland, 2020; pp. 427–439. [Google Scholar]
- Pikus, M.; Wąs, J. Predictive modeling of renewable energy purchase prices using deep learning based on polish power grid data for small hybrid PV microinstallations. Energies 2024, 17, 628. [Google Scholar] [CrossRef]
- Li, G.; Lawarree, J.; Liu, C.C. State-of-the-Art of Electricity Price Forecasting in a Grid Environment. In Handbook of Power Systems II; Springer: Berlin/Heidelberg, Germany, 2010; pp. 161–187. [Google Scholar]
- Bento, P.; Nunes, H.; Pombo, J.; Calado, M.d.R.; Mariano, S. Daily Operation Optimization of a Hybrid Energy System Considering a Short-Term Electricity Price Forecast Scheme. Energies 2019, 12, 924. [Google Scholar] [CrossRef]
- Abhinav, R.; Pindoriya, N.M. Electricity Price Forecast for Optimal Energy Management for Wind Power Producers: A Case Study in Indian Power Market. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 1233–1238. [Google Scholar]
- Houben, N.; Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M.; Auer, H.; Ajanovic, A.; Haas, R. Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria. Appl. Energy 2023, 337, 120913. [Google Scholar] [CrossRef]
- Chitsaz, H.; Zamani-Dehkordi, P.; Zareipour, H.; Parikh, P.P. Electricity Price Forecasting for Operational Scheduling of Behind-the-Meter Storage Systems. IEEE Trans. Smart Grid 2017, 9, 6612–6622. [Google Scholar] [CrossRef]
- Pino, R.; Parreno, J.; Gomez, A.; Priore, P. Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks. Eng. Appl. Artif. Intell. 2008, 21, 53–62. [Google Scholar] [CrossRef]
- Kuo, P.H.; Huang, C.J. An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability 2018, 10, 1280. [Google Scholar] [CrossRef]
- Beltrán, S.; Castro, A.; Irizar, I.; Naveran, G.; Yeregui, I. Framework for collaborative intelligence in forecasting day-ahead electricity price. Appl. Energy 2022, 306, 118049. [Google Scholar] [CrossRef]
- Nogales, F.; Contreras, J.; Conejo, A.; Espinola, R. Forecasting next-day electricity prices by time series models. IEEE Trans. Power Syst. 2002, 17, 342–348. [Google Scholar] [CrossRef]
- Cruz, A.; Muñoz, A.; Zamora, J.L.; Espínola, R. The effect of wind generation and weekday on Spanish electricity spot price forecasting. Electr. Power Syst. Res. 2011, 81, 1924–1935. [Google Scholar] [CrossRef]
- Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, W.; Yan, Y.; Sun, M. How to realize the power demand side actively matching the supply side?—A virtual real-time electricity prices optimization model based on credit mechanism. Appl. Energy 2023, 343, 121223. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Hua, Y.; Oliphant, M.; Hu, E.J. Development of renewable energy in Australia and China: A comparison of policies and status. Renew. Energy 2016, 85, 1044–1051. [Google Scholar] [CrossRef]
- Fornasiero, P.; Graziani, M. Renewable Resources and Renewable Energy: A Global Challenge; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Miller, M. Preliminary Report NSW and Victoria Separation Event 4 January 2020. Available online: https://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2020/preliminary-report-nsw-and-victoria-separation-event-4-jan-2020.pdf?la=en (accessed on 15 November 2023).
- Koopman, S.J.; Ooms, M.; Carnero, M.A. Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices. J. Am. Stat. Assoc. 2007, 102, 16–27. [Google Scholar] [CrossRef]
- Gonzalez, V.; Contreras, J.; Bunn, D.W. Forecasting Power Prices Using a Hybrid Fundamental-Econometric Model. IEEE Trans. Power Syst. 2011, 27, 363–372. [Google Scholar] [CrossRef]
- Mei, J.; He, D.; Harley, R.; Habetler, T.; Qu, G. A Random Forest Method for Real-Time Price Forecasting in New York Electricity Market. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Schütz Roungkvist, J.; Enevoldsen, P.; Xydis, G. High-resolution electricity spot price forecast for the Danish power market. Sustainability 2020, 12, 4267. [Google Scholar] [CrossRef]
- Ulgen, T.; Poyrazoglu, G. Predictor Analysis for Electricity Price Forecasting by Multiple Linear Regression. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24–26 June 2020; pp. 618–622. [Google Scholar]
- Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef]
- Bunn, D.W. Forecasting loads and prices in competitive power markets. Proc. IEEE 2000, 88, 163–169. [Google Scholar] [CrossRef]
- Mandal, P.; Senjyu, T.; Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 2006, 47, 2128–2142. [Google Scholar] [CrossRef]
- Amjady, N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans. Power Syst. 2006, 21, 887–896. [Google Scholar] [CrossRef]
- Anbazhagan, S.; Kumarappan, N. Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network. IEEE Syst. J. 2012, 7, 866–872. [Google Scholar] [CrossRef]
- Zhang, C.; Li, R.; Shi, H.; Li, F. Deep learning for day-ahead electricity price forecasting. IET Smart Grid 2020, 3, 462–469. [Google Scholar] [CrossRef]
- Khalid, R.; Javaid, N.; Al-Zahrani, F.A.; Aurangzeb, K.; Qazi, E.u.H.; Ashfaq, T. Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids. Entropy 2019, 22, 10. [Google Scholar] [CrossRef]
- Khan, Z.A.; Fareed, S.; Anwar, M.; Naeem, A.; Gul, H.; Arif, A.; Javaid, N. Short Term Electricity Price Forecasting Through Convolutional Neural Network (CNN). In Web, Artificial Intelligence and Network Applications, Proceedings of the Workshops of the 34th International Conference on Advanced Information Networking and Applications (WAINA-2020), Caserta, Italy, 15–17 April 2020; Springer: Cham, Switzerland, 2020; pp. 1181–1188. [Google Scholar]
- Aslam, S.; Ayub, N.; Farooq, U.; Alvi, M.J.; Albogamy, F.R.; Rukh, G.; Haider, S.I.; Azar, A.T.; Bukhsh, R. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. Sustainability 2021, 13, 12653. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Shen, Y.X.; Yu, X.Y.; Lu, X. Day-ahead electricity price forecasting employing a novel hybrid frame of deep learning methods: A case study in NSW, Australia. Electr. Power Syst. Res. 2023, 220, 109300. [Google Scholar] [CrossRef]
- Huang, S.; Shi, J.; Wang, B.; An, N.; Li, L.; Hou, X.; Wang, C.; Zhang, X.; Wang, K.; Li, H.; et al. A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China. Appl. Energy 2024, 373, 123863. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Sharma, E.; Salcedo-Sanz, S.; Barua, P.D.; Acharya, U.R. Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach. Appl. Energy 2024, 374, 123920. [Google Scholar] [CrossRef]
- Parizad, B.; Ranjbarzadeh, H.; Jamali, A.; Khayyam, H. An Intelligent Hybrid Machine Learning Model for Sustainable Forecasting of Home Energy Demand and Electricity Price. Sustainability 2024, 16, 2328. [Google Scholar] [CrossRef]
- Yu, C.; Wang, F.; Shao, Z.; Sun, T.; Wu, L.; Xu, Y. Dsformer: A double sampling transformer for multivariate time series long-term prediction. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 3062–3072. [Google Scholar]
- Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting. In Proceedings of the Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. In Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Li, Y.; Cai, Z.; Xu, D.; Hu, X. Improved-Informer Model Based Short-Term Electricity Price Forecast. In Proceedings of the 2024 6th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 28–31 March 2024; pp. 1335–1339. [Google Scholar]
- Yue, X.; Qiang, L.; Hui, C. Short-term Multi-step Price Prediction for the Electricity Market with a High Proportion of Clean Energy and Energy Storage Based on MIC-EEMD-improved Informer. Power Syst. Technol. 2024, 48, 949–957. [Google Scholar]
- Gong, J.; Zhao, H.; Yue, Z.; Xu, J.; Zhang, C.; Cao, Y. Electricity market clearing price prediction based on mode decomposition and improved transformer. In Proceedings of the International Conference on Computer Application and Information Security (ICCAIS 2024), Wuhan, China, 20–22 December 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13562, pp. 120–130. [Google Scholar]
- Zhang, Y.; Yan, J. Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Wang, Y.; Wu, H.; Dong, J.; Qin, G.; Zhang, H.; Liu, Y.; Qiu, Y.; Wang, J.; Long, M. Timexer: Empowering transformers for time series forecasting with exogenous variables. In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, BC, Canada, 9–15 December 2024. [Google Scholar]
- Murad, M.M.N.; Aktukmak, M.; Yilmaz, Y. WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 19581–19588. [Google Scholar]
- Zhao, L.; Lu, L.; Yu, X. MILET: Multimodal integration and linear enhanced transformer for electricity price forecasting. Syst. Sci. Control Eng. 2024, 12, 2313862. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In Artificial Neural Networks and Machine Learning–ICANN 2011, Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Proceedings, Part I 21; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep Convolutional Neural Networks On Multichannel Time Series for Human Activity Recognition. In Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; AAAI Press: Washington, DC, USA, 2015; pp. 3995–4001. [Google Scholar]
- Bell, W.P.; Wild, P.; Foster, J.; Hewson, M. Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia. Energy Econ. 2017, 67, 224–241. [Google Scholar] [CrossRef]
- Figueiredo, N.C.; da Silva, P.P. The “Merit-order effect” of wind and solar power: Volatility and determinants. Renew. Sustain. Energy Rev. 2019, 102, 54–62. [Google Scholar] [CrossRef]
- McConnell, D.; Hearps, P.; Eales, D.; Sandiford, M.; Dunn, R.; Wright, M.; Bateman, L. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market. Energy Policy 2013, 58, 17–27. [Google Scholar] [CrossRef]
- Kwon, S.; Cho, S.H.; Roberts, R.K.; Kim, H.J.; Park, K.; Yu, T.E. Effects of electricity-price policy on electricity demand and manufacturing output. Energy 2016, 102, 324–334. [Google Scholar] [CrossRef]
- Ghasemi, A.; Shayeghi, H.; Moradzadeh, M.; Nooshyar, M. A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. Appl. Energy 2016, 177, 40–59. [Google Scholar] [CrossRef]
- Australian Energy Market Operator. Aggregated Price and Demand Data [Data Set]. 2023. Available online: https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data (accessed on 15 November 2023).
- McConnell, D.; Holmes à Court, S.; Tan, S.; Cubrilovic, N. An Open Platform for National Electricity Market Data [Data Set]. 2022. Available online: https://catalogue.data.infrastructure.gov.au/group/opennem (accessed on 15 November 2023).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Li, T.; Yang, Y.; Horng, S.J. Deep air quality forecasting using hybrid deep learning framework. IEEE Trans. Knowl. Data Eng. 2019, 33, 2412–2424. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017, 28, 162–169. [Google Scholar] [CrossRef]
- Liu, C.; Hsaio, W.; Tu, Y. Time Series Classification With Multivariate Convolutional Neural Network. IEEE Trans. Ind. Electron. 2018, 66, 4788–4797. [Google Scholar] [CrossRef]
- Mancuso, P.; Piccialli, V.; Sudoso, A.M. A machine learning approach for forecasting hierarchical time series. Expert Syst. Appl. 2021, 182, 115102. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Sun, P.; Wu, R.; Wang, H.; Li, G.; Khalid, M.; Konstantinou, G. Physics-informed Fully Convolutional Network-based Power Flow Analysis for Multi-terminal MVDC Distribution Systems. IEEE Trans. Power Syst. 2024, 39, 7389–7402. [Google Scholar] [CrossRef]
- Zareipour, H. Short-term electricity market prices: A review of characteristics and forecasting methods. In Handbook of Networks in Power Systems I; Springer: Berlin/Heidelberg, Germany, 2012; pp. 89–121. [Google Scholar]
- Weron, R. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Abramova, E.; Bunn, D. Forecasting the intra-day spread densities of electricity prices. Energies 2020, 13, 687. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2015, Vancouver, BC, Canada, 30 April–3 May 2015. [Google Scholar]
Config | NSW | SA |
---|---|---|
Kernel size | ||
Kernel channels | [4, 4, 8] | [8, …, 8] |
Multi-head attn | 4 | 2 |
Encode layers | 4 | 4 |
Dropout | 0.01 | 0.01 |
Learning rate | 0.001 | 0.001 |
Batch size | 64 | 64 |
Epoch | 150 | 150 |
Loss function | MAE | MAE |
Optimizer | Adam [78] | Adam [78] |
Input length | 24 | 24 |
Prediction length | 24 | 24 |
Model | NSW | SA | ||||
---|---|---|---|---|---|---|
MAE | RMSE | SMAPE | MAE | RMSE | SMAPE | |
LT-Conformer | 9.72 | 21.36 | 12.89 | 21.44 | 41.94 | 40.26 |
LR [28] | 34.08 | 54.96 | 37.77 | 57.42 | 87.08 | 78.33 |
(t-statistic = −35.33) | (t-statistic = −29.08) | |||||
Crossformer [53] | 34.96 | 56.79 | 37.51 | 59.28 | 89.66 | 80.73 |
(t-statistic = −35.41) | (t-statistic = −30.73) | |||||
Informer [45] | 25.32 | 39.29 | 30.50 | 38.72 | 57.52 | 64.21 |
(t-statistic = −37.64) | (t-statistic = −26.00) | |||||
TimesNet [49] | 30.88 | 51.08 | 34.65 | 54.91 | 86.10 | 78.11 |
(t-statistic = −33.38) | (t-statistic = −29.03) | |||||
patchTST [47] | 31.49 | 52.13 | 34.56 | 57.92 | 88.52 | 81.66 |
(t-statistic = −34.16) | (t-statistic = −28.83) | |||||
iTransformer [48] | 29.11 | 47.82 | 33.16 | 50.95 | 77.32 | 75.66 |
(t-statistic = −34.11) | (t-statistic = −30.36) | |||||
WPMixer [55] | 33.19 | 55.57 | 35.85 | 60.75 | 92.38 | 84.74 |
(t-statistic = −33.02) | (t-statistic = −29.02) |
Model | NSW | SA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Med | High | Low | Med | High | |||||||||||||
2 h | 3 h | 4 h | 2 h | 3 h | 4 h | 2 h | 3 h | 4 h | 2 h | 3 h | 4 h | 2 h | 3 h | 4 h | 2 h | 3 h | 4 h | |
LT-Conformer | 5.54 | 4.94 | 4.90 | 7.22 | 7.64 | 7.92 | 16.41 | 16.59 | 16.34 | 14.32 | 12.45 | 12.18 | 15.90 | 16.26 | 16.65 | 34.12 | 35.63 | 35.50 |
LR [28] | 26.02 | 22.50 | 21.33 | 28.22 | 28.54 | 29.20 | 48.01 | 51.21 | 51.72 | 46.94 | 41.91 | 40.24 | 48.08 | 48.40 | 48.51 | 77.25 | 81.97 | 83.53 |
Crossformer [53] | 25.99 | 22.15 | 20.93 | 28.39 | 28.59 | 29.35 | 50.44 | 54.07 | 54.50 | 48.24 | 42.59 | 40.82 | 49.38 | 49.38 | 49.37 | 80.18 | 85.83 | 87.61 |
Informer [45] | 17.82 | 15.56 | 14.89 | 21.18 | 21.70 | 22.22 | 36.69 | 38.43 | 38.58 | 30.41 | 27.64 | 26.99 | 32.58 | 32.63 | 33.16 | 52.70 | 55.41 | 55.54 |
TimesNet [49] | 20.75 | 16.94 | 15.76 | 24.74 | 25.00 | 25.76 | 47.15 | 50.70 | 51.12 | 43.69 | 38.11 | 36.44 | 47.00 | 47.15 | 47.52 | 77.67 | 83.09 | 84.40 |
patchTST [47] | 21.57 | 17.79 | 16.69 | 25.55 | 26.05 | 26.74 | 47.36 | 50.63 | 51.04 | 45.06 | 39.28 | 37.39 | 48.78 | 49.00 | 49.24 | 80.64 | 86.20 | 87.84 |
iTransformer [48] | 20.12 | 16.81 | 15.86 | 23.83 | 24.32 | 24.90 | 43.40 | 46.22 | 46.59 | 40.20 | 35.58 | 34.29 | 42.98 | 42.88 | 43.19 | 70.17 | 74.89 | 75.87 |
WPMixer [55] | 22.66 | 18.58 | 17.35 | 26.79 | 27.23 | 28.07 | 50.13 | 53.76 | 54.14 | 47.43 | 41.32 | 39.30 | 50.92 | 50.97 | 51.02 | 83.86 | 89.91 | 91.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Tian, H.; Berry, A.; Roussac, A.C. A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting. Sustainability 2025, 17, 5533. https://doi.org/10.3390/su17125533
Zhang B, Tian H, Berry A, Roussac AC. A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting. Sustainability. 2025; 17(12):5533. https://doi.org/10.3390/su17125533
Chicago/Turabian StyleZhang, Bowen, Hongda Tian, Adam Berry, and A. Craig Roussac. 2025. "A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting" Sustainability 17, no. 12: 5533. https://doi.org/10.3390/su17125533
APA StyleZhang, B., Tian, H., Berry, A., & Roussac, A. C. (2025). A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting. Sustainability, 17(12), 5533. https://doi.org/10.3390/su17125533