Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Description
2.1.1. Avocado Oil Extraction
2.1.2. Chlorophyll Extraction
2.1.3. Biocontrol Agent Extraction
2.2. Exergy Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Martínez, B.; Romaní, A.; Eibes, G.; Garrote, G.; Gullón, B.; del Río, P.G. Potential and prospects for utilization of avocado by-products in integrated biorefineries. Bioresour. Technol. 2022, 364, 128034. [Google Scholar] [CrossRef] [PubMed]
- Piedrahita-Rodríguez, S.; Cardona Urrea, S.; Escobar García, D.A.; Ortiz-Sánchez, M.; Solarte-Toro, J.C.; Cardona Alzate, C.A. Life cycle assessment and potential geolocation of a multi-feedstock biorefinery: Integration of the avocado and plantain value chains in rural zones. Bioresour. Technol. Rep. 2023, 21, 101318. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Genovese, J.; Tylewicz, U.; Guerra-Hernández, E.J.; Rocculi, P.; Verardo, V. Enhanced extraction of procyanidins from avocado processing residues by pulsed electric fields pre-treatment. LWT 2024, 212, 116952. [Google Scholar] [CrossRef]
- Grisales-Mejía, J.F.; Álvarez-Rivera, G.; Torres-Castañeda, H.G.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A.; Mendiola, J.A.; Cifuentes, A.; Ibañez, E. Hass Avocado (Persea americana Mill.) Residues as a New Potential Source of Neuroprotective Compounds Using Pressurized Liquid Extraction. J. Supercrit. Fluids 2024, 204, 106117. [Google Scholar] [CrossRef]
- Arias Bustos, C.; Moors, E.H.M. Reducing post-harvest food losses through innovative collaboration: Insights from the Colombian and Mexican avocado supply chains. J. Clean. Prod. 2018, 199, 1020–1034. [Google Scholar] [CrossRef]
- Buentello-Montoya, D.A.; Sepúlveda-Montufar, L.; Pulido-Moreno, D.O. Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea. Energy 2025, 319, 134891. [Google Scholar] [CrossRef]
- Herrera, T.; Parejo, V.; González-Delgado, A. Quality of Energy Conservation in an Avocado Oil Extraction Process via Exergy Analysis. Chem. Eng. Trans. 2022, 91, 241–246. [Google Scholar] [CrossRef]
- LLerena, O. Energy, Exergetic and Economic Analysis of a Cogeneration System: Case for a Sugar Plant in São Paulo. Ingenius 2018, 19, 29–39. [Google Scholar] [CrossRef]
- Gilbert, A.; Mesmer, B.; Watson, M. Uses of Exergy in Systems Engineering. In Proceedings of the 2016 Conference on Systems Engineering Research (CSER 2016); Huntsville, AL, USA, 22–24 March 2016; Available online: https://docslib.org/doc/7945061/gilbert-a-mesmer-b-uses-of-exergy-in-systems-engineering (accessed on 2 June 2025).
- Patiño, D.; Rosero, B. Exergy Analysis of Cogeneration Plant Operating under Combined Cycle. Univ. Tecnol. Pereira 2017, 17, 49–58. [Google Scholar]
- Taheri, K.; Gadow, R.; Killinger, A. Exergy Analysis as a Developed Concept of Energy Efficiency Optimized Processes: The Case of Thermal Spray Processes. Procedia CIRP 2014, 17, 511–516. [Google Scholar] [CrossRef]
- Terzi, R. Application of Exergy Analysis to Energy Systems. In Applications of Exergy; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Michalakakis, C.; Fouillou, J.; Lupton, R.C.; Gonzalez Hernandez, A.; Cullen, J.M. Calculating the chemical exergy of materials. J. Ind. Ecol. 2021, 25, 274–287. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Wang, Y.; Lin, S. Process design and assessment of chemical looping oxidative dehydrogenation based on experimental data: Energy and exergy analysis. J. Clean. Prod. 2025, 486, 144441. [Google Scholar] [CrossRef]
- Gonzalez-Delgado, A.D.; Aguilar-Vásquez, E.A. Exergetic analysis of an industrial process for the removal of polycyclic aromatic hydrocarbons from seawater using modified chitosan microbeads. Ing. Compet. 2022, 24, 17. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Martinast, K. Eco-Thermodynamics: Exergy and Life Cycle Analysis; INSEAD: Fontainebleau, France, 1996; pp. 1–49. Available online: https://flora.insead.edu/fichiersti_wp/inseadwp1996/96-04.pdf (accessed on 2 March 2025).
- Lozano García, A.I. Exergetic Analysis in Treatment Plants of the Integral Water Cycle; Universidad Zaragoza: Zaragoza, Spain, 2011; Available online: https://zaguan.unizar.es/record/6501/files/TAZ-TFM-2011-077.pdf (accessed on 2 March 2025).
- Tai, S.; Matsushige, K. Chemical exergy of organic matter in wastewater. Int. J. Environ. Stud. 1986, 27, 301–315. [Google Scholar] [CrossRef]
- Ojeda, K.; Quintero, V.; Rondón, S.; Kafarov, V. Evaluation of sustainability of the production of biofuels of the second generation by means of the application of analysis exergy. Prospectiva 2009, 7, 19–26. [Google Scholar]
- Singh, G.; Singh, P.; Tyagi, V.; Barnwal, P.; Pandey, A. Exergy and thermo-economic analysis of ghee production plant in dairy industry. Energy 2019, 167, 602–618. [Google Scholar] [CrossRef]
- Özilgen, M.; Sorgüven, E. Energy and exergy utilization, and carbon dioxide emission in vegetable oil production. Fuel Energy Abstr. 2011, 36, 5954–5967. [Google Scholar] [CrossRef]
- Gallego Posada, D. Análisis Exergético y Energético Del Uso de la Jatropha curcas Como Agente Energético. Master’s Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2014. [Google Scholar]
- Blanco-Marigorta, A.; Suárez-Medina, J.; Vera-Castellano, A. Exergetic analysis of a biodiesel production process from Jatropha curcas. Appl. Energy 2013, 101, 218–225. [Google Scholar] [CrossRef]
- Acosta-Esalas, L.J.; González-Delgado, Á.D. Exergy Assessment and Exergetic Resilience of the Large-Scale Gas Oil Hydrocracking Process. Science 2025, 7, 65. [Google Scholar] [CrossRef]
Product | Component | Content (per 100 g) |
---|---|---|
Dried Seed | Water | 60–70% |
Carbohydrates | 50–60% (mainly starch) | |
Fiber | 20–30% | |
Proteins | 2–3% | |
Lipids (fats) | 10–15% | |
Mesocarp | Water | 72–80% |
Calories | 160 kcal | |
Fats | 14.66 g | |
Monounsaturated fats | 9.80 g | |
Polyunsaturated fats | 1.82 g | |
Carbohydrates | 8.53 g | |
Exocarp | Water | 70–75% |
Carbohydrates | 15–30% | |
Fiber | 10–20% | |
Proteins | 1–3% | |
Lipids | 5–10% |
Components | Avocado and Impurities (Mass Fraction) | Washed Peel (Mass Fraction) | Homogeneous Mesocarp (Mass Fraction) | Avocado Oil (Mass Fraction) |
---|---|---|---|---|
1 | 14 | 19 | 26 | |
Methanol | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Sodium hypochlorite | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Water | 0.6600 | 0.2421 | 0.8084 | 0.0000 |
Leucine | 0.0137 | 0.0246 | 0.0095 | 0.0494 |
Glucose | 0.1795 | 0.6706 | 0.0540 | 0.2819 |
Calcium oxide | 0.0258 | 0.0120 | 0.0078 | 0.0405 |
Lauric | 0.0000 | 0.0000 | 0.0000 | 0.0002 |
Miristic | 0.0002 | 0.0000 | 0.0003 | 0.0014 |
Pentadec | 0.0000 | 0.0000 | 0.0000 | 0.0002 |
Palmitic | 0.0413 | 0.0000 | 0.0511 | 0.2664 |
Heptadec | 0.0001 | 0.0000 | 0.0001 | 0.0003 |
Stearic | 0.0013 | 0.0000 | 0.0016 | 0.0084 |
Oleic | 0.0460 | 0.0270 | 0.0494 | 0.2578 |
Linoleic | 0.0217 | 0.0000 | 0.0137 | 0.0713 |
Linoleum | 0.0032 | 0.0000 | 0.0020 | 0.0106 |
Arachidi | 0.0006 | 0.0000 | 0.0004 | 0.0021 |
Chlor | 0.0027 | 0.0238 | 0.0000 | 0.0000 |
Tannin | 0.0026 | 0.0000 | 0.0013 | 0.0067 |
Flavone | 0.0002 | 0.0000 | 0.0001 | 0.0005 |
Phenols | 0.0010 | 0.0000 | 0.0005 | 0.0025 |
Air | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Acetone | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Total | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Specific chemical exergy of the mixture (kJ/kg) | 8069.26 | 12,860.72 | 6131.31 | 29,338.27 |
Chemical exergy flow of the stream (MJ/h) | 8888.81 | 1631.85 | 4848.61 | 2764.11 |
Mass exergy of the stream (MJ/h) | 8888.81 | 1631.85 | 4848.61 | 2764.11 |
Components | Steam (Mass Fraction) | Milled Peel (Mass Fraction) | Acetone (Mass Fraction) | Chlorophyll Extract (Mass Fraction) |
---|---|---|---|---|
33 | 36 | 46 | 48 | |
Methanol | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Sodium hypochlorite | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Water | 1.0000 | 0.1351 | 0.0000 | 0.0317 |
Chlorophyll | 0.0000 | 0.0001 | 0.0000 | 0.8984 |
Acetone | 0.0000 | 0.8648 | 1.0000 | 0.0699 |
Total | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Specific chemical exergy of the mixture (kJ/kg) | 50.48 | 27,095.67 | 26,022.47 | 27,150.14 |
Chemical exergy f low of the stream (MJ/h) | 1.25 | 6914.07 | 5803.27 | 86.57 |
Mass exergy of the stream (MJ/h) | 5.81 | 6914.19 | 5803.40 | 86.58 |
Components | Dry Seed (Mass Fraction) | Biocontrol Agent and Ethanol (Mass Fraction) | Ethanol (Mass Fraction) | Biocontrol Agent (Mass Fraction) | |
---|---|---|---|---|---|
52 | 54 | 60 | 62 | Waste | |
Methanol | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0024 |
Sodium hypochlorite | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 |
Water | 0.4901 | 0.2273 | 0.0000 | 0.2644 | 0.0002 |
Leucine | 0.0188 | 0.0083 | 0.0000 | 0.0159 | 0.0493 |
Glucose | 0.3401 | 0.1499 | 0.0000 | 0.2876 | 0.2812 |
Calcium oxide | 0.0486 | 0.0214 | 0.0000 | 0.0411 | 0.0403 |
Oleic | 0.0167 | 0.0074 | 0.0000 | 0.0141 | 0.2571 |
Linoleic | 0.0612 | 0.0270 | 0.0000 | 0.0518 | 0.0711 |
Linoleum | 0.0091 | 0.0040 | 0.0000 | 0.0077 | 0.0106 |
Arachidi | 0.0018 | 0.0008 | 0.0000 | 0.0015 | 0.0021 |
Ethanol | 0.0000 | 0.5479 | 1.0000 | 0.3044 | 0.0000 |
Chlor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Tannin | 0.0093 | 0.0041 | 0.0000 | 0.0079 | 0.0067 |
Flavone | 0.0007 | 0.0003 | 0.0000 | 0.0006 | 0.0005 |
Phenols | 0.0035 | 0.0015 | 0.0000 | 0.0030 | 0.0025 |
Air | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Acetone | |||||
Total | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Specific chemical exergy of the mixture (kJ/kg) | 9944.03 | 18,596.55 | 26,022.47 | 16,295.33 | 31,196.49 |
Chemical exergy flow of the stream (MJ/h) | 2596.58 | 9413.33 | 5818.81 | 4120.06 | 256.66 |
Mass exergy of the stream (MJ/h) | 2596.58 | 9416.83 | 5820.95 | 4122.29 | 256.66 |
Stage | Heat Duty kW | Heat Duty MJ/h |
---|---|---|
Pulp drying | 486.615 | 1751.81 |
Methanol distillation | 5.43971 | 19.58 |
Oil cooling | −3.6796 | −13.25 |
Methanol condensation | −5.5806 | −20.09 |
Drying seed | 0.00441826 | 0.02 |
Drying peel | 18.1079 | 65.19 |
Acetate distillation | 79.0921 | 284.73 |
Acetone condensation | −71.5456 | −257.56 |
Bioethanol distillation | 77.228 | 278.02 |
TOTAL | 2412.23 |
Component | Chemical Exergy kJ/kg | R Specific (Ideal Gas Constant in Mass Units) | Molecular Weight (kg/kmol) | Source |
---|---|---|---|---|
Methanol | 22.441 | 0.2538 | 32.04 | [16] |
Sodium hypochlorite | 2.286 | 0.1092 | 74.44 | [17] |
Water | 50 | 0.4518 | 18 | [16] |
Leucine | 27.802 | 0.0620 | 131.17 | [18] |
Glucose | 15.504 | 0.0451 | 180.156 | [19] |
Calcium oxide | 2.269 | 0.1450 | 56.0774 | [16] |
Lauric acid | 37.655 | 0.0406 | 200.31776 | [20] |
Myristic acid | 38.43 | 0.0356 | 228.3709 | [20] |
Pentadecanoic acid | 67.509 | 0.0335 | 242.3975 | Calculated |
Palmitic acid | 39.581 | 0.0317 | 256.43 | [20] |
Heptadecanoic acid | 39.970 | 0.030 | 270.45 | [20] |
Stearic acid | 40.284 | 0.0285 | 284.48 | [20] |
Oleic acid | 4.2067 | 0.0287 | 282.47 | [21] |
Linoleic acid | 39.294 | 0.0290 | 280.4472 | [21] |
Linolenic acid | 38.824 | 0.0292 | 278.43 | [21] |
Arachidic acid | 40.860 | 0.0260 | 312.5304 | [20] |
Ethanol | 26.022 | 0.1765 | 47.07 | [19] |
Chlorophyll | 27.802 | 0.0091 | 893.5 | [20] |
Tannins | 36.590 | 0.0441 | 184.04 | Calculated |
Flavonoids | 72.192 | 0.0280 | 290.23 | [20] |
Phenols | 42.332 | 0.0451 | 18.16 | [20] |
Air | 527.78 | 0.4518 | 18 | [19] |
Acetone | 31.369 | 0.1400 | 58.08 | [16] |
Stage | Power Flow (kW) | Exergy—Work (MJ/h) | Heat Input (MJ/h) | Exergy—Heat (MJ/h) |
---|---|---|---|---|
1. Avocado washing | 4 | 14.40 | 0 | 0.00 |
2. Separation of peel and mesocarp | 26 | 93.60 | 0 | 0.00 |
3. Seed washing | 4 | 14.40 | 0 | 0.00 |
4. Homogenization and drying of mesocarp | 105 | 378.00 | 1751.81 | 388.63 |
5. Oil extraction and centrifugation | 115 | 414.00 | 0.00 | 0.00 |
6. Distillation and condensation of methanol | 606 | 2181.60 | 52.92 | 11.74 |
7. Washing the peel | 4 | 14.40 | 0 | 0.00 |
8. Drying of peel | 30 | 108.00 | 65.19 | 14.46 |
9. Milled peel | 100 | 360.00 | 0 | 0.00 |
10. Chlorophyll extraction and centrifugation | 190 | 684.00 | 0 | 0.00 |
11. Distillation and condensation of methanol | 130 | 468.00 | 542.30 | 120.31 |
12. Drying seed | 275 | 990.00 | 0.02 | 0.00 |
13. Milled and sifted seed | 122 | 439.20 | 0 | 0.00 |
14. Biocontrol agent extraction and centrifugation | 160 | 576.00 | 0 | 0.00 |
15. Distillation and condensation of ethanol | 130 | 468.00 | 278.02 | 61.68 |
Total | 2001 | 7203.60 | 0 | 0 |
Stage | Destroyed Exergy (%) | |
---|---|---|
1 | Avocado wash | 2% |
2 | Separation of husks and pulping | 1% |
3 | Seed washing | 5% |
4 | Pulp homogenization and drying | 10% |
5 | Oil extraction and centrifugation | 13% |
6 | Methanol distillation and condensation | 26% |
7 | Peel washing | 0% |
8 | Drying of peel | 1% |
9 | Crushing of peel | 5% |
10 | Chlorophyll extraction and centrifugation | 9% |
11 | Acetone distillation and condensation | 8% |
12 | Seed drying | 6% |
13 | Crushing and sifting seed | 6% |
14 | Biocontrol agent extraction and centrifugation | 0% |
15 | Ethanol distillation and condensation | 9% |
TOTAL | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontalvo-Morales, A.; Rojas-Flores, S.; González-Delgado, Á.D. Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia. Sustainability 2025, 17, 5451. https://doi.org/10.3390/su17125451
Fontalvo-Morales A, Rojas-Flores S, González-Delgado ÁD. Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia. Sustainability. 2025; 17(12):5451. https://doi.org/10.3390/su17125451
Chicago/Turabian StyleFontalvo-Morales, Alejandra, Segundo Rojas-Flores, and Ángel Darío González-Delgado. 2025. "Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia" Sustainability 17, no. 12: 5451. https://doi.org/10.3390/su17125451
APA StyleFontalvo-Morales, A., Rojas-Flores, S., & González-Delgado, Á. D. (2025). Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia. Sustainability, 17(12), 5451. https://doi.org/10.3390/su17125451