Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Characterization
2.2. Soil Amendments and Their Characterization
2.3. Experimental Site and Design
2.4. Data Collection and Measurements
2.4.1. Plant Growth Parameters Measurement
2.4.2. Green Pepper Harvest and Biomass Analysis
2.4.3. Leachate Collection and Analysis
2.4.4. Soil Analysis
2.5. Data Analysis
3. Results
3.1. Soil Amendments Affected the Chemical Properties of the Soil
3.2. Soil Amendments Impacted Leachate Volume
3.3. Effects of Soil Amendments on Nutrient Leaching
3.3.1. Nutrient Leaching Concentration
3.3.2. Nutrient Losses
3.4. Soil Amendments Affected Plant Growth Parameters Based on Growth Stages
3.4.1. Plant Greenness (Relative Chlorophyl Content Index-RCCI)
3.4.2. Normalized Different Vegetative Index (NDVI)
3.4.3. Photosynthesis Rate
3.5. Soil Amendments Affected Plant Yield and Biomass
3.6. Correlation Between Leachate Properties, Soil and Plant Parameters
3.7. Principal Component Analysis
4. Discussion
5. Environmental and Economic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, S.; Chauhan, B.S. Challenges and opportunities to sustainable crop production. In Plant Small RNA in Food Crops; Academic Press: Cambridge, MA, USA, 2023; pp. 25–43. [Google Scholar]
- Grassini, P.; van Bussel, L.G.; Van Wart, J.; Wolf, J.; Claessens, L.; Yang, H.; Boogaard, H.; de Groot, H.; van Ittersum, M.K.; Cassman, K.G. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 2015, 177, 49–63. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, K.; Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 2013, 23, 1178–1186. [Google Scholar] [CrossRef]
- El Idrissi, A.; Dardari, O.; Metomo, F.N.N.N.; Essamlali, Y.; Akil, A.; Amadine, O.; Aboulhrouz, S.; Zahouily, M. Effect of sodium alginate-based superabsorbent hydrogel on tomato growth under different water deficit conditions. Int. J. Biol. Macromol. 2023, 253, 127229. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; Ok, Y.S. Biochars and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Muñoz, E.; Curaqueo, G.; Cea, M.; Vera, L.; Navia, R. Environmental hotspots in the life cycle of a biochar-soil system. J. Clean. Prod. 2017, 158, 1–7. [Google Scholar] [CrossRef]
- Singh Mavi, M.; Singh, G.; Singh, B.P.; Singh Sekhon, B.; Choudhary, O.P.; Sagi, S.; Berry, R. Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. J. Soil Sci. Plant Nutr. 2018, 18, 41–59. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Zhang, M.; Wan, Y.; Xie, Z.; Chen, B.; Li, W. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 2018, 13, e0189924. [Google Scholar] [CrossRef]
- Purkaystha, J.; Prasher, S.; Afzal, M.T.; Nzediegwu, C.; Dhiman, J. Wheat straw biochar amendment significantly reduces nutrient leaching and increases green pepper yield in a less fertile soil. Environ. Technol. Innov. 2022, 28, 102655. [Google Scholar] [CrossRef]
- Arif, M.; Ali, K.; Jan, M.T.; Shah, Z.; Jones, D.L.; Quilliam, R.S. Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res. 2016, 195, 28–35. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Yu, Y.; Deng, C.; Meng, F.; Shi, Q.; Feijen, J.; Zhong, Z. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo (acryloyl carbonate)-b-poly (ethylene glycol)-b-oligo (acryloyl carbonate) copolymers. J. Biomed. Mater. Res. Part A 2011, 99, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Tian, X.; Zhai, S.; Liu, Z.; Chu, P.; Li, C.; Sun, S.; Li, T. Co-application of controlled-release urea and a superabsorbent polymer to improve nitrogen and water use in maize. Arch. Agron. Soil Sci. 2022, 68, 914–928. [Google Scholar] [CrossRef]
- Rezashateri, M.; Khajeddin, S.J.; Abedi-Koupai, J.; Majidi, M.M.; Matinkhah, S.H. Growth characteristics of Artemisia sieberi influenced by super absorbent polymers in texturally different soils under water stress condition. Arch. Agron. Soil Sci. 2017, 63, 984–997. [Google Scholar] [CrossRef]
- Elbarbary, A.M.; Ghobashy, M.M. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation. Radiochim. Acta 2017, 105, 865–876. [Google Scholar] [CrossRef]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.M.; Nzediegwu, C.; Mawof, A. Effect of hydrogel based soil amendments on heavy metal uptake by spinach grown with wastewater irrigation. J. Clean. Prod. 2021, 311, 127644. [Google Scholar] [CrossRef]
- Del Campo, M.M.; Esteller, M.; Morell, I.; Expósito, J.; Bandenay, G.; Díaz-Delgado, C. A lysimeter study under field conditions of nitrogen and phosphorus leaching in a turf grass crop amended with peat and hydrogel. Sci. Total Environ. 2019, 648, 530–541. [Google Scholar] [CrossRef]
- Omogbohu Anetor, M.; Akinkunmi Akinrinde, E. Lime effectiveness of some fertilizers in a tropical acid alfisol. J. Cent. Eur. Agric. 2007, 8, 17–24. [Google Scholar]
- Ayalew, A. The influence of applying lime and NPK fertilizers on yield of maize and soil properties on acid soil of Areka, southern region of Ethiopia. Innov. Syst. Des. Eng. 2011, 2, 33–42. [Google Scholar]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128, 221–275. [Google Scholar]
- Raboin, L.-M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dusserre, J.; Becquer, T. Improving the fertility of tropical acid soils: Liming versus biochar application? A long-term comparison in the highlands of Madagascar. Field Crops Res. 2016, 199, 99–108. [Google Scholar] [CrossRef]
- Ulén, B.; Etana, A. Phosphorus leaching from clay soils can be counteracted by structure liming. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 425–433. [Google Scholar] [CrossRef]
- Eslamian, F.; Qi, Z.; Tate, M.J.; Romaniuk, N. Lime application to reduce phosphorus release in different textured intact and small repacked soil columns. J. Soils Sediments 2020, 20, 2053–2066. [Google Scholar] [CrossRef]
- Olsson, Å.; Persson, L.; Olsson, S. Influence of soil characteristics on yield response to lime in sugar beet. Geoderma 2019, 337, 1208–1217. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610, 316–332. [Google Scholar] [CrossRef]
- Blomquist, J.; Simonsson, M.; Etana, A.; Berglund, K. Structure liming enhances aggregate stability and gives varying crop responses on clayey soils. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 311–322. [Google Scholar] [CrossRef]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.M.; Nzediegwu, C.; Mawof, A. Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments. Environ. Technol. Innov. 2020, 19, 100952. [Google Scholar] [CrossRef]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.; Nzediegwu, C.; Mawof, A. Use of polyacrylamide superabsorbent polymers and plantain peel biochar to reduce heavy metal mobility and uptake by wastewater-irrigated potato plants. Trans. ASABE 2020, 63, 11–28. [Google Scholar] [CrossRef]
- Zhang, Y.-S.; Tang, G.-M.; Long, X.-S.; Ge, C.-H.; Xu, W.-L. Effects of one\|time biochar input on soil properties and corn yield in irrigation sandy soil. Agric. Res. Arid. Areas 2021, 39, 137–141. [Google Scholar]
- Elias, D.M.O.; Ooi, G.T.; Razi, M.F.A.; Robinson, S.; Whitaker, J.; McNamara, N.P. Effects of leucaena biochar addition on crop productivity in degraded tropical soils. Biomass Bioenergy 2020, 142, 105710. [Google Scholar] [CrossRef]
- Jien, S.H.; Chen, W.C.; Ok, Y.S.; Awad, Y.M.; Liao, C.S. Short-term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environ. Sci. Pollut. Res. 2018, 25, 25715–25725. [Google Scholar] [CrossRef] [PubMed]
- Zainul, A.; Hans-Werner, K.; Bernhard, H.; Bilquees, G.; Ajmal, K. Impact of a Biochar or a Compost-Biochar Mixture on Water relation, Nutrient uptake and Photosynthesis of Phragmites karka. Pedosphere 2020, 30, 466–477. [Google Scholar]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Amjad, M.; Murtaza, B.; Khan, W.-U.; Ahmad, N. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J. Plant Nutr. 2018, 41, 112–122. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Louki, I. Impact of deficit irrigation and addition of biochar and polymer on soil salinity and tomato productivity. Can. J. Soil Sci. 2019, 99, 380–394. [Google Scholar] [CrossRef]
- Youssef, M.E.-S.; Al-Easily, I.; Nawar, D.A. Impact of biochar addition on productivity and tubers quality of some potato cultivars under sandy soil conditions. Egypt. J. Hortic. 2017, 44, 199–217. [Google Scholar] [CrossRef]
- Kumar, A.; Elad, Y.; Tsechansky, L.; Abrol, V.; Lew, B.; Offenbach, R.; Graber, E.R. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): Crop yield and plant protection. J. Sci. Food Agric. 2018, 98, 495–503. [Google Scholar] [CrossRef]
- De Lima, W.B.; Cavalcante, A.R.; Bonifácio, B.F.; da Silva, A.A.R.; de Oliveira, L.D.; de Souza, R.F.A.; Chaves, L.H.G. Growth and development of bell peppers submitted to fertilization with biochar and nitrogen. Agric. Sci. 2019, 10, 753–762. [Google Scholar] [CrossRef]
- Wang, G.; Govinden, R.; Chenia, H.Y.; Ma, Y.; Guo, D.; Ren, G. Suppression of Phytophthora blight of pepper by biochar amendment is associated with improved soil bacterial properties. Biol. Fertil. Soils 2019, 55, 813–824. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, Y.; Zhou, H.; Gao, B. Effects of biochar amendment on relieving cadmium stress and reducing cadmium accumulation in pepper. Environ. Sci. Pollut. Res. 2016, 23, 12323–12331. [Google Scholar] [CrossRef]
- Byan, U.; El-Shimi, N. Effect of using some treatments on sweet pepper irrigation and its effect on fruit yield and its quality. Arab Univ. J. Agric. Sci. 2015, 23, 25–36. [Google Scholar] [CrossRef]
- Rasanjali, K.; De Silva, C.; Priyadarshani, K. Influence of super absorbent polymers (saps) on irrigation interval and growth of black pepper (Piper nigrum L.) in nursery management. OUSL J. 2019, 14, 7. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Wang, J.; Yang, Y.; Han, K.; Bakpa, E.P.; Li, J.; Lyu, J.; Yu, J.; Xie, J. Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper (Capsicum annuum L.). Front. Nutr. 2023, 9, 1027605. [Google Scholar] [CrossRef] [PubMed]
- Benson, G.; Obadofin, A.; Adesina, J. Evaluation of plant extracts for controlling insect pests of pepper (Caspicum spp.) in Nigeria humid rainforest. N. Y. Sci. J. 2014, 7, 39–43. [Google Scholar]
- Day, P.R. Particle fractionation and particle size-analysis. In Methods of Soil Analysis; Black, C.A., Ed.; Agronomy No. 9, Part 1; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Pinawa, MB, Canada, 2008; pp. 173–178. [Google Scholar]
- Schulte, E.; Kaufmann, C.; Peter, J. The influence of sample size and heating time on soil weight loss-on-ignition. Commun. Soil Sci. Plant Anal. 1991, 22, 159–168. [Google Scholar] [CrossRef]
- Ziadi, N.; Tran, T.S. Mehlich 3-extractable elements. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Pinawa, MB, Canada, 2008; pp. 81–88. [Google Scholar]
- Dugdug, A.A.; Chang, S.X.; Ok, Y.S.; Rajapaksha, A.U.; Anyia, A. Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Environ. Sci. Pollut. Res. Int. 2018, 25, 25799–25812. [Google Scholar] [CrossRef]
- Park, M.; Komarneni, S. Ammonium nitrate occlusion vs. nitrate ion exchange in natural zeolites. Soil Sci. Soc. Am. J. 1998, 62, 1455–1459. [Google Scholar] [CrossRef]
- Lou, K.; Rajapaksha, A.U.; Ok, Y.S.; Chang, S.X. Pyrolysis temperature and steam activation effects on sorption of phosphate on pine saw dust biochars in aqueous solutions. Chem. Speciat. Bioavailab. 2016, 28, 42–50. [Google Scholar] [CrossRef]
- Li, X.; Shen, Q.; Zhang, D.; Mei, X.; Ran, W.; Xu, Y.; Yu, G. Functional groups determine biochar properties (pH and EC) as studied by two dimensional 13C NMR correlation spectroscopy. PLoS ONE 2013, 8, 65949. [Google Scholar] [CrossRef]
- Dume, B.; Mosissa, T.; Nebiyu, A. Effect of biochar on soil properties and lead (Pb) availability in a military camp in Southwest Ethiopia. Afr. J. Environ. Sci. Technol. 2016, 10, 77–85. [Google Scholar]
- Ahmad, M.; Moon, D.H.; Vithanage, M.; Koutsospyros, A.; Lee, S.S.; Yang, J.E.; Lee, S.E.; Jeon, C.; Ok, Y.S. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol. 2014, 89, 150–157. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Zhang, M.; Ahmad, M.; Mohan, D.; Chang, S.X.; Ok, Y.S. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour. Technol. 2014, 166, 303–308. [Google Scholar] [CrossRef] [PubMed]
- D1762-84 ASTM; Standard Method for Chemical Analysis of Wood Charcoal, 84. ASTM International: Philadelphia, PA, USA, 1990; pp. 1–2.
- Lewis, C.J. Chemical Facts Pertaining to Environmental Uses for Lime; Graymont Inc. Booklet: Graymont, PA, USA, 2005. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; Ahmed, E.M.; Aggor, F.S.; Hawash, S.I. Application of super absorbent hydrogel poly (acrylate/acrylic acid) for water conservation in sandy soil. Trans. Egypt. Soc. Chem. Eng. 2014, 40, 1–8. [Google Scholar]
- Ahmed, E.M.; Aggor, F.S.; Nada, S.S.; Hawash, S.I. Synthesis and characterization of super absorbent polymers for agricultural purposes. Int. J. Sci. Eng. Res. 2015, 6, 282–287. [Google Scholar]
- Batool, A.; Taj, S.; Rashid, A.; Khalid, A.; Qadeer, S.; Saleem, A.R.; Ghufran, M.A. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front. Plant Sci. 2015, 6, 733. [Google Scholar] [CrossRef]
- Suresh, R.; Prasher, S.O.; Patel, R.M.; Qi, Z.; Elsayed, E.; Schwinghamer, T.; Ehsan, A.M. Super absorbent polymer and irrigation regime effects on growth and water use efficiency of container-grown cherry tomatoes. Trans. ASABE 2018, 61, 523–531. [Google Scholar] [CrossRef]
- Pellerin, A. Les grilles de référence. In Guide de Référence en Fertilisation, 2nd ed.; Parent, L.E., Gagné, G., Eds.; Centre de Référence en Agriculture et Agroalimentaire du Québec: Québec, QC, Canada, 2010; pp. 359–471. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Chapter 2: Crop Water Needs; FAO: Rome, Italy, 2008; Available online: http://www.fao.org/3/s2022e/s2022e02.htm (accessed on 28 May 2018).
- Smittle, D.A.; Dickens, W.L.; Stansell, J.R. Irrigation regimes affect yield and water use by Bell Pepper. J. Am. Soc. Hortic. Sci. 1994, 119, 936. [Google Scholar] [CrossRef]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Hui, D.; Yu, C.-L.; Deng, Q.; Saini, P.; Collins, K.; Koff, J. Weak effects of biochar and nitrogen fertilization on Switchgrass photosynthesis, biomass, and soil respiration. Agriculture 2018, 8, 143. [Google Scholar] [CrossRef]
- Sigge, G.O.; Hansmann, C.F.; Joubert, E. Effect of temperature and relative humidity on the drying rates and drying times of green bell peppers (Capsicum annuum L.). Dry. Technol. 1998, 16, 1703–1714. [Google Scholar] [CrossRef]
- Achalu, C.; Heluf, G.; Kibebew, K.; Abi, T. Status of selected physicochemical properties of soils under different land use systems of Western Oromia, Ethiopia. J. Biodivers. Environ. Sci. 2012, 2, 57–71. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Maru, A.; Haruna, A.O.; Asap, A.; Majid, N.M.A.; Maikol, N.; Jeffary, A.V. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. Productivity through efficient use of chicken litter biochar and triple superphosphate. Appl. Sci. 2020, 10, 2127. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Barman, M.; Shukla, L.M.; Datta, S.P.; Rattan, R.K. Effect of applied lime and boron on the availability of nutrients in an acid soil. J. Plant Nutr. 2014, 37, 357–373. [Google Scholar] [CrossRef]
- Farina, M.P.W.; Channon, P.; Thibaud, G.R. A Comparison of Strategies for Ameliorating Subsoil Acidity I. Long-Term Growth Effects. Soil Sci. Soc. Am. J. 2000, 64, 646–651. [Google Scholar] [CrossRef]
- Conyers, M.; Heenan, D.; McGhie, W.; Poile, G. Amelioration of acidity with time by limestone under contrasting tillage. Soil Tillage Res. 2003, 72, 85–94. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient Leaching in a colombian savanna oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulén, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus availability in soils amended with wheat residue char. J. Biol. Fertil. Soils 2013, 49, 245–250. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Sinicco, T.; D’Hose, T.; Nest, T.V.; Mondini, C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J. Environ. Manag. 2016, 168, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Schumacher, T.E.; McDonald, L.M.; Clay, D.E.; Malo, D.D.; Papiernik, S.K.; Clay, S.A.; Julson, J.L. Phosphorus sorption and availability from biochars and soil/B iochar mixtures. Clean Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Ahmed, S.; Fahmy, A. Applications of natural polysaccharide polymers to overcome water scarcity on the yield and quality of tomato fruits. J. Soil Sci. Agric. Eng. 2019, 10, 199–208. [Google Scholar] [CrossRef]
- Costa, M.C.G.; Freire, A.G.; Lourenço, D.V.; de Sousa, R.R.; Feitosa, J.P.D.A.; Mota, J.C.A. Hydrogel composed of potassium acrylate, acrylamide, and mineral as soil conditioner under saline conditions. Sci. Agric. 2021, 79, e20200235. [Google Scholar] [CrossRef]
- Abobatta, W. Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. Open Access 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Wu, X.; Sun, L.; Qin, B.; Wang, T.; Wang, Y.; Zhao, J.; Fu, Y. Novel antimicrobial polysaccharide hydrogel with fertilizer slow-release function for promoting Sesamum indicum L. seeds germination. Polymer 2024, 311, 127491. [Google Scholar] [CrossRef]
- Tariq, M.; Mott, C.J.B. Effect of boron supply on the uptake of micronutrients by radish (Raphanus sativus L.). J. Agric. Biol. Sci. 2006, 1, 1–8. [Google Scholar]
- Yu, J.; Shi, J.; Ma, X.; Dang, P.F.; Yan, Y.L.; Mamedov, A.I.; Shainberg, I.; Levy, G.J. Superabsorbent polymer properties and concentration effects on water retention under drying conditions. Soil Sci. Soc. Am. J. 2017, 81, 889–901. [Google Scholar] [CrossRef]
- Mohawesh, O.; Durner, W. Effects of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness. Pedosphere 2019, 29, 598–607. [Google Scholar] [CrossRef]
- Paluszek, J. Quality of structure and water-air properties of eroded Haplic Luvisol treated with gel-forming polymer. Pol. J. Environ. Stud. 2010, 19, 1287. [Google Scholar]
- Knowles, O.; Robinson, B.; Contangelo, A.; Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 2011, 409, 3206–3210. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Soil Sci. Soc. Am. J. 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Wu, Y.; Brickler, C.; Li, S.; Chen, G. Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polym. Test. 2021, 93, 106996. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, L.; Xue, L. Effects of biochar addition on nitrogen leaching loss in the vegetable soil. J. Adv. Agric. Technol. 2019, 6, 83–90. [Google Scholar] [CrossRef]
- Hardie, M.A.; Oliver, G.; Clothier, B.E.; Bound, S.A.; Green, S.A.; Close, D.C. Effect of biochar on nutrient leaching in a young apple orchard. J. Environ. Qual. 2015, 44, 1273–1282. [Google Scholar] [CrossRef]
- Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F. Nutrient leaching and retention in riparian soils as influenced by rice husk biochar addition. Soil Sci. 2017, 182, 241–247. [Google Scholar] [CrossRef]
- Da Silva, I.C.B.; Basílio, J.J.N.; Fernandes, L.A.; Colen, F.; Sampaio, R.A.; Frazão, L.A. Biochar from different residues on soil properties and common bean production. Sci. Agric. 2017, 74, 378–382. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Phan, B.T.; Nguyen, T.X.; Nguyen, V.N.; Van Tran, T.; Bach, Q.-V. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. J. Soils Sediments 2020, 20, 297–307. [Google Scholar] [CrossRef]
- Syvertsen, J.; Dunlop, J. Hydrophilic gel amendments to sand soil can increase growth and nitrogen uptake efficiency of citrus seedlings. Hortic. Sci. 2004, 39, 267–271. [Google Scholar] [CrossRef]
- Arbona, V.; Iglesias, D.J.; Jacas, J.; Primo-Millo, E.; Talon, M.; Gómez-Cadenas, A. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 2005, 270, 73–82. [Google Scholar] [CrossRef]
- Rubin, R.L.; Anderson, T.R.; Ballantine, K.A. Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils. Wetlands 2020, 40, 1981–1991. [Google Scholar] [CrossRef]
- Kalu, S.; Oyekoya, G.N.; Ambus, P.; Tammeorg, P.; Simojoki, A.; Pihlatie, M.; Karhu, K. Effects of two wood-based biochars on the fate of added fertilizer nitrogen—A 15 N tracing study. Biol. Fertil. Soils 2021, 57, 457–470. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Lu, Y.; Silveira, M.L.; O’Connor, G.A.; Vendramini, J.M.; Erickson, J.E.; Li, Y.C.; Cavigelli, M. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching. J. Environ. Qual. 2020, 49, 1408–1420. [Google Scholar]
- Barrow, N.J. The effects of pH on phosphate uptake from the soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Risueno, Y.; Petri, C.; Conesa, H.M. A critical assessment on the short-term response of microbial relative composition in a mine tailings soil amended with biochar and manure compost. J. Hazard. Mater. 2021, 417, 126080. [Google Scholar] [CrossRef]
- Daba, N.A.; Li, D.; Huang, J.; Han, T.; Zhang, L.; Ali, S.; Khan, M.N.; Du, J.; Liu, S.; Legesse, T.G.; et al. Long-term fertilization and lime-induced soil pH changes affect nitrogen use efficiency and grain yields in acidic soil under wheat-maize rotation. Agronomy 2021, 11, 2069. [Google Scholar] [CrossRef]
- Tunesi, S.; Poggi, V.; Gessa, C. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals. Nutr. Cycl. Agroecosystems 1999, 53, 219–227. [Google Scholar] [CrossRef]
- Venkatesan, S.; Jayaganesh, S. Characterisation of magnesium toxicity, its influence on amino acid synthesis pathway and biochemical parameters of tea. Phytochem 2010, 4, 67–77. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2016, 237, 80–94. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.; et al. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Sänger, A.; Reibe, K.; Mumme, J.; Kaupenjohann, M.; Ellmer, F.; Roß, C.-L.; Meyer-Aurich, A. Biochar application to sandy soil: Effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 2017, 63, 213–229. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Cong, M.; Hu, Y.; Sun, X.; Yan, H.; Yu, G.; Tang, G.; Jia, H. Long-term effects of biochar application on the growth and physiological characteristics of maize. Front. Plant Sci. 2023, 14, 1172425. [Google Scholar] [CrossRef]
- Hou, X.; Li, R.; He, W.; Dai, X.; Ma, K.; Liang, Y. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. J. Soils Sediments 2018, 18, 816–826. [Google Scholar] [CrossRef]
- Blumenschein, T.G.; Nelson, K.A.; Motavalli, P.P. Impact of a new deep vertical lime placement practice on corn and soybean production in conservation tillage systems. Agronomy 2018, 8, 104. [Google Scholar] [CrossRef]
- Godsey, C.B.; Pierzynski, G.M.; Mengel, D.B.; Lamond, R.E. Management of soil acidity in no-till production systems through surface application of lime. Agron. J. 2007, 99, 764–772. [Google Scholar] [CrossRef]
- Brown, T.T.; Koenig, R.T.; Huggins, D.R.; Harsh, J.B.; Rossi, R.E. Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems. Soil Sci. Soc. Am. J. 2008, 72, 634–640. [Google Scholar] [CrossRef]
- Caires, E.; Joris, H.; Churka, S. Long-term effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manag. 2011, 27, 45–53. [Google Scholar] [CrossRef]
- Wan, H.; Liu, X.; Shi, Q.; Chen, Y.; Jiang, M.; Zhang, J.; Hossain, M.A. Biochar amendment alters root morphology of maize plant: Its implications in enhancing nutrient uptake and shoot growth under reduced irrigation regimes. Front. Plant Sci. 2023, 14, 1122742. [Google Scholar] [CrossRef] [PubMed]
- Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil. Agriculture 2021, 11, 793. [Google Scholar] [CrossRef]
- Guan, X.; Zhou, J.; Ma, N.; Chen, X.; Gao, J.; Zhang, R. Studies on modified conditions of biochar and the mechanism for fluoride removal. Desalination Water Treat. 2015, 55, 440–447. [Google Scholar] [CrossRef]
- Palta, J.A.; Yang, J.C. Crop root system behaviour and yield preface. Field Crops Res. 2014, 165, 1–4. [Google Scholar] [CrossRef]
- Orikiriza, L.J.; Agaba, H.; Tweheyo, M.; Eilu, G.; Kabasa, J.D.; Huettermann, A. Amending soils with hydrogels increases the biomass of nine tree species under Non-water stress conditions. Clean Soil Air Water 2009, 37, 615–620. [Google Scholar] [CrossRef]
- Najafinezhad, H.; Tahmasebi Sarvestani, Z.; Modarres Sanavy, S.A.M.; Naghavi, H. Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Arch. Agron. Soil Sci. 2015, 61, 891–906. [Google Scholar] [CrossRef]
- Liu, R.; Gu, M.; Huang, L.; Yu, F.; Jung, S.-K.; Choi, H.-S. Effect of pine wood biochar mixed with two types of compost on growth of bell pepper (Capsicum annuum L.). Hortic. Environ. Biotechnol. 2019, 60, 313–319. [Google Scholar] [CrossRef]
- Mawof, A.; Prasher, S.; Bayen, S.; Nzediegwu, C. Effects of Biochar and Biochar-Compost Mix as Soil Amendments on Soil Quality and Yield of Potatoes Irrigated with Wastewater. J. Soil Sci. Plant Nutr. 2021, 21, 2600–2612. [Google Scholar] [CrossRef]
- Paulus, A.; Anyi, W. Pepper Production Technology in Malaysia; Fong, L.K., Ed.; Malaysian Pepper Board: Kuching, Malaysia, 2011; pp. 3–4. [Google Scholar]
- Sulok, K.M.T.; Ahmed, O.H.; Khew, C.Y.; Zehnder, J.A.M.; Lai, P.S.; Jalloh, M.B.; Musah, A.A.; Awang, A.; Abdu, A. Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield. Agronomy 2021, 11, 1738. [Google Scholar] [CrossRef]
- Heidari, F.; Tilaki, G.A.D.; Kooch, Y. Effects of Drought Stress on Morphological and Physiological Traits of Kochia Prostrata (L.). Int. J. Nat. Sci. Res. 2022, 10, 102–115. [Google Scholar] [CrossRef]
Properties | Soil | Hardwood Biochar |
---|---|---|
Particle size distribution (%) | ||
Sand | 83 | - |
Silt | 13 | - |
Clay | 4 | - |
Texture | Loamy sand | - |
Bulk density (Mg m−3) | 1.29 ± 0.05 | |
pH | 5.57 + 0.087 | 9.96 ± 0.01 |
EC (1:5) (dS m−1) | 0.27 ± 0.01 | |
SOM (%) | 3.28 + 0.42 | - |
BET Surface area (m2 g−1) | - | 324.6 |
Pore volume (cm3 g−1) | 0.02 | |
Ash content (%) | 35.8 ± 1.4 | |
Pore size (nm) | 17.44 | |
Pyrolysis temperature (°C) | 500–550 | |
Available nutrients (mg kg−1) | ||
C | - | 892,200 |
H | - | 26,700 |
O | - | 79,000 |
S | - | 100 |
N | 15.2 ± 7.65 | 2000 |
NH4+ | 4.59 ± 0.54 | 3130 ± 0.34 |
P | 125.36 ± 9.71 | 350 |
K | 121.40 ± 35.68 | 2700 ± 0.24 |
Ca | 1602.33 ± 99.81 | 1700 ± 0.23 |
Mg | 85.73 ± 21.95 | 180 ± 0.01 |
Al | 1453.47 ± 12.89 | - |
Na | 380 ± 0.06 | |
CEC (cmol (+) kg−1) | 8.19 ± 0.39 | 18 |
Base saturation (%) | 99.68 ± 0.32 | - |
Year | Amendments | pH | SOM (%) | NO3−-N (mg kg−1) | AV P (mg kg−1) | AV K (mg kg−1) | AV Ca (mg kg−1) | AV Mg (mg kg−1) | AV Al (mg kg−1) | CEC (cmol (+) kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
First | C | 5.7 ± 0.28 d | 2.04 ± 0.08 bc | 3.77 ± 1.06 c | 132.00 ± 38.14 a | 109.50 ± 35.50 d | 1252.50 ± 316.90 c | 53.22 ± 8.26 c | 1420.00 ± 48.30 a | 6.71 ± 1.33 d |
B | 6.20 ± 0.12 c | 2.62 ± 0.15 ab | 13.38 ± 4.06 a | 148.50 ± 33.21 a | 174.50 ± 29.35 bcd | 1400.00 ± 153.84 c | 68.50 ± 9.38 ab | 1447.50 ± 12.58 a | 8.94 ± 0.84 c | |
L | 6.95 ± 0.48 ab | 1.75 ± 0.76 c | 7.66 ± 1.76 b | 145.00 ± 35.29 a | 113.25 ± 25.51 d | 2062.5 ± 241.72 bc | 62.52 ± 4.60 abc | 1237.50 ± 26.30 b | 13.31 ± 1.55 ab | |
H | 5.35 ± 0.25 d | 2.14 ± 0.45 abc | 4.39 ± 2.27 bc | 176.33 ± 62.22 a | 182.00 ± 45.96 bc | 1070.00 ± 229.20 c | 51.20 ± 16.12 c | 1435.00 ± 78.52 a | 9.00 ± 1.94 c | |
BL | 7.1 ± 0.10 a | 2.044 ± 0.83 bc | 7.32 ± 3.48 bc | 136.00 ± 8.75 a | 140.75 ± 26.45 cd | 2837.50 ± 1000.00 ad | 73.52 ± 4.03 a | 1197.51 ± 49.91 bc | 13.48 ± 1.31 ab | |
BH | 5.32 ± 0.47 d | 2.78 ± 0.20 ab | 7.89 ± 1.91 b | 149.67 ± 4.76 a | 181.67 ± 11.90 bc | 1827.50 ± 1354.93 bc | 55.93 ± 16.08 bc | 1455.00 ± 90.36 a | 8.79 ± 0.61 c | |
HL | 6.65 ± 0.23 abc | 2.85 ± 0.13 a | 5.21 ± 1.55 bc | 172.66 ± 27.18 a | 216.75 ± 79.35 ab | 3840.00 ± 179.63 a | 71.25 ± 5.68 a | 1132.49 ± 20.61 c | 14.84 ± 1.31 a | |
BHL | 6.55 ± 0.40 bc | 2.56 ± 0.21 ab | 5.64 ± 0.71 bc | 178.50 ± 17.60 a | 264.25 ± 72.03 a | 2645.00 ± 1085.56 b | 63.60 ± 7.44 abc | 1185.00 ± 69.52 bc | 12.09 ± 0.85 b | |
Second | C | 5.55 ± 0.51 c | 2.58 ± 0.12 b | 1.37 ± 0.06 de | 227.60 ± 12.78 b | 95.00 ± 11.53 d | 1145.67 ± 371.54 d | 47.00 ± 13.00 e | 1584.00 ± 89.01 a | 7.36 ± 2.72 c |
B | 6.11 ± 0.20 b | 3.18 ± 0.23 a | 2.67 ± 0.38 c | 338.38 ± 33.16 a | 148.66 ± 31.08 bcd | 1352.33 ± 204.96 d | 55.00 ± 5.00 bcde | 1551.00 ± 44.24 a | 11.82 ± 0.86 b | |
L | 7.38 ± 0.09 a | 3.16 ± 0.10 a | 2.78 ± 0.44 c | 287.03 ± 30.87 ab | 138.67 ± 68.06 d | 3459.35 ± 442.56 ab | 65.68 ± 9.30 ab | 1334.00 ± 23.34 bc | 16.92 ± 5.26 a | |
H | 5.73 ± 0.04 c | 3.46 ± 0.15 a | 1.57 ± 0.04 de | 329.27 ± 68.00 a | 145.66 ± 1.15 cd | 1266.68 ± 146.96 d | 50.33 ± 4.93 de | 1524.34 ± 43.57 a | 8.61 ± 0.94 bc | |
BL | 7.17 ± 0.08 a | 3.44 ± 0.27 a | 2.24 ± 0.60 cd | 314.17 ± 54.29 a | 131.33 ± 21.47 d | 2869.33 ± 293.68 c | 63.00 ± 4.36 bc | 1377.68 ± 30.02 b | 12.44 ± 2.64 a | |
BH | 5.82 ± 0.06 bc | 3.52 ± 0.15 a | 1.32 ± 0.34 e | 308.30 ± 32.70 a | 211.00 ± 18.73 a | 1341.33 ± 101.95 d | 51.57 ± 5.85 cde | 1560.00 ± 52.74 a | 9.58 ± 0.41 bc | |
HL | 7.26 ± 0.11 a | 3.22 ± 0.23 a | 3.98 ± 0.57 b | 309.43 ± 26.91 a | 203.33 ± 28.94 ab | 3148.69 ± 411.63 bc | 62.00 ± 6.08 bcd | 1276.35 ± 56.20 c | 14.23 ± 0.95 a | |
BHL | 7.26 ± 0.2 a | 3.31 ± 0.44 a | 5.67 ± 1.01 a | 318.50 ± 23.52 a | 200.68 ± 13.20 abc | 3811.00 ± 376.26 a | 75.68 ± 2.31 a | 1272.68 ± 16.07 c | 12.54 ± 0.65 a | |
Third | C | 5.33 ± 0.21 c | 2.60 ± 0.21 b | 2.78 ± 1.14 b | 283.27 ± 59.25 c | 98.44 ± 3.75 b | 946.47 ± 223.08 b | 31.38 ± 10.72 c | 2617.33 ± 313.46 a | 8.61 ± 0.68 d |
B | 5.95 ± 0.25 b | 3.41 ± 0.28 a | 5.71 ± 0.51 a | 474.00 ± 181.03 ab | 131.97 ± 38.38 b | 977.13 ± 349.37 b | 48.78 ± 8.53 abc | 2641.21 ± 586.62 a | 10.63 ± 0.58 bc | |
L | 6.96 ± 0.27 a | 3.37 ± 0.23 a | 4.78 ± 0.75 a | 366.93 ± 97.04 abc | 103.84 ± 27.27 b | 2566.67 ± 310.31 a | 65.98 ± 33.19 a | 1038.67 ± 209.77 b | 14.29 ± 1.10 a | |
H | 5.16 ± 0.15 c | 3.36 ± 0.17 a | 5.78 ± 0.57 a | 370.07 ± 31.66 abc | 112.61 ± 42.48 b | 821.07 ± 66.81 b | 47.14 ± 9.28 abc | 2242.67 ± 65.86 a | 9.60 ± 0.41 cd | |
BL | 7.01 ± 0.11 a | 3.21 ± 0.21 a | 4.70 ± 0.65 a | 427.13 ± 62.34 abc | 128.50 ± 16.92 b | 2558.62 ± 256.85 a | 36.64 ± 5.02 bc | 1132.47 ± 156.11 b | 13.72 ± 0.76 bc | |
BH | 5.33 ± 0.11 c | 3.32 ± 0.21 a | 5.70 ± 0.91 a | 319.80 ± 44.35 bc | 116.74 ± 11.98 b | 953.93 ± 125.31 b | 50.98 ±6.52 abc | 2304.68 ± 234.83 a | 9.75 ± 0.58 cd | |
HL | 7.00 ± 0.21 a | 3.35 ± 0.21 a | 5.56 ± 1.54 a | 494.53 ± 130.30 a | 199.80 ± 36.13 a | 2682.00 ± 633.75 a | 57.94 ± 6.74 ab | 1192.66 ± 310.72 b | 14.70 ± 1.52 ab | |
BHL | 6.98 ± 0.15 a | 3.45 ± 0.29 a | 6.09 ± 0.19 a | 464.8 ± 83.66 ab | 204.25 ± 9.88 a | 2800.00 ± 675.56 a | 56.68 ± 9.22 ab | 1418.00 ± 152.00 b | 13.83 ± 1.16 bc |
Effect/Year | Plant Growth Parameters | ||
---|---|---|---|
GI (SPAD) | NDVI | PS | |
First year | |||
Amendment | ns | * | * |
Season | ns | * | * |
Amendment * season | ns | ns | ns |
Second year | |||
Amendment | ns | * | ns |
Season | * | * | * |
Amendment * season | ns | ns | ns |
Amendments | Plant Growth Parameters and Growing Stages | ||||||||
---|---|---|---|---|---|---|---|---|---|
GI (SPAD) | NDVI | PS | |||||||
Growing | Flowering | Fruiting | Growing | Flowering | Fruiting | Growing | Flowering | Fruiting | |
First Year | |||||||||
C | 66.90 ± 1.57 cde | 71.15 ± 1.70 abc | 70.50 ± 2.07 abcd | 0.76 ± 0.05 fghi | 0.91 ± 0.01 a | 0.84 ± 0.01 abcdef | 17.3 ± 1.67 cdef | 18.27 ± 4.03 bcde | 16.30 ± 1.18 efgh |
B | 70.76 ± 4.40 abcd | 70.42 ± 3.61 abcd | 66.16 ± 6.30 de | 0.73 ± 0.04 hi | 0.82 ± 0.09 cdefg | 0.74 ± 0.05 ghi | 14.20 ± 1.69 gh | 15.18 ± 4.14 fgh | 16.15 ± 2.58 efgh |
L | 65.64 ± 2.27 e | 71.04 ± 3.63 abc | 69.59 ± 7.27 abcde | 0.69 ± 0.05 i | 0.83 ± 0.04 abcdef | 0.69 ± 0.01 i | 17.25 ± 2.11 cdefg | 19.52 ± 5.82 a | 14.37 ± 2.22 efgh |
H | 69.90 ± 0.72 abcde | 71.93 ± 0.56 ab | 70.98 ± 2.04 abc | 0.79 ± 0.04 defgh | 0.90 ± 0.03 ab | 0.85 ± 0.02 defgh | 13.73 ± 2.98 fgh | 20.27 ± 2.41 abc | 15.2 ± 2.63 d efgh |
BL | 64.8 ± 10.09 abcde | 63.65 ± 15.25 ab | 65.36 ± 14.43 ab | 0.69 ± 0.08 i | 0.81 ± 0.14 bcdefgh | 0.81 ± 0.13 i | 13.73 ± 2.18 h | 11.94 ± 10.09 abcd | 15.13 ± 0.90 efgh |
BH | 68.8 ± 1.45 abcde | 73.52 ± 1.75 a | 69.09 ± 4.34 abcde | 0.79 ± 0.6 efgh | 0.89 ± 0.03 abc | 0.88 ± 0.01 efgh | 15.47 ± 1.68 efgh | 22.72 ± 1.18 a | 18.00 ± 0.97 bcdef |
HL | 70.19 ± 2.67 abcde | 70.11 ± 4.53 abcde | 68.58 ± 1.54 bcde | 0.69 ± 0.5 i | 0.87 ± 0.03 abcde | 0.83 ± 0.1 i | 16.07 ± 1.88 efgh | 20.70 ± 1.83 ab | 13.03 ± 4.73 fgh |
BHL | 69.27 ± 2.05 abcde | 70.71 ± 4.96 abcd | 70.77 ± 1.23 abcd | 0.74 ± 0.06 ghi | 0.85 ± 0.05 abcde | 0.83 ± 0.01 ghi | 15.10 ± 3.54 efgh | 21.65 ± 1.04 a | 19.85 ± 2.21 abc |
Second Year | |||||||||
C | 64.95 ± 2.84 de | 68.98 ± 0.45 abc | 63.03 ± 2.60 e | 0.87 ± 0.1 g | 0.92 ± 0.02 abcdef | 0.89 ± 0.01 efg | 17.66 ± 2.80 cdefghij | 18.10 ± 1.06 abcdefg | 15.42 ± 1.67 ij |
B | 62.06 ± 2.45 e | 72.08 ± 2.77 a | 68.4 ± 6.67 bcd | 0.88 ± 0.01 g | 0.93 ± 0.02 abcdef | 0.91 ± 0.01 bcdef | 18.10 ± 3.47 abcdef | 19.42 ± 1.36 ab | 14.83 ± 2.13 hij |
L | 62.71 ± 2.65 e | 68.48 ± 1.22 bc | 67.27 ± 2.92 cd | 0.90 ± 0.03 defg | 0.94 ± 0.01 abc | 0.93 ± 0.02 abc | 18.42 ± 1.66 abcdef | 19.60 ± 1.71 a | 15.79 ± 1.05 ghij |
H | 63.03 ± 2.57 e | 70.45 ± 1.56 abc | 67.71 ± 1.61 bcd | 0.91 ± 0.01 bcdef | 0.94 ± 0.01 abc | 0.92 ± 0.02 abcdef | 17.30 ± 1.52 bcdefghi | 18.10 ± 2.21 abcdef | 16.23 ± 1.83 fghij |
BL | 62.72 ± 1.21 e | 70.81 ± 2.53 ab | 68.23 ±1.89 bcd | 0.88 ± 0.04 g | 0.93 ± 0.02 abcd | 0.92 ± 0.03 abcdef | 17.15 ± 1.11 cdefghij | 18.32 ± 0.80 abcdef | 17.79 ± 2.50 abcdefgh |
BH | 62.56 ± 2.18 e | 68.81 ± 1.40 abc | 68.72 ± 1.91 abc | 0.90 ± 0.01 defg | 0.94 ± 0.02 defg | 0.92 ± 0.02 abcdef | 15.11 ± 2.39 efghij | 18.57 ± 0.87 abcde | 14.94 ± 1.38 j |
HL | 64.96 ± 1.28 e | 68.7 ± 1.69 abc | 68.26 ± 1.76 bcd | 0.89 ± 0.03 fg | 0.95 ± 0.02 ab | 0.91 ± 0.04 cdef | 17.15 ± 1.32 cdefghij | 18.91 ± 1.75 abcd | 16.32 ± 1.96 fghij |
BHL | 61.53 ± 2.58 de | 70.51 ± 0.66 abc | 68.05 ± 2.47 bcd | 0.88 ± 0.03 g | 0.95 ± 0.01 a | 0.92 ± 0.01 abcde | 16.79 ± 1.32 defghij | 19.14 ± 1.20 abc | 16.84 ± 2.58 abcdefg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkaystha, J.; Prasher, S.O.; Afzal, M.T.; Dhiman, J.; Nzediegwu, C. Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil. Sustainability 2025, 17, 5396. https://doi.org/10.3390/su17125396
Purkaystha J, Prasher SO, Afzal MT, Dhiman J, Nzediegwu C. Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil. Sustainability. 2025; 17(12):5396. https://doi.org/10.3390/su17125396
Chicago/Turabian StylePurkaystha, Joba, Shiv O. Prasher, Muhammad T. Afzal, Jaskaran Dhiman, and Christopher Nzediegwu. 2025. "Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil" Sustainability 17, no. 12: 5396. https://doi.org/10.3390/su17125396
APA StylePurkaystha, J., Prasher, S. O., Afzal, M. T., Dhiman, J., & Nzediegwu, C. (2025). Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil. Sustainability, 17(12), 5396. https://doi.org/10.3390/su17125396