Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Testing Analysis
3. Results and Discussion
3.1. Groundwater Hydrochemical Characteristics in Different Sedimentary Zones
3.2. Characteristics of as Spatial Distribution
3.3. Formation Mechanism of High-As Groundwater
3.3.1. Redox Conditions
3.3.2. Mineral Dissolution/Desorption Processes
3.4. Analysis of as Concentration Changes During High and Low Water Levels
3.5. As Concentration Change Mechanism Driven by Water Level
4. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.F.; Guo, H.M. Hot topics and trends in the study of high arsenic groundwater. Adv. Earth Sci. 2013, 28, 51–61. [Google Scholar]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, Y.P.; Zhang, Q. Contamination severity index: An analysis of Bangladesh groundwater arsenic. Environmetrics 2024, 35, e2850. [Google Scholar] [CrossRef]
- Maity, S.; Dokania, P.; Goenka, M.; Patil, P.B.; Sarkar, A. Health-Risk Assessment of Groundwater Arsenic Levels in Bhagalpur, India, and Development of a Cost-Effective Paper-Based Arsenic Testing-Kit. Clean-Soil Air Water 2025, 53, e202300291. [Google Scholar] [CrossRef]
- Khant, N.A.; Kim, H.; Moon, J.; Lumongsod, R.M. Groundwater contamination by arsenic in Myanmar and their sustainability: A review. Episodes 2024, 47, 391–403. [Google Scholar] [CrossRef]
- Phan, N.N.; Tran, L.L.; Nguyen, A.L.; Nguyen, T.K.N.; Nguyen, T.H.T. Groundwater arsenic pollution in Vietnam: Current opinion on the mobilization and remediation. Curr. Opin. Environ. Sci. Health 2025, 44, 100596. [Google Scholar]
- Sosa, N.N.; Kulkarni, H.V.; Datta, S.; Beilinson, E.; Porfido, C.; Spagnuolo, M.; Zárate, M.A.; Surber, J. Occurrence and dis-tribution of high arsenic in sediments and groundwater of the Claromecó fluvial basin, southern Pampean plain (Argentina). Sci. Total Environ. 2019, 695, 133673. [Google Scholar] [CrossRef]
- Liu, X.; Yue, F.-J.; Wong, W.W.; Lin, S.-C.; Guo, T.-L.; Li, S.-L. Arsenic toxicity exacerbates China’s groundwater and health crisis. Environ. Int. 2025, 198, 109435. [Google Scholar] [CrossRef]
- Ayotte, J.D.; Belaval, M.; Olson, S.A.; Burow, K.R.; Flanagan, S.M.; Hinkle, S.R.; Lindsey, B.D. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Sci. Total Environ. 2015, 505, 1370–1379. [Google Scholar] [CrossRef]
- Zheng, Y. Global solutions to a silent poison. Science 2020, 368, 818–819. [Google Scholar] [CrossRef]
- Yan, G.G.; Zhang, Q.H.; Zhang, P.; Liu, W. Study on distribution characteristics and formation mechanism of high arsenic groundwater. GR Water 2022, 44, 16–18+23. [Google Scholar]
- Wang, Z.; Guo, H.M.; Liu, H.Y.; Zhang, W.M. Source, migration, distribution, toxicological effects and remediation technologies of arsenic in groundwater in China. China Geol. 2023, 6, 476–493. [Google Scholar]
- Guo, H.M.; Ni, P.; Jia, Y.F.; Guo, Q.; Jiang, Y.X. Types, chemical characteristics and genesis of geogenic high arsenic groundwater in the world. Earth Sci. Front. 2014, 21, 1–12. [Google Scholar]
- Gao, Z.P.; Jia, Y.F.; Guo, H.M.; Zhang, D.; Zhao, B. Quantifying Geochemical Processes of Arsenic Mobility in Groundwater From an Inland Basin Using a Reactive Transport Model. Water Resour. Res. 2020, 56, e2019WR025492. [Google Scholar] [CrossRef]
- Stopelli, E.; Duyen, V.T.; Mai, T.T.; Trang, P.T.K.; Viet, P.H.; Lightfoot, A.; Kipfer, R.; Schneider, M.; Eiche, E.; Kontny, A.; et al. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Sci. Total Environ. 2020, 717, 137143. [Google Scholar] [CrossRef]
- Han, L.; Sun, Y.; Li, Z.; Duan, Y.; Han, S.; Zhang, H.; Zhao, M.; Zheng, Y. Beyond the geological origin of sediment arsenic in groundwater systems: Arsenic redux by redox. Sci. Bull. 2023, 68, 1616–1620. [Google Scholar] [CrossRef]
- Liu, W.B. Groundwater Hydro-Chemical Characteristics Study in Hetao Plain. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2015. [Google Scholar]
- Mukherjee, A.; Coomar, P.; Sarkar, S.; Johannesson, K.H.; Fryar, A.E.; Schreiber, M.E.; Ahmed, K.M.; Alam, M.A.; Bhattacharya, P.; Bundschuh, J.; et al. Arsenic and other geogenic contaminants in global groundwater. Nature Rev. Earth Environ. 2024, 5, 312–328. [Google Scholar] [CrossRef]
- Duan, Y.H. Seasonal Variations of Groundwater Arsenic Concentration in Shallow Aquifers at Jianghan Plain. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2016. [Google Scholar]
- Anawar, H.M.; Komaki, K.; Akai, J.; Takada, J.; Ishizuka, T.; Takahashi, T.; Yoshioka, T.; Kato, K. Diagenetic control on arsenic partitioning in sediments of the Meghna River delta, Bangladesh. Environ. Geol. 2002, 41, 816–825. [Google Scholar] [CrossRef]
- Nath, B.; Berner, Z.; Mallik, S.B.; Chatterjee, D.; Charlet, L.; Stueben, D. Characterization of aquifers conducting groundwaters with low and high arsenic concentrations: A comparative case study from West Bengal, India. Mineral. Mag. 2005, 69, 841–854. [Google Scholar] [CrossRef]
- Gao, C.R. Research on the mechanism of arsenic pollution in groundwater in the Hetao Plain, Inner Mongolia, China. China J. Geol. Hazard Control 1999, 10, 25–32. [Google Scholar]
- Bian, J.M.; Tang, J.; Feng, L.; Zha, E.S. Hydrogeochemical characteristics in the arsenic poisoning area in western Jilin Province. Hydrogeol. Eng. Geol. 2009, 36, 80–83. [Google Scholar]
- Zhang, L.P.; Xie, X.J.; Li, J.X.; Wang, Y.X. Spatial Variation, Speciation and Enrichment of Arsenic in Groundwater from the Da-tong Basin, Northern China. Geol. Sci. Technol. Inf. 2014, 33, 178–184. [Google Scholar]
- Giménez-Forcada, E.; Luque-Espinar, J.A.; López-Bahut, M.T.; Grima-Olmedo, J.; Jiménez-Sánchez, J.; Ontiveros-Beltranena, C.; Díaz-Muñoz, J.Á.; Elster, D.; Skopljak, F.; Voutchkova, D.; et al. Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F- in groundwater on a Pan-European scale. Ecotoxicol. Environ. Saf. 2022, 247, 114161. [Google Scholar] [CrossRef]
- Tang, J.; Bian, J.M.; Li, Z.Y.; Wang, N.; Zhang, N.; Zhang, H. Relationship between hydrochemical environment and arsenism in areas with arsenic poisoning drinking water in China. Asian J. Ecotoxicol. 2013, 8, 222–229. [Google Scholar]
- Harvey, C.F.; Swartz, C.H.; Badruzzaman, A.B.M.; Keon-Blute, N.; Yu, W.; Ali, M.A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef]
- Van Geen, A.; Zheng, Y.; Goodbred, S., Jr.; Horneman, A.; Aziz, Z.; Cheng, Z.; Stute, M.; Mailloux, B.; Weinman, B.; Hoque, M.A.; et al. Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environ. Sci. Technol. 2008, 42, 2283–2288. [Google Scholar] [CrossRef]
- Stute, M.; Zheng, Y.; Schlosser, P.; Horneman, A.; Dhar, R.K.; Datta, S.; Hoque, M.A.; Seddique, A.A.; Shamsudduha, M.; Ahmed, K.M.; et al. Hydrological control of As concentrations in Bangladesh groundwater. Water Resour. Res. 2008, 43, W09417. [Google Scholar] [CrossRef]
- Aziz, Z.; van Geen, A.; Stute, M.; Versteeg, R.; Horneman, A.; Zheng, Y.; Goodbred, S.; Steckler, M.; Weinman, B.; Gavrieli, I.; et al. Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour. Res. 2008, 44, W07416. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y.; Su, C.; Li, J.; Li, M. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. J. Hydrol. 2012, 424–425, 37–47. [Google Scholar] [CrossRef]
- He, X. Study on Migration and Enrichment of Arsenic in Groundwater Under the Influence of Irrigated Agriculture in Hetao Plain. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2010. [Google Scholar]
- Chatterjee, R.; Adhikari, K.; Sinha, R.; Bharti, S.; Mal, U. Arsenic contamination in groundwater of moribund delta of Bengal basin: Quantitative assessment through adsorption kinetics and contaminant transport modelling. J. Earth Syst. Sci. 2024, 133, 86. [Google Scholar] [CrossRef]
- Cheng, Z.; van Geen, A.; Seddique, A.A.; Ahmed, K.M. Limited Temporal Variability of Arsenic Concentrations in 20 Wells Monitored for 3 Years in Araihazar, Bangladesh. Environ. Sci. Technol. 2005, 39, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Van Geen, A.; Ahmed, K.M.; Seddique, A.A.; Shamsudduha, M. Community wells to mitigate the arsenic crisis in Bangladesh. Bull. World Health Organ. 2003, 81, 632–638. [Google Scholar] [PubMed]
- Guo, H.; Zhang, Y.; Jia, Y.; Zhao, K.; Li, Y.; Tang, X. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia. J. Geochem. Explor. 2012, 135, 130–140. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Y.; Dong, T.; Wu, G.W.; Li, P. Effect of surface water-groundwater interaction on arsenic transport in shallow groundwater of Jianghan Plain. Earth Sci. 2023, 48, 3420–3431. [Google Scholar]
- Chakraborti, D.; Basu, G.K.; Biswas, B.K.; Chowdhury, U.K.; Rahman, M.M.; Paul, K.; Ray, S.L. Characterization of arsenic bearing sediments in Gangetie delta of West Bengal-India. Arsen. Expo. Health Eff. 2001, 4, 27–52. [Google Scholar]
- Rosenboom, J.W. Arsenic in 15 Upazilas of Bangladesh: Water Supplies, Health and Behaviours-An Analysis of Available Data. In Report for the Department of Public Health Engineering (Bangladesh); The Department for International Development (UK) and UNICEF: London, UK, 2004. [Google Scholar]
- Qiao, W. Molecular Characteristics of Organic Matter and Their Roles in Arsenic Mobility in Typical Yellow River Basins. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2021. [Google Scholar]
- Han, S.B.; Li, F.C.; Wang, S.; Li, H.X.; Yuan, L.; Liu, J.T.; Shen, H.Y.; Zhang, X.Q.; Li, C.Q.; Wu, X.; et al. Groundwater resource and eco-environmental problem of the Yellow River Basin. Geol. China 2021, 48, 1001–1019. [Google Scholar]
- Pang, X.G.; Gao, Z.J.; Bian, J.C.; Wang, H.J.; Wang, M. The correlation between endemic diseases and eco-geochemical environment in the lower Yellow River basin, Shandong Province. Geol. China 2010, 37, 824–830. [Google Scholar]
- Lu, T.C.; He, G.X.; Zhang, M.J. Epidemiological investigation of endemic arsenic poisoning in Xinxiang City. Henan J. Prev. Med. 2010, 21, 289–291. [Google Scholar]
- Zhang, Z.J.; Fei, Y.H.; Qian, Y.; Li, Y.S.; Wang, Z.; Meng, S.H.; Chen, J.S.; Zhang, F.E.; Guo, C.Y.; Wang, C.X.; et al. Report on the Investigation and Assessment Results of Ground-Water Pollution in North China Plain. Shijiazhuang in Hebei Province of China: Institute of Hydrogeology and Environmental Geology; Chinese Academy of Geological Science: Beijing, China, 2011. [Google Scholar]
- Ren, Y.; Cao, W.G.; Pan, D.; Wang, S.; Li, Z.Y.; Li, J.C. Evolution characteristics and change mechanism of arsenic and fluorine in shallow groundwater from a typical irrigation area in the lower reaches of the Yellow River (Henan) in 2010–2020. Rock Miner. Anal. 2021, 40, 846–859. [Google Scholar]
- Li, J.C.; Cao, W.G.; Pan, D.; Wang, S.; Li, Z.Y.; Ren, Y. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain. Rock Miner. Anal. 2022, 41, 120–132. [Google Scholar]
- Wang, Y.Y.; Cao, W.G.; Pan, D.; Wang, S.; Ren, Y.; Li, Z.Y. Distribution and origin of high arsenic and fluoride in groundwater of the North Henan Plain. Rock Miner. Anal. 2022, 41, 1095–1109. [Google Scholar]
- Qiao, W.; Cao, W.; Gao, Z.; Pan, D.; Ren, Y.; Li, Z.; Zhang, Z. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences. Sci. Total Environ. 2022, 851, 158134. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Zhang, G.H.; Yang, L.Z.; Wei, Z.R.; Liu, Z.Y.; Chen, X.L.; Zhang, Z. Variation characteristics and causes of arsenic con-centration in shallow groundwater of Northern Shandong Plain in the lower reaches of the Yellow River. Acta Geosci. Sin. 2013, 34, 470–476. [Google Scholar]
- Shi, J.S.; Liu, C.L.; Sun, C.Y.; Yan, Z.P.; Zhang, J.; Wang, Y.J.; Dong, H.; Ye, H.; Zhang, Y.B.; Zhang, L.Z.; et al. Research on Major Environmental Geological Problems in the Middle and Lower Reaches of the Yellow River, 1st ed.; China Land Press: Beijing, China, 2007. [Google Scholar]
- Sun, L.; Wang, L.L.; Cao, W.G. Evolution of groundwater hydrochemical characteristics in the influence zone of the lower Yellow River in Henan. Yellow River 2021, 43, 91–99. [Google Scholar]
- Geological Environmental Monitoring Institute of Henan Province. Evaluation Report on Groundwater Resources in Henan Province; Geological Environmental Monitoring Institute of Henan Province: Zhengzhou, China, 2020. [Google Scholar]
- Shandong Provincial Territorial Spatial Ecological Restoration Center. Dynamic Monitoring and Evaluation Report on Groundwater Resources in Shandong Province; Shandong Provincial Territorial Spatial Ecological Restoration Center: Jinan, China, 2022. [Google Scholar]
- HJ 776-2015; Water Quality—Determination of 32 Elements—Inductively Coupled Plasma Optical Emission Spectrometry. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2015.
- DZ/T0064.42-2021; Methods for Analysis of Groundwater Quality—Part 42: Determination of Calcium, Magnesium, Potassium, Sodium, Aluminium, Iron, Strontium, Barium and Manganese Contents-Inductively Coupled Plasma Atomie Emission Spectrometry. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- DZ/T 0064.49-2021; Methods for Analysis of Groundwater Quality—Part 49: Determination of Carbonate, Bicarbonate Ions, Hy-droxy—Titration. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- DZ/T0064.50-2021; Methods for Analysis of Groundwater Quality—Part 50: Determination of Chloride Argentometric—Titration. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- HJ 84-2016; Water Quality-Determination of Inorganic Anions (F−, Cl−, NO2−, Br−, NO3−, PO43−, SO32−, SO42−)-Ion Chromatography. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2016.
- DZ/T 0064.11-2021; Methods for Analysis of Groundwater Quality—Part 11: Determination of Arsenic Content—Hydride Generation Atomic Fluorescence Spectrometry. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- DZ/T 0064.5-2021; Methods for Analysis of Groundwater Quality—Part 5: Determination of pH-Glass-Electrodes Method. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- DZ/T 0064.9-2021; Methods for Analysis of Groundwater Quality—Part 9: Determination of Total Dissolved Solids—Gravimetric Method. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Zhang, Z.J.; Fei, Y.H.; Chen, Z.Y. Investigation and Assessment of Sustainable Utilization of Groundwater Resources in the North China Plain, 1st ed.; Geology Press: Beijing, China, 2009. [Google Scholar]
- Cheng, J.H. Water quality evaluation of the Yellow River in Shandong. Yellow River 1992, 9, 61–62. [Google Scholar]
- Bai, W.Y. The Speciation Distribution Study of Arsenic and Mercury in the Water Body of Yellow River in Inner Mongolia sec-Tion. Master’s Thesis, Inner Mongolia University, Huhehaote, China, 2004. [Google Scholar]
- Gao, C.D.; Wang, Z.M. Preliminary analysis of arsenic sources in Yellow River Water and their relationship with sediments. Water Resour. Prot. 1986, 1, 14–17. [Google Scholar]
- Nan, F.C. Apples Brought Prosperity to This Once Poorest Land. 2024. Available online: https://cj.sina.com.cn/articles/view/1645578093/6215876d02701igns (accessed on 4 December 2024).
- Li, Y.; Gao, X.B.; Zhang, X.; Luo, W.T.; Hu, Q.H. Geochemistry of arsenic in sediments and groundwater in areas with arsenic polluted groundwater in Yuncheng Basin. Saf. Environ. Eng. 2017, 24, 68–74. [Google Scholar]
- Cao, W.; Guo, H.; Zhang, Y.; Ma, R.; Li, Y.; Dong, Q.; Li, Y.; Zhao, R. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China. Sci. Total Environ. 2018, 613–614, 958–968. [Google Scholar] [CrossRef]
- Duan, L.; Wang, W.; Sun, Y.; Zhang, C.; Sun, Y. Hydrogeochemical Characteristics and Health Effects of Iodine in Groundwater in Wei River Basin. Expo. Health 2020, 12, 369–383. [Google Scholar] [CrossRef]
- Kumar, M.; Das, A.; Das, N.; Goswami, R.; Singh, U.K. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere 2016, 150, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Bondu, R.; Cloutier, V.; Rosa, E.; Roy, M. An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in (Canada). Appl. Geochem. 2020, 114, 104500. [Google Scholar] [CrossRef]
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- Yan, Y.N.; Li, H.Q.; Wen, X.Y.; Xie, W.L.; Zhang, J.W.; Zhao, Z.Q. Arsenic enrichment mechanism of groundwater in the western Hetao Plain. Bull. Mineral. Petrol. Geochem. 2023, 42, 289–297. [Google Scholar]
- Zhang, Y. Hydrogeochemical Evolution of High Arsenic Groundwater in the Hetao Basin, Inner Mongolia. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. [Google Scholar]
- Guo, H.; Li, X.; Xiu, W.; He, W.; Cao, Y.; Zhang, D.; Wang, A. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China. J. Hydrol. 2019, 571, 448–459. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zhang, Z.J.; Zhao, X.Y.; Wen, M.T.; Cao, S.W.; Li, Y.S. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. J. Groundw. Sci. Eng. 2021, 9, 304–316. [Google Scholar]
- Gao, X.; Su, C.; Wang, Y.; Hu, Q. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate. J. Geochem. Explor. 2013, 135, 93–103. [Google Scholar] [CrossRef]
- Pi, K.F.; Wang, Y.X.; Xie, X.J.; Su, C.L.; Ma, T.; Li, J.X.; Liu, Y.Q. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J. Hazard. Mater. 2015, 300, 652–661. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Ma, T.; Gan, Y. Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ. Geol. 2009, 56, 1467–1477. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Xing, L.; Jia, Y. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Appl. Geochem. 2012, 27, 2187–2196. [Google Scholar] [CrossRef]
- Currell, M.; Cartwright, I.; Raveggi, M.; Han, D. Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Appl. Geochem. 2011, 26, 540–552. [Google Scholar] [CrossRef]
- Rahul, K.K. Co-occurrence of arsenic and fluoride in groundwater in Chandrapur district, central India. Holist. Approach Environ. 2025, 15, 36–46. [Google Scholar]
- Water resources department of Henan province. Henan Water Resources Bulletin in 2021; Water resources department of Henan province: Zhengzhou, China, 2022. [Google Scholar]
- Water resources department of Shandong province. Shandong Water Resources Bulletin in 2021; Water resources department of Shandong province: Jinan, China, 2022. [Google Scholar]
Test Items | Detection Limits | Standard Method | Detailed Analytical Protocol |
---|---|---|---|
K+ | 0.18 mg/L | HJ 776-2015 [54] | Inductively coupled plasma–atomic emission spectrometry (ICP-AES) |
Na+ | 0.47 mg/L | ||
Ca2+ | 0.08 mg/L | ||
Mg2+ | 0.01 mg/L | ||
Fe | 0.005 mg/L | DZ/T0064.42-2021 [55] | Inductively coupled plasma–atomic emission spectrometry (ICP-AES) |
Mn | 0.005 mg/L | ||
HCO3− | 5 mg/L | DZ/T 0064.49-2021 [56] | Titration method |
CO3− | 5 mg/L | ||
Cl− | 3.0 mg/L | DZ/T0064.50-2021 [57] | Titration method |
F− | 0.024 mg/L | HJ 84-2016 [58] | Ion chromatography (IC) |
NO3− | 0.064 mg/L | ||
SO42− | 0.072 mg/L | ||
As | 0.5 μg/L | DZ/T 0064.11-2021 [59] | Atomic fluorescence spectrometry (AFS) |
pH | / | DZ/T 0064.5-2021 [60] | Glass electrode method |
TDS * | / | DZ/T 0064.9-2021 [61] | Gravimetric method |
Ion | Alluvial Fan Plain | Floodplain | Marine-Alluvial Plain | Delta Plain | |||||
---|---|---|---|---|---|---|---|---|---|
Standards * Value (mg/L) | Average Value (mg/L) | Coefficient of Variation *** | Average Value (mg/L) | Coefficient of Variation | Average Value (mg/L) | Coefficient of Variation | Average Value (mg/L) | Coefficient of Variation | |
K+ | 2.22 | 0.62 | 5.07 | 3.00 | 22.11 | 0.97 | 49.64 | 1.57 | |
Na+ | 200 | 134.47 | 0.87 | 194.25 | 0.83 | 846.73 | 1.02 | 2971.15 | 0.89 |
Ca2+ | 88.37 | 0.43 | 118.24 | 0.53 | 122.06 | 0.69 | 603.73 | 0.60 | |
Mg2+ | 53.04 | 0.45 | 95.48 | 0.75 | 142.42 | 1.05 | 571.02 | 0.61 | |
HCO3− | 542.41 | 0.32 | 652.65 | 0.25 | 714.99 | 0.19 | 637.94 | 0.37 | |
Cl− | 250 | 104.06 | 0.73 | 228.64 | 1.14 | 1353.54 | 1.22 | 6338.55 | 0.80 |
SO42− | 250 | 128.10 | 1.01 | 215.60 | 1.29 | 234.27 | 0.63 | 905.57 | 0.57 |
TDS ** | 1000 | 814.19 | 0.53 | 1242.51 | 0.70 | 3128.00 | 0.93 | 11965.27 | 0.72 |
pH Value | 6.5–8.5 | 7.49 | 0.03 | 7.46 | 0.03 | 7.50 | 0.04 | 7.18 | 0.04 |
Parameter | Factor Loadings | ||
---|---|---|---|
F1 | F2 | F3 | |
Mg2+ | 0.977 Δ | −0.123 | 0.037 |
TDS * | 0.975 Δ | −0.128 | 0.123 |
Cl− | 0.963 Δ | −0.129 | 0.144 |
Na+ | 0.935 Δ | −0.146 | 0.186 |
Ca2+ | 0.854 Δ | 0.015 | −0.139 |
SO42− | 0.848 Δ | −0.135 | 0.055 |
pH | −0.531 Δ | −0.367 | 0.522 Δ |
As | −0.013 | 0.856 Δ | 0.365 |
Fe | 0.351 | 0.780 Δ | 0.363 |
F− | −0.293 | −0.429 | 0.597 Δ |
HCO3− | 0.150 | 0.158 | −0.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Li, X.; Zhang, X.; Cui, X.; Cui, J.; Su, C.; Fei, Y.; Lei, S.; Liu, K. Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River. Sustainability 2025, 17, 5333. https://doi.org/10.3390/su17125333
Meng S, Li X, Zhang X, Cui X, Cui J, Su C, Fei Y, Lei S, Liu K. Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River. Sustainability. 2025; 17(12):5333. https://doi.org/10.3390/su17125333
Chicago/Turabian StyleMeng, Suhua, Xiangquan Li, Xueqing Zhang, Xiangxiang Cui, Jinli Cui, Chen Su, Yuhong Fei, Shan Lei, and Kun Liu. 2025. "Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River" Sustainability 17, no. 12: 5333. https://doi.org/10.3390/su17125333
APA StyleMeng, S., Li, X., Zhang, X., Cui, X., Cui, J., Su, C., Fei, Y., Lei, S., & Liu, K. (2025). Distribution Patterns and Water-Level-Driven Evolution Mechanisms of Arsenic in Shallow Groundwater in the Lower Yellow River. Sustainability, 17(12), 5333. https://doi.org/10.3390/su17125333