The Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production: Provincial-Level Analysis in China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methods
2.1.1. Water Pressure in Grain Production
2.1.2. Prediction Method of Water Pressure in Grain Production
2.1.3. Model Setting of the Impact of Agricultural Fiscal Expenditure on the Water Pressure in Grain Production
2.1.4. Spatial Econometric Model
2.2. Materials
3. Result
3.1. Analysis of Measurement and Forecast Results of Water Pressure in Grain Production
3.1.1. Analysis of Water Pressure Measurement Results for Food Production
3.1.2. Analysis of Water Pressure Forecast Results for Food Production
3.2. Empirical Test Results
3.2.1. Test Results of the Impact of Agricultural Fiscal Expenditure on the Water Pressure in Grain Production
- (i)
- Agricultural fiscal expenditure has intensified the water pressure of food production.
- (ii)
- Robustness test
3.2.2. Moderating Effect Test
3.2.3. Spatial Spillover Effect Test
4. Discussion
4.1. Agricultural Fiscal Expenditure Would Aggravate the Regional Water Pressure in Grain Production
4.2. Agricultural Fiscal Expenditure in Major Grain-Producing Areas Substantially Affected the Aggravation of Water Pressure in Grain Production
4.3. The Role of Technical Environment in Mitigating the Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production
4.4. The Spatial Spillover Effect of Agricultural Fiscal Expenditure on Water Pressure in Grain Production
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.Q.; Zhang, H.P.; Song, X.X.; Ye, W.J. Social responsibility awareness and adoption of climate-smart agricultural practices: Evidence from food-based family farms in China. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 41. [Google Scholar] [CrossRef]
- Feng, H.; Zhong, L.; Ridoutt, B.G.; Jing, H.; Baoguo, L. China’s water for food under growing water scarcity. Food Secur. 2015, 7, 933–949. [Google Scholar] [CrossRef]
- Wallace, J.S.; Gregory, P.J. Water resources and their use in food production systems. Aquat. Sci. 2002, 64, 363–375. [Google Scholar] [CrossRef]
- Ma, J.; Hoekstra, A.Y.; Wang, H.; Chapagain, A.K.; Wang, D. Virtual versus real water transfers within China. Philos. Trans. R. Soc. B-Biol. Sci. 2006, 361, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Widstrand, C. Population and Water-Resources—A Delicate Balance. Popul. Bull. 1992, 47, 2–36. [Google Scholar]
- Sun, L.Y.; Miao, C.L.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, H.M. The development of circular economy in China. Aquat. Ecosyst. Health Manag. 2006, 9, 99–103. [Google Scholar] [CrossRef]
- Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Lu, H.W.; Yan, P.D.; Yang, Y.Y.; Li, J.; Xia, J. Analysis of water-carbon-ecological footprints and resource?environment pressure in the Triangle of Central China. Ecol. Indic. 2021, 125, 107448. [Google Scholar] [CrossRef]
- Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R. The arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environ. Manag. 2008, 42, 523–541. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Garriga, R.G.; Foguet, A.P. Improved Method to Calculate a Water Poverty Index at Local Scale. J. Environ. Eng. 2010, 136, 1287–1298. [Google Scholar] [CrossRef]
- Zou, Z.-H.; Yun, Y.; Sun, J.-N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, S.; Fernandez-Haddad, Z.; Iglesias, A. Crop yields response to water pressures in the Ebro basin in Spain: Risk and water policy implications. Hydrol. Earth Syst. Sci. 2011, 15, 505–518. [Google Scholar] [CrossRef]
- Fan, Y.B.; Massey, R.; Park, S.C. Multi-Crop Production Decisions and Economic Irrigation Water Use Efficiency: The Effects of Water Costs, Pressure Irrigation Adoption, and Climatic Determinants. Water 2018, 10, 1637. [Google Scholar] [CrossRef]
- Yang, G.Y.; Li, S.Y.; Wang, H.; Wang, L. Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain. Agric. Water Manag. 2022, 259, 107272. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.H.; Shi, Q. Farmers’ Income and Production Responses to Rural Taxation Reform in Three Regions in China. J. Agric. Econ. 2012, 63, 291–309. [Google Scholar] [CrossRef]
- Stads, G.J.; Beintema, N. Agricultural R&D Expenditure in Africa: An Analysis of Growth and Volatility. Eur. J. Dev. Res. 2015, 27, 391–406. [Google Scholar] [CrossRef]
- Bahal, G. Estimating the Impact of Welfare Programs on Agricultural Output: Evidence from India. Am. J. Agric. Econ. 2020, 102, 982–998. [Google Scholar] [CrossRef]
- Ramaswami, B.; Balakrishnan, P. Food prices and the efficiency of public intervention: The case of the public distribution system in India. Food Policy 2002, 27, 419–436. [Google Scholar] [CrossRef]
- Naglova, Z.; Simpachova Pechrova, M. Subsidies and technical efficiency of Czech food processing industry. Agric. Econ. -Zemed. Ekon. 2019, 65, 151–159. [Google Scholar] [CrossRef]
- Leblanc, M.; Hrubovcak, J.; Durst, R. Changing fiscal federalism in the United States, effects on agriculture and food consumption. Appl. Econ. 1999, 31, 1373–1382. [Google Scholar] [CrossRef]
- Yu, F.W. Impact of international food trade on sustainable utilization of regional water resources. China Rural Surv. 2010, 245, 9. [Google Scholar]
- Tilmant, A.; Marques, G.; Mohamed, Y. A dynamic water accounting framework based on marginal resource opportunity cost. Hydrol. Earth Syst. Sci. 2015, 19, 1457–1467. [Google Scholar] [CrossRef]
- Peng, T.; Deng, H.; Lin, Y.; Jin, Z. Assessment on water resources carrying capacity in karst areas by using an innovative DPESBRM concept model and cloud model. Sci. Total Environ. 2021, 767, 144353. [Google Scholar] [CrossRef]
- Li, Z.; Ye, W.; Jiang, H.; Song, H.; Zheng, C. Impact of the eco-efficiency of food production on the water–land–food system coordination in China: A discussion of the moderation effect of environmental regulation. Sci. Total Environ. 2023, 857, 159641. [Google Scholar] [CrossRef]
- Li, Z.Q.; Ye, W.J.; Zheng, C.W. Impact of Food Imports on Water Pressure in Food Production in China: An Analysis from the Perspective of Virtual Water Trade. Agriculture 2025, 15, 549. [Google Scholar] [CrossRef]
- Snyder, R.D.; Ord, J.K.; Koehler, A.B. Prediction intervals for ARIMA models. J. Bus. Econ. Stat. 2001, 19, 217–225. [Google Scholar] [CrossRef]
- Huang, J.K.; Wang, X.B.; Rozelle, S. The subsidization of farming households in China’s agriculture. Food Policy 2013, 41, 124–132. [Google Scholar] [CrossRef]
- Zhou, J. An empirical analysis of the incentive effect of agricultural support and protection subsidies on the input behavior of large rice farmers. Econ. Geogr. 2020, 40, 8–21. [Google Scholar] [CrossRef]
- Zhao, L.S.; Sun, C.Z.; Liu, F.C. Interprovincial two-stage water resource utilization efficiency under environmental constraint and spatial spillover effects in China. J. Clean. Prod. 2017, 164, 715–725. [Google Scholar] [CrossRef]
- Ma, S.Z.; Chen, Y.; Wang, X.X. Dynamic impact of agricultural FDI on Food security in China: From the perspective of seed industry R&D capacity. J. Manag. World 2013, 235, 9–24. [Google Scholar] [CrossRef]
- Ye, W.J.; Li, Z.Q. Will the Grain Imports Competition Effect Reverse Land Green Efficiency of Grain Production? Analysis Based on Virtual Land Trade Perspective. Agriculture 2023, 13, 2220. [Google Scholar] [CrossRef]
- Moran, P.A. A test for the serial independence of residuals. Biometrika 1950, 37, 178–181. [Google Scholar] [CrossRef]
- Dubin, R. Spatial lags and spatial errors revisited: Some Monte Carlo evidence. In Spatial and Spatiotemporal Econometrics; LeSage, J.P., Pace, R.K., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2004; Volume 18, pp. 75–98. [Google Scholar]
- Meng, C.; Wang, X.L.; Li, Y. An Optimization Model for Water Management Based on Water Resources and Environmental Carrying Capacities: A Case Study of the Yinma River Basin, Northeast China. Water 2018, 10, 565. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.G.; Liu, Q.Y.; Tillotson, M.R.; Guan, D.B.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 112, 1031–1035. [Google Scholar] [CrossRef]
- Wu, L.; Su, X.L.; Ma, X.Y.; Kang, Y.; Jiang, Y.A. Integrated modeling framework for evaluating and predicting the water resources carrying capacity in a continental river basin of Northwest China. J. Clean. Prod. 2018, 204, 366–379. [Google Scholar] [CrossRef]
- Zhang, D.H.; Wang, H.Q.; Lou, S. Research on grain production efficiency in China’s main grain-producing areas from the perspective of grain subsidy. Environ. Technol. Innov. 2021, 22, 136–147. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Lei, K.; Meng, W.; Khu, S.T.; Zhao, J.; Wang, M.N.; Yang, J.F. Space-time approach to water environment carrying capacity calculation. J. Clean. Prod. 2017, 149, 302–312. [Google Scholar] [CrossRef]
- Cowan, S. Competition in the water industry. Oxf. Rev. Econ. Policy 1997, 13, 83–92. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, Y. Agricultural infrastructure, food production costs and international competitiveness: An empirical test based on total factor productivity. Agric. Technol. Econ. 2017, 75, 11. [Google Scholar] [CrossRef]
- Erjavec, E.; Lovec, M. Research of European Union’s Common Agricultural Policy: Disciplinary boundaries and beyond. Eur. Rev. Agric. Econ. 2017, 44, 732–754. [Google Scholar] [CrossRef]
- Alderman, H.; Sahn, D.E.; Arulpragasam, J. Food Subsidies and Exchange-RATE Distortions in Mozambique. Food Policy 1991, 16, 395–404. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wu, Z.G.; Zhu, T.H.; Yang, L.; Ma, G.Y.; Chien, H.P. Agricultural Policy, Climate Factors and Grain Output: Evidence From Household Survey Data in Rural China. J. Integr. Agric. 2013, 12, 169–183. [Google Scholar] [CrossRef]
- Sun, S.K.; Yin, Y.L.; Wu, P.T.; Wang, Y.B.; Luan, X.B.; Li, C. Geographical Evolution of Agricultural Production in China and Its Effects on Water Stress, Economy, and the Environment: The Virtual Water Perspective. Water Resour. Res. 2019, 55, 4014–4029. [Google Scholar] [CrossRef]
- Ye, W.J.; Li, Z.Q.; Xu, Y.Y. The relationship between rural finance development and food ecological total factor productivity: Moderating effects of food science and technology progress. Ecol. Indic. 2023, 153, 110398. [Google Scholar] [CrossRef]
- Yi, F.J.; Sun, D.Q.; Zhou, Y.H. Grain subsidy, liquidity constraints and food security-Impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Widanage, R.; Chan, C. Public Preferences for Water Allocation between Local Food Production and Protecting Watersheds in Hawai’i. Water Econ. Policy 2025, 153, 2550006. [Google Scholar] [CrossRef]
- Huang, D.H.; Shen, Z.H.; Sun, C.S.; Li, G.J. Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input-Output Analysis of the Local Water-Energy-Food Nexus. Water Resour. Manag. 2021, 35, 1673–1688. [Google Scholar] [CrossRef]
- Ke, C.Y.; Huang, S.Z. The effect of environmental regulation and green subsidies on agricultural low-carbon production behavior: A survey of new agricultural management entities in Guangdong Province. Environ. Res. 2024, 242, 117768. [Google Scholar] [CrossRef]
- Just, D.R.; Kropp, J.D. Production Incentives from Static Decoupling: Land Use Exclusion Restrictions. Am. J. Agric. Econ. 2013, 95, 1049–1067. [Google Scholar] [CrossRef]
- Dorward, A. Agricultural labour productivity, food prices and sustainable development impacts and indicators. Food Policy 2013, 39, 40–50. [Google Scholar] [CrossRef]
- Zhang, J.; Mishra, A.K.; Zheng, L.Y. China’s new agricultural subsidy and land rental market development: The dual perspective of efficiency and equity. China Econ. Rev. 2025, 92, 102420. [Google Scholar] [CrossRef]
- Sassine, A.J.; Rabbitt, M.P.; Coleman-Jensen, A.; Moshfegh, A.J.; Sahyoun, N.R. A Method for Assessing the Prevalence of Food Insecurity in Older Adults Based on Resource Constraints and Food-Related Physical Functioning Limitations. Curr. Dev. Nutr. 2024, 8, 104494. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.P.; Shan, L.; Zhang, H.P.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Sun, C.Z.; Zhao, L.S.; Zou, W.; Zheng, D.F. Water resource utilization efficiency and spatial spillover effects in China. J. Geogr. Sci. 2014, 24, 771–788. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, C.; Zheng, D. Water resource utilization efficiency and its spatial spillover effects measure in China. Acta Geogr. Sin. 2014, 69, 121–133. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Zhang, F.F.; Wu, G.Y.; Mai, Q. Spatial spillover effects of grain production efficiency in China: Measurement and scope. J. Clean. Prod. 2021, 278, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, Y.; Su, X.L.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Sharma, P. Implications of Input Subsidies for Agricultural Productivity and Rural Poverty in India. Master’s Thesis, Indian Institute of Technology Bombay, Mumbai, India, 2009. [Google Scholar]
- Liu, L.; Tan, Y.F.; Deng, Y.S. The impact of green subsidies on farmers’ low-carbon production transition. Int. J. Clim. Change Strateg. Manag. 2025. [Google Scholar] [CrossRef]
Target Layer | Rule Layer | Index Layer | Calculation | Category |
---|---|---|---|---|
Water resource capacity | Water subsystem (B1) | Runoff modulus (C1) | Total water resources/regional area | Negative |
Proportion of surface water supply (C2) | Surface water resources/water supply | Negative | ||
Water supply modulus (C3) | Water supply/total area | Negative | ||
Total domestic water (C4) | Statistical yearbook | Negative | ||
Water resource utilization per capita (C5) | Water consumption/total population | Negative | ||
Per capita water resources (C6) | Total water/total population | Positive | ||
Utilization rate of water development (C7) | Water supply/total water | Negative | ||
Average annual precipitation (C8) | Statistical yearbook | Positive | ||
Economic subsystem (B2) | GDP (C9) | Statistical yearbook | Negative | |
Per capita GDP (C10) | Statistical yearbook | Negative | ||
Proportion of output value of secondary and tertiary industries (C11) | (Secondary industry output value + tertiary industry output value)/total output value | Negative | ||
Proportion of output value of primary industry (C12) | (Primary industry output value)/total output value | Positive | ||
Freshwater production (C13) | Statistical yearbook | Negative | ||
Social subsystem (B3) | Urbanization rate (C14) | Statistical yearbook | Negative | |
Urban water population (C15) | Statistical yearbook | Negative | ||
Population density (C16) | Total population/area | Negative | ||
Natural population growth rate (C17) | Statistical yearbook | Negative | ||
Water consumption per capita (C18) | Total domestic water consumption/total population | Negative | ||
Ecological subsystem (B4) | Forest coverage (C19) | Statistical yearbook | Positive | |
Water consumption rate of ecological environment (C20) | Total ecological water use/total water resources | Negative | ||
Agricultural fertilizer application amount (C21) | Statistical yearbook | Negative | ||
Afforestation area (C22) | Statistical yearbook | Positive | ||
Sewage discharge (C23) | Statistical yearbook | Negative |
Variable | Index | Calculation Method | Unit |
---|---|---|---|
Grain sown area | Grsa | Statistical yearbook | ×106 ha |
Proportion of wetlands | Wetl | Wetland area/provincial land area × 100% | % |
Grain net profit | Mpmg | [(Early indica rice net profit + medium indica rice net profit + late indica rice net profit)/3 + Wheat net profit + Corn net profit)]/3 | RMB/ha |
Nature reserves proportion | Rese | Nature reserve area/provincial territory area × 100% | % |
Irrigation facilities | Wafa | Effective irrigated area/sown area of crops × 100% | % |
Soil erosion control level | Waso | Soil erosion control area/provincial land area × 100% | % |
Variables | WPGP | ||
---|---|---|---|
Model 1 | Model 2 (IV) | Model 3 | |
Fiscal expenditure for agriculture (Feag) | 0.031 *** (5.838) | 0.026 *** (3.664) | |
Lag_Feag | 0.029 *** (4.928) | ||
Grain sown area (Grsa) | 0.138 *** (7.940) | 0.167 *** (7.264) | 0.128 *** (6.958) |
The proportion of wetlands (Wetl) | −0.304 (−0.991) | −0.073 (−0.218) | −0.303 (−0.998) |
Grain net profit (Mpmg) | 0.439 (0.979) | −0.199 (−0.314) | 0.170 (0.372) |
The proportion of nature reserves (Rese) | 0.003 *** (2.692) | 0.003 ** (2.347) | 0.003 ** (2.474) |
Irrigation facilities (Wafa) | 0.055 (0.356) | 0.057 (0.347) | 0.059 (0.380) |
Soil erosion control level (Waso) | −0.312 (−1.436) | −0.286 (−1.222) | −0.386 * (−1.786) |
F statistics in phase one (F-statistic) | 17.42 | ||
Wald chi2 | 41.83 *** | ||
Constant | 0.786 *** (5.685) | 0.755 *** (6.651) | 0.898 *** (6.330) |
Observations | 496 | 496 | 465 |
Variables | WPGP in Northern China | WPGP in Southern China | ||||
---|---|---|---|---|---|---|
Model 4 | Model 5 (IV) | Model 6 | Model 7 | Model 8 (IV) | Model 9 | |
Fiscal expenditure for agriculture (Feag) | 0.040 *** (3.716) | 0.036 ** (2.572) | 0.030 *** (5.907) | 0.015** (2.054) | ||
Lag_Feag | 0.033 *** (3.003) | 0.028 *** (4.970) | ||||
Grain sown area (Grsa) | 0.116 *** (4.659) | 0.151 *** (4.060) | 0.113 *** (4.314) | 0.132 *** (4.951) | 0.272 *** (6.724) | 0.120 *** (5.214) |
Proportion of wetlands (Wetl) | 0.013 (0.014) | 0.048 (0.048) | −0.161 (−0.188) | −0.591 ** (−2.423) | −0.102 (−0.342) | −0.685 *** (−2.842) |
Grain net profit (Mpmg) | 0.149 (0.146) | −1.274 (−0.833) | −0.633 (−0.597) | 0.862 *** (3.106) | −0.022 (−0.036) | 0.777 *** (2.980) |
Nature reserves proportion (Rese) | 0.003 * (1.713) | 0.004 * (1.714) | 0.003 * (1.704) | 0.004 *** (3.133) | 0.005 *** (3.355) | 0.004 ** (2.540) |
Irrigation facilities (Wafa) | −0.160 (−0.658) | 0.006 (0.023) | −0.125 (−0.512) | 0.479 *** (2.581) | 0.639 *** (2.878) | 0.569 *** (3.062) |
Soil erosion control level (Waso) | −0.519 (−1.201) | −0.853 * (−1.795) | −0.873 ** (−2.037) | −0.158 (−0.696) | 0.323 (1.212) | −0.171 (−0.745) |
F statistics in phase one (F-statistic) | 14.64 | 15.47 | ||||
Wald chi2 | 15,554.38 | 17,494.08 | ||||
Prob > chi2 | 0.000 | 0.000 | ||||
Constants | 1.362 *** (6.071) | 1.408 *** (6.401) | 1.590 *** (6.933) | 0.250 (1.533) | −0.249 (−1.372) | 0.304 ** (1.995) |
Observations | 240 | 240 | 225 | 256 | 256 | 240 |
Variables | WPGP in Major Grain-Producing Areas | WPGP in Non-Major Grain-Producing Areas | ||||
---|---|---|---|---|---|---|
Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | |
Fiscal expenditure for agriculture (Feag) | 0.035 *** (4.303) | 0.049 *** (4.909) | 0.029 *** (3.463) | 0.014 (1.110) | ||
Lag_Feag | 0.033 *** (3.718) | 0.026 *** (2.835) | ||||
Grain sown area (Grsa) | 0.119 *** (4.586) | 0.111 *** (3.296) | 0.113 *** (4.012) | 0.262 *** (4.556) | 0.332 *** (5.001) | 0.241 *** (4.190) |
Proportion of wetlands (Wetl) | −0.401 (−0.461) | −1.159 (−1.213) | −0.775 (−0.867) | −0.175 (−0.556) | 0.085 (0.243) | −0.145 (−0.480) |
Grain net profit (Mpmg) | 1.565 (1.098) | −0.294 (−0.158) | 0.584 (0.356) | 0.216 (0.437) | −0.383 (−0.581) | 0.035 (0.072) |
Nature reserves proportion (Rese) | 0.005 ** (2.310) | 0.008 *** (3.233) | 0.005 ** (2.065) | 0.001 (1.094) | 0.000 (0.184) | 0.001 (1.017) |
Irrigation facilities (Wafa) | 0.426 (0.867) | 0.652 (1.165) | 0.563 (1.095) | 0.089 (0.553) | 0.180 (1.035) | 0.081 (0.518) |
Soil erosion control level (Waso) | 0.060 (0.123) | −0.416 (−0.769) | −0.008 (−0.017) | −0.554 ** (−2.258) | −0.396 (−1.455) | −0.626 *** (−2.623) |
F-statistic | 12.72 | 10.53 | ||||
Wald chi2 | 13,739.33 | 16,512.81 | ||||
Prob > chi2 | 0.000 | 0.000 | ||||
Constants | 0.412 * (1.819) | 0.611 *** (2.856) | 0.566 ** (2.295) | 0.748 *** (3.624) | 0.673 *** (3.986) | 0.850 *** (4.137) |
Observations | 208 | 208 | 195 | 288 | 288 | 270 |
Variables | WPGP | ||
---|---|---|---|
Model 16 | Model 17 | Model 18 | |
Fiscal expenditure for agriculture (Feag) | 0.031 *** (5.838) | 0.027 *** (4.440) | 0.031 *** (5.009) |
Grain production technology (Gpte) | 0.004 * (1.734) | 0.021 *** (3.109) | |
Interactive items (Feag × Gpte) | −0.002 *** (−2.681) | ||
Grain sown area (Grsa) | 0.138 *** (7.940) | 0.139 *** (7.996) | 0.138 *** (8.006) |
Proportion of wetlands (Wetl) | −0.304 (−0.991) | −0.354 (−1.152) | −0.361 (−1.181) |
Nature reserves proportion (Rese) | 0.439 (0.979) | 0.504 (1.124) | 0.480 (1.072) |
Grain net profit (Mpmg) | 0.003 *** (2.692) | 0.003 *** (2.778) | 0.003 *** (2.953) |
Irrigation facilities (Wafa) | 0.055 (0.356) | 0.021 (0.134) | −0.017 (−0.114) |
Soil erosion control level (Waso) | −0.312 (−1.436) | −0.256 (−1.170) | −0.367 * (−1.661) |
Constants (Cons) | 0.786 *** (5.685) | 0.786 *** (5.690) | 0.807 *** (5.833) |
Observations | 496 | 496 | 496 |
Year | Value | Year | Value | Year | Value | Year | Value |
---|---|---|---|---|---|---|---|
2003 | 0.388 *** (4.584) | 2007 | 0.371 *** (4.404) | 2011 | 0.373 *** (4.416) | 2015 | 0.387 *** (4.578) |
2004 | 0.358 *** (4.263) | 2008 | 0.375 *** (4.443) | 2012 | 0.348 *** (4.151) | 2016 | 0.332 *** (3.998) |
2005 | 0.322 *** (3.862) | 2009 | 0.355 *** (4.222) | 2013 | 0.273 *** (3.33) | 2017 | 0.311 *** (3.749) |
2006 | 0.375 *** (4.439) | 2010 | 0.316 *** (3.801) | 2014 | 0.39 *** (4.500) | 2018 | 0.316 *** (3.806) |
Variables and Tests | Dependent Variable: WPGP | ||
---|---|---|---|
Model 19 | |||
ρ | 0.395 *** (8.604) | ||
Lag_Wpgp | 0.861 *** (38.857) | ||
Fiscal expenditure for agriculture (Feag) | 0.039 *** (5.468) | ω_Feag | 0.118 *** (6.213) |
Grain sown area (Grsa) | 0.026 *** (5.729) | ω_Grsa | −0.023 * (−1.810) |
Proportion of wetlands (Wetl) | −0.219 ** (−2.371) | ω_Wetl | 3.086 *** (14.518) |
Grain net profit (Mpmg) | 1.644 *** (19.494) | ω_Mpmg | 7.965 *** (25.737) |
Nature reserves proportion (Rese) | −0.017 *** (−3.730) | ω_Rese | 0.185 *** (13.585) |
Irrigation facilities (Wafa) | 0.381 *** (5.823) | ω_Wafa | 1.433 *** (8.136) |
Soil erosion control level (Waso) | 1.401 *** (15.181) | ω_Waso | 6.547 *** (24.696) |
AIC | −329.311 | ||
BIC | −258.896 | ||
Observations | 465 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Fiscal expenditure for agriculture (Feag) | 0.049 *** (6.153) | 0.207 *** (5.136) | 0.256 *** (5.625) |
Grain sown area (Grsa) | 0.025 *** (5.172) | −0.019 (−0.953) | 0.006 (0.246) |
Proportion of wetlands (Wetl) | 0.021 (0.225) | 4.756 *** (8.590) | 4.778 *** (8.040) |
Grain net profit (Mpmg) | 2.299 *** (17.825) | 13.608 *** (12.176) | 15.906 *** (12.970) |
Nature reserves proportion (Rese) | −0.003 (-0.558) | 0.283 *** (8.424) | 0.281 *** (7.731) |
Irrigation facilities (Wafa) | 0.503 *** (7.840) | 2.481 *** (8.125) | 2.984 *** (9.293) |
Soil erosion control level (Waso) | 1.946 *** (15.797) | 11.253 *** (10.544) | 13.199 *** (11.412) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ye, W.; Zheng, C. The Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production: Provincial-Level Analysis in China. Sustainability 2025, 17, 5268. https://doi.org/10.3390/su17125268
Li Z, Ye W, Zheng C. The Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production: Provincial-Level Analysis in China. Sustainability. 2025; 17(12):5268. https://doi.org/10.3390/su17125268
Chicago/Turabian StyleLi, Ziqiang, Weijiao Ye, and Ciwen Zheng. 2025. "The Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production: Provincial-Level Analysis in China" Sustainability 17, no. 12: 5268. https://doi.org/10.3390/su17125268
APA StyleLi, Z., Ye, W., & Zheng, C. (2025). The Impact of Agricultural Fiscal Expenditure on Water Pressure in Grain Production: Provincial-Level Analysis in China. Sustainability, 17(12), 5268. https://doi.org/10.3390/su17125268