Spatio-Temporal Evolution Pattern and Driving Forces of Carbon Lock-In in the Yangtze River Delta Region
Abstract
1. Introduction
2. Research Methodology
2.1. Constructing the Evaluation System of Carbon Lock-In
2.2. Data Sources
2.3. Research Methods
2.3.1. Principal Component Analysis (PCA)
2.3.2. Kernel Density Estimation (KDE)
2.3.3. Spatial Autocorrelation Analysis
2.3.4. Barrier Degree Analysis
2.3.5. Geodetector Analysis
3. Results
3.1. Temporal Evolution Trend of Carbon Lock-In
3.2. Spatial Pattern of Carbon Lock-In
3.3. Spatial Association Analysis of Carbon Lock-In
3.4. Barrier Diagnosis of Carbon Lock-In
3.5. The Geodetector Analysis of Driving Factors of Carbon Lock-In
4. Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.Y.; Rao, H.C. Does low carbon city pilot promote urban carbon unlocking?—A heterogeneity analysis based on machine learning. Cities 2024, 147, 104815. [Google Scholar] [CrossRef]
- Mattauch, L.; Creutaig, F.; Edenhofer, O. Avoiding carbon lock-in: Policy options for advancing structural change. Econ. Model. 2015, 50, 49–63. [Google Scholar] [CrossRef]
- Unruh, G.C. Understanding carbon lock-in. Energy Policy 2000, 28, 817–830. [Google Scholar] [CrossRef]
- Unruh, G.C.; Carrillo-Hermosilla, J. Globalizing carbon lock-in. Energy Policy 2006, 34, 1185–1197. [Google Scholar] [CrossRef]
- Seto, K.C.; Davis, S.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.C.; Ürge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar] [CrossRef]
- Chen, Y.F.; Liu, K.L.; Ni, L.F.; Chen, M.X. Impact of carbon lock-in on green economic efficiency: Evidence from Chinese provincial data. Sci. Total Environ. 2023, 892, 1654581. [Google Scholar] [CrossRef]
- Erickson, P.; Kartha, S.; Lazarus, M.; Tempest, K. Assessing carbon lock-in. Environ. Res. Lett. 2015, 10, 084023. [Google Scholar] [CrossRef]
- Buschmann, P.; Oels, A. The overlooked role of discourse in breaking carbon lock-in: The case of the German energy transition. Wiley Interdiscip. Rev. Clim. Change 2019, 10, 574. [Google Scholar] [CrossRef]
- Yang, X.S.; Wei, W. Measurement of industrial carbon locking and unlocking pathways in the YRD. Ecol. Econ. 2024, 40, 22–28. [Google Scholar]
- Xu, Y.; Dong, B.; Chen, Y.; Qin, H. Effect of industrial transfer on carbon lock-in: A spatial econometric analysis of Chinese cities. J. Environ. Plan. Manag. 2022, 65, 1024–1055. [Google Scholar] [CrossRef]
- Axsen, J.; Kurani, K.S. Social influence, consumer behavior, and low-carbon energy transitions. Annu. Rev. Environ. Resour. 2012, 37, 311–340. [Google Scholar] [CrossRef]
- Tong, D.; Zhang, Q.; Zheng, Y.X.; Caldeira, K.; Shearer, C.; Hong, C.P.; Qin, Y.; Davis, S.J. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 2019, 572, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Bertram, C.; Johnson, N.; Luderer, G.; Riahi, K.; Isaac, M.; Eom, J. Carbon lock-in through capital stock inertia associated with weak near-term climate policies. Technol. Forecast. Soc. Change 2015, 90, 62–72. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Qin, Y.; Zhang, J. Analysis of China’s Manufacturing Industry Carbon Lock-In and Its Influencing Factors. Sustainability 2020, 12, 1502. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.S.; Gallagher, K.P.; Mauzerall, D.L. Financing carbon lock-in in developing countries: Bilateral financing for power generation technologies from China, Japan, and the United States. Appl. Energy 2021, 300, 117318. [Google Scholar] [CrossRef]
- Janipour, Z.; Nooij, R.; Scholten, P.; Huijbregts, M.A.J.; Coninck, H. What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production. Energy Res. Soc. Sci. 2020, 60, 101320. [Google Scholar] [CrossRef]
- Niu, H.L.; Liu, Z.Y. Construction of measurement index system and empirical analysis of carbon lock-in effect in China. Ecol. Econ. 2021, 37, 22–27. [Google Scholar]
- Zheng, H.; Xu, Y.Z. Can new energy demonstration cities break through the multiple carbon lock-in? Evidence based on double machine learning. Energy Policy 2025, 199, 114522. [Google Scholar]
- Phadkantha, R.; Tansuchat, R. Dynamic impacts of energy efficiency, economic growth, and renewable energy consumption on carbon emissions: Evidence from Markov Switching model. Energy Rep. 2023, 9, 332–336. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, J.; Huang, F.B. The impact of industrial structure adjustment on the spatial industrial linkage of carbon emission: From the perspective of climate change mitigation. J. Environ. Manag. 2023, 345, 118620. [Google Scholar] [CrossRef]
- Ma, X.J.; Dong, B.Y.; Yu, Y.B. Measurement of carbon emissions from energy consumption and influencing factors in three northeastern provinces. China Environ. Sci. 2018, 38, 3170–3179. [Google Scholar]
- Liang, Z.; Liu, J. Opportunity window and response strategy of industrial carbon unlocking. J. Soc. Sci. 2018, 1, 45–54. [Google Scholar]
- Zhao, C.Y.; Dong, K.Y.; Lee, C.C. Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization? Energy 2024, 293, 130662. [Google Scholar] [CrossRef]
- Veugelers, R.; Tagliapietra, S.; Trasi, C. Green Industrial Policy in Europe: Past, Present, and Prospects. J. Ind. Compet. Trade 2024, 24, 4. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.Y.; Dong, K.Y.; Wang, K.; Sun, L. How does green finance achieve urban carbon unlocking? Evidence from China. Urban Clim. 2023, 52, 101742. [Google Scholar] [CrossRef]
- Dong, K.Y.; Jia, R.W.; Zhao, C.Y.; Wang, K. Can smart transportation inhibit carbon lock-in? The case of China. Transp. Policy 2023, 142, 59–69. [Google Scholar] [CrossRef]
- Trencher, G.; Rinscheid, A.; Duygan, M.; Truong, N.; Asuka, J. Revisiting carbon lock-in in energy systems: Explaining the perpetuation of coal power in Japan. Energy Res. Soc. Sci. 2020, 69, 101770. [Google Scholar] [CrossRef]
- Urban, F.; Nurdiawati, A.; Harahap, F.; Morozovska, K. Decarbonizing maritime shipping and aviation: Disruption, regime resistance and breaking through carbon lock-in and path dependency in hard-to-abate transport sectors. Environ. Innov. Soc. Transit. 2024, 52, 100854. [Google Scholar] [CrossRef]
- Herman, K.S.; Hall, J.K.; Sovacool, B.K.; Iskandarova, M. The industrial decarbonization paradigm: Carbon lock-in or path renewal in the United Kingdom? Ecol. Econ. 2025, 235, 108628. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I. The failure to decarbonize the global energy education system: Carbon lock-in and stranded skill sets. Energy Res. Soc. Sci. 2024, 110, 103446. [Google Scholar] [CrossRef]
- Yang, L.; Wang, M.; Li, L.P.; Yang, R.P. Carbon emission prediction of four provinces and cities in Yangtze River Delta region based on STIRPAT model. J. Environ. Eng. Technol. 2025, 15, 81–89. [Google Scholar]
- Fang, L.Y.; Cheng, X.L.; Su, X.Q.; Bao, J. Spatial spillover effect of integration process on tourism economy: A case study of Yangtze River Delta urban Agglomeration. Sci. Geogr. Sin. 2021, 41, 1546–1555. [Google Scholar]
- Luo, H.Z.; Wang, C.L.; Li, C.B.; Meng, X.Z.; Yang, X.H.; Tan, Q. Multi-scale carbon emission characterization and prediction based on land use and interpretable machine learning model: A case study of the Yangtze River Delta Region, China. Appl. Energy 2024, 360, 122819. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Wang, K.; Dong, K.Y. How does innovative city policy break carbon lock-in? A spatial difference-in-differences analysis for China. Cities 2023, 136, 104249. [Google Scholar] [CrossRef]
- Zhao, C.Y. Can industrial structure optimization and industrial structure transition both lead to carbon lock-in mitigation? The case of China. Environ. Sci. Pollut. Res. 2024, 31, 23247–23261. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.B.; Qi, S.Z. Can carbon emission trading policy break China’s urban carbon lock-in? J. Environ. Manag. 2024, 353, 120129. [Google Scholar]
- Liu, Y.H.; Zhu, Y.W. The cause analysis of “carbon lock” dilemma and the enlightenment of foreign countries to solve “carbon lock” dilemma. Mod. Econ. Inf. 2016, 9, 8–9. [Google Scholar]
- Witt, U. “Lock-in” vs.“ critical masses”: Industrial change under network externalities. Int. J. Ind. Organ. 1997, 15, 753–773. [Google Scholar] [CrossRef]
- Li, H.W. Dynamic mechanism of lock-in of carbon-based technology systems. Sci. Technol. Manag. Res. 2016, 36, 249–255. [Google Scholar]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Chen, S.Y.; Chen, D.K. Haze Pollution, Government Governance and High-Quality Economic Development. Econ. Res. J. 2018, 53, 20–34. [Google Scholar]
- Li, H.W.; Xie, N.; Zhao, D. Actor networks, rule systems and social embeddedness: The institutionalization of “carbon lock-in”. Ecol. Econ. 2018, 34, 40–46. [Google Scholar]
- Girod, B.; Vuuren, D.P.; Vries, B. Impact of travel behavior on global CO2 emissions. Transp. Res. Part A Policy Pract. 2013, 50, 183–197. [Google Scholar] [CrossRef]
- Dong, Z.Q.; Wang, H. Urban wealth and green technology choice. Econ. Res. J. 2021, 56, 143–159. [Google Scholar]
- Kou, Z.L.; Liu, X.Y. FIND Report on City and Industrial Innovation in China; Fudan Institute of Industrial Development, School of Economics, Fudan University: Shanghai, China, 2017. [Google Scholar]
- Yang, H.M.; Jiang, L. Digital economy, spatial effects and total factor productivity. Stat. Res. 2021, 38, 3–15. [Google Scholar]
- Chao, X.J.; Hui, K. A measure of the quality of China’s economic growth. J. Quant. Technol. Econ. 2009, 26, 75–86. [Google Scholar]
- Liu, X.H. The necessity of data forward processing in factor analysis and its software implementation. J. Chongqing Inst. Technol. 2009, 23, 152–155. [Google Scholar]
- Xing, T.; Su, Y.H. Differences in the development of digital transformation and distribution dynamics of four major types of commercial banks in China. Econ. Probl. 2024, 5, 43–51. [Google Scholar]
- Fingleton, B.; Gallo, J.L. Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: Finite sample properties. Pap. Reg. Sci. 2008, 87, 319–340. [Google Scholar] [CrossRef]
- Chen, Y.G. Theoretical development and methodological improvement of spatial autocorrelation based on Moran’s statistics. Geogr. Res. 2009, 28, 1449–1463. [Google Scholar]
- Jin, C.; Lu, Y.Q. Evolution of economic spatial pattern of Jiangsu Province based on county units. Acta Geogr. Sin. 2009, 64, 713–724. [Google Scholar]
- Zhang, X.B.; Yang, C.F.; Song, J.P.; Li, W. Evolution of spatial pattern of economic disparities in inter-provincial marginal counties in China. Econ. Geogr. 2015, 35, 30–38. [Google Scholar]
- Cao, X.S.; Xu, J.B. Spatial Heterogeneity of County Economic Patterns and Influential Factors in China’s Interprovincial Border Areas. J. Geogr. 2018, 73, 1065–1075. [Google Scholar]
- Li, R.Z.; Huang, X.L.; Liu, Y.B. Spatio-temporal differentiation and influencing factors of urbanization in China from 2010 to 2020. Acta Geogr. Sin. 2020, 78, 777–791. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sinica 2017, 72, 116–134. [Google Scholar]
- Wang, J.; Li, Y.R. Spatial pattern and influencing factors of urbanization development in China at county level: A quantitative analysis based on 2000 and 2010 census data. Acta Geogr. Sin. 2016, 71, 621–636. [Google Scholar]
- Hu, M.J.; Chen, P.; Chen, G.; Li, Z.J. Spatio-temporal influencing effects and mechanisms of the digital economy on eco-urbanization in the Yangtze River Delta region. Environ. Technol. Innov. 2025, 37, 103979. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.N.; Wang, Y.B. Research on the path mechanism of urban low-carbon transformation empowered by digital technology innovation. Sci. Technol. Prog. Policy 2024, 41, 41–51. [Google Scholar]
- Zhou, H.Y.; Wang, R.Z.; Zhang, X.Y.; Chang, M.Y. The impact of digital technology adoption on corporate supply chain concentration: Evidence from patent analysis. Financ. Res. Lett. 2024, 64, 105413. [Google Scholar] [CrossRef]
- Gan, C.H.; Zheng, R.G.; Yu, D.F. The impact of industrial structure change on economic growth and volatility in China. Econ. Res. J. 2021, 46, 4–16. [Google Scholar]
- Li, S.L. Study on inducing mechanism and unlocking path of carbon lock-in in urbanization process. Res. Financ. Econ. Issues 2017, 3, 28–35. [Google Scholar]
- Zhang, Q.F.; Li, J.F.; Kong, Q.S.; Huang, H. Spatial effects of green innovation and carbon emission reduction in China: Mediating role of infrastructure and informatization. Sustain. Cities Soc. 2024, 106, 105426. [Google Scholar] [CrossRef]
- Tan, B.Y.; Chen, Y. Decarbonization pressure and business performance under the background of carbon neutrality—Evidence from industrial carbon lock-in. Energy Rep. 2025, 13, 5151–5159. [Google Scholar] [CrossRef]
- He, H.N.; Wang, H.M.; Wang, S.Y. High-speed rail network and regional carbon emissions: Carbon lock-in or unlocking? Transp. Policy 2025, 164, 144–159. [Google Scholar] [CrossRef]
Guideline Layer | Indicator Number | Indicator Layer | Unit | Nature |
---|---|---|---|---|
Industrial lock-in | (a1) | Carbon intensity of fixed assets (carbon emissions/investment in fixed assets of the whole society) | tonnes/ million | Positive |
(a2) | Value added to industry/value added to secondary industry | % | Positive | |
(a3) | Foreign trade structure (export volume/total import and export volume) | % | Positive | |
(a4) | Percentage of employment in tertiary industry | % | Negative | |
(a5) | ESG score | - | Negative | |
Technological lock-in | (b1) | Energy intensity (total combined energy consumption/GDP) | tonnes of standard coal/million | Positive |
(b2) | Carbon intensity (carbon emissions/GDP) | tonnes/million | Positive | |
(b3) | Number of green patents granted | piece | Negative | |
(b4) | Urban Innovation Index | - | Negative | |
Institutional lock-in | (c1) | General public budget expenditure on science and technology | million | Negative |
(c2) | General public budget expenditure on energy conservation and environmental protection | million | Negative | |
(c3) | Government public environmental concern | - | Negative | |
(c4) | Artificial forestation area | hectare | Negative | |
Social behavioral lock-in | (d1) | Population density | per square kilometer | Positive |
(d2) | Private car | vehicle | Positive | |
(d3) | Passenger turnover | ten thousand kilometers | Positive | |
(d4) | Public environmental concern | - | Negative | |
(d5) | Level of human capital | population with undergraduate degrees or above/total resident population of the city | Negative |
Year | I | Z | p-Value | Year | I | Z | p-Value |
---|---|---|---|---|---|---|---|
2000 | 0.304 | 4.433 | 0.000 | 2012 | 0.206 | 3.127 | 0.001 |
2001 | 0.295 | 4.815 | 0.000 | 2013 | 0.311 | 4.576 | 0.000 |
2002 | 0.316 | 4.832 | 0.000 | 2014 | 0.238 | 3.707 | 0.000 |
2003 | 0.371 | 5.497 | 0.000 | 2015 | 0.235 | 3.612 | 0.000 |
2004 | 0.253 | 3.800 | 0.000 | 2016 | 0.227 | 3.419 | 0.000 |
2005 | 0.306 | 4.586 | 0.000 | 2017 | 0.292 | 4.237 | 0.000 |
2006 | 0.289 | 4.261 | 0.000 | 2018 | 0.275 | 3.956 | 0.000 |
2007 | 0.266 | 4.082 | 0.000 | 2019 | 0.206 | 3.056 | 0.001 |
2008 | 0.253 | 3.883 | 0.000 | 2020 | 0.204 | 3.085 | 0.001 |
2009 | 0.286 | 4.385 | 0.000 | 2021 | 0.193 | 2.927 | 0.002 |
2010 | 0.252 | 3.875 | 0.000 | 2022 | 0.142 | 2.326 | 0.010 |
2011 | 0.198 | 3.066 | 0.001 |
Year | Industrial Lock-In | Technological Lock-In | Institutional Lock-In | Social Behavior Lock-In |
---|---|---|---|---|
2000 | 0.500 *** | 0.341 *** | 0.115 * | 0.108 * |
2001 | 0.450 *** | 0.219 ** | −0.092 | 0.129 * |
2002 | 0.418 *** | 0.237 *** | −0.012 | 0.125 * |
2003 | 0.417 *** | 0.164 ** | 0.061 | 0.129 * |
2004 | 0.352 *** | 0.132 * | 0.012 | 0.123 * |
2005 | 0.284 *** | 0.282 *** | 0.273 *** | 0.100 * |
2006 | 0.259 *** | 0.312 *** | 0.390 *** | 0.170 ** |
2007 | 0.176 ** | 0.305 *** | 0.453 *** | 0.144 * |
2008 | 0.157 ** | 0.296 *** | 0.385 *** | 0.119 * |
2009 | 0.128 * | 0.426 *** | 0.391 *** | 0.087 * |
2010 | 0.162 ** | 0.370 *** | 0.387 *** | 0.082 * |
2011 | 0.158 ** | 0.357 *** | 0.357 *** | 0.020 |
2012 | 0.216 ** | 0.334 *** | 0.317 *** | 0.005 |
2013 | 0.104 * | 0.323 *** | 0.179 ** | −0.049 |
2014 | 0.070 | 0.120 * | 0.071 * | −0.014 |
2015 | 0.064 | 0.125 * | 0.099 * | 0.022 |
2016 | 0.068 | 0.122 * | 0.082 * | 0.020 |
2017 | 0.118 * | 0.296 *** | 0.001 | 0.040 |
2018 | 0.082 * | 0.303 *** | −0.032 | 0.049 |
2019 | 0.063 | 0.284 *** | −0.93 | 0.066 |
2020 | 0.105 * | 0.191 ** | 0.029 | 0.089 * |
2021 | 0.054 | 0.272 *** | −0.045 | 0.072 |
2022 | 0.151 * | 0.406 *** | −0.067 | 0.210 ** |
Period (Year) | Top Barriers (Indicator Codes) | Average Barrier Degree (%) |
---|---|---|
2000–2007 | b2, a1, c2, b3, d4 | 26.59, 14.86, 9.28, 5.97, 4.98 |
2008–2015 | b2, a1, b1, c1, c2 | 31.42, 16.25, 6.84, 6.14, 5.11 |
2016–2022 | b2, a1, b1, c1, c2 | 33.29, 16.84, 8.27, 4.46, 3.97 |
Detection Factor | Representative Indicator | Unit |
---|---|---|
Level of economic development | Per capita GDP (x1) | yuan/CNY |
Digital technological innovation | Digital patent applications (x2) | piece |
Industrial structure upgrading | Output value of tertiary industry/output value of secondary industry (x3) | - |
Urbanization level | Urban population/total population (x4) | % |
Informatization level | Postal and telecommunication services per capita (x5) | CNY 10,000 |
Level of green finance | Entropy measurements (x6) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, Z.; Hu, M. Spatio-Temporal Evolution Pattern and Driving Forces of Carbon Lock-In in the Yangtze River Delta Region. Sustainability 2025, 17, 5229. https://doi.org/10.3390/su17125229
Chen P, Li Z, Hu M. Spatio-Temporal Evolution Pattern and Driving Forces of Carbon Lock-In in the Yangtze River Delta Region. Sustainability. 2025; 17(12):5229. https://doi.org/10.3390/su17125229
Chicago/Turabian StyleChen, Peng, Zaijun Li, and Meijuan Hu. 2025. "Spatio-Temporal Evolution Pattern and Driving Forces of Carbon Lock-In in the Yangtze River Delta Region" Sustainability 17, no. 12: 5229. https://doi.org/10.3390/su17125229
APA StyleChen, P., Li, Z., & Hu, M. (2025). Spatio-Temporal Evolution Pattern and Driving Forces of Carbon Lock-In in the Yangtze River Delta Region. Sustainability, 17(12), 5229. https://doi.org/10.3390/su17125229