Clarifying Grazing Management Methods: A Data-Driven Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Litterture Review: Identification of Studies Comparing Grazing Methods
2.2. Grid Analysis: Extraction of Experimental Datapoints
- Stocking season duration (days): A stocking season refers to the period of each year during which animals are present in the grazing management unit. This criterion is closely linked to climatic conditions, including seasonal grass growth, and soil bearing capacity.
- Number of paddocks: A paddock is a grazing area within the grazing management unit that is separated from other areas by fencing. When there are multiple paddocks, animals can be rotated within the system.
- Stocking period (days): The length of time that grazing livestock occupy a specific paddock without interruption.
- Rest period (days): Length of time a specific paddock is not stocked between stocking periods. If selected articles only contained two of the above three criteria, then we used the following formula to calculate the missing criterion: number of paddocks = (rest period/stocking period) + 1 [18].
- Stocking cycle duration (days): Time elapsed between stocking periods on a specified paddock. Stocking cycle duration is the sum of one stocking period plus one rest period.
- Number of stocking cycles per season: Calculated as stocking season duration divided by stocking cycle duration.
- Stocking ratio (%) (own criteria). This is the proportion of time that a paddock is grazed in one stocking cycle, calculated as stocking period divided by stocking cycle duration. For the purpose of simplicity, we name this variable ‘stocking ratio’. A high value of this indicator means less time for plants and soil to recover from grazing.
2.3. Statistical Analysis: Clustering of Experimental Datapoints
3. Results
3.1. Descriptive Statistics of Experimental Datapoints
3.2. Clustering of Experimental Datapoints in 6 Groups
4. Discussion
4.1. Definition of the Four Grazing Method Families
4.2. Robustness of Analysis and Factors Influencing Clustering
4.3. Perspective of the Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCA | Principal Component Analysis |
HCPC | Hierarchical Clustering on Principal Components |
References
- FAO. Land Use Statistics and Indicators 2000–2021. Global, Regional and Country Trends; FAOSTAT Analytical Briefs Series; FAO: Rome, Italy, 2023; p. 14. [Google Scholar]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and Future Food Security—A Global Perspective for Livestock Production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; De Jalón, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.H.N.; et al. Agroforestry Systems of High Nature and Cultural Value in Europe: Provision of Commercial Goods and Other Ecosystem Services. Agrofor. Syst. 2018, 92, 877–891. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Wedin, D.; Tracy, B. Grassland: Definition, Origins, Extent, and Future. In Grassland Quietness and Strength for a New American Agriculture; ASA, CSSA, and SSSA Books; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2009; pp. 57–74. ISBN 978-0-89118-194-1. [Google Scholar]
- Thomas, H. Terminology and Definitions in Studies of Grassland Plants. Grass Forage Sci. 1980, 35, 13–23. [Google Scholar] [CrossRef]
- Pärtel, M.; Bruun, H.H.; Sammul, M. Biodiversity in Temperate European Grasslands: Origin and Conservation. Grassl. Sci. Eur. 2005, 10, 14. [Google Scholar]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic Grasslands: A Synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Beneš, J. Origin and History of Grasslands in Central Europe—A Review. Grass Forage Sci. 2013, 68, 345–363. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Ansley, R.J.; Kreuter, U.P.; Conover, D.M.; Waggoner, J.A. Soil and Herbaceous Plant Responses to Summer Patch Burns under Continuous and Rotational Grazing. Agric. Ecosyst. Environ. 2010, 137, 113–123. [Google Scholar] [CrossRef]
- Poschlod, P.; Baumann, A.; Karlik, P. Origin and Development of Grasslands in Central Europe. In Grasslands in Europe: Of High Nature Value; KNNV Publishing: Zeist, The Netherlands, 2009; pp. 15–25. ISBN 978-90-04-27810-3. [Google Scholar]
- Hodgson, J. Nomenclature and Definitions in Grazing Studies. Grass Forage Sci. 1979, 34, 11–17. [Google Scholar] [CrossRef]
- Taboada, M.A.; Rubio, G.; Chaneton, E.J. Grazing Impacts on Soil Physical, Chemical, and Ecological Properties in Forage Production Systems. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2015; pp. 301–320. ISBN 978-0-89118-195-8. [Google Scholar]
- Overview: Pastoralism in the World. In Building Resilience of Human-Natural Systems of Pastoralism in the Developing World; Dong, S., Kassam, K.-A.S., Tourrand, J.F., Boone, R.B., Eds.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-30730-5. [Google Scholar]
- Clark, D.; Kanneganti, V.R. Grazing Management Systems for Dairy Cattle. In Grass for Dairy Cattle; CABI Pub: New York, NY, USA, 1998; pp. 311–334. ISBN 978-0-85199-288-4. [Google Scholar]
- Heady, H.F. Continuous vs. Specialized Grazing Systems: A Review and Application to the California Annual Type. J. Range Manag. 1961, 14, 182. [Google Scholar] [CrossRef]
- Leray, O.; Doligez, P.; Jost, J.; Pottier, E.; Delaby, L. Présentation des Différentes Techniques de Pâturage Selon les Espèces Herbivores Utilisatrices; Fourrages: Paris, France, 2017; Volume 229, pp. 11–16. [Google Scholar]
- Augustine, D.J.; Kearney, S.P.; Raynor, E.J.; Porensky, L.M.; Derner, J.D. Adaptive, Multi-Paddock, Rotational Grazing Management Alters Foraging Behavior and Spatial Grazing Distribution of Free-Ranging Cattle. Agric. Ecosyst. Environ. 2023, 352, 15. [Google Scholar] [CrossRef]
- Sherren, K.; Hodbod, J.; MathisonSlee, M.; Chappell, E.; King, M. Adaptive Multi-Paddock Grazing and Wellbeing: Uptake, Management Practices and Mindset among Canadian Beef Producers. Agroecol. Sustain. Food Syst. 2022, 46, 1304–1329. [Google Scholar] [CrossRef]
- Lacey, J.R.; Poollen, H.W.V. Grazing System Identification. J. Range Manag. 1979, 32, 38–39. [Google Scholar] [CrossRef]
- Popp, J.D.; McCaughey, W.P.; Cohen, R.D.H. Grazing System and Stocking Rate Effects on the Productivity, Botanical Composition and Soil Surface Characteristics of Alfalfa-Grass Pastures. Can. J. Anim. Sci. 1997, 77, 669–676. [Google Scholar] [CrossRef]
- Bertelsen, B.S.; Faulkner, D.B.; Buskirk, D.D.; Castree, J.W. Beef Cattle Performance and Forage Characteristics of Continuous, 6-Paddock, and 11-Paddock Grazing Systems. J. Anim. Sci. 1993, 71, 1381–1389. [Google Scholar] [CrossRef]
- Andrade, B.O.; Shropshire, A.; Johnson, J.R.; Redden, M.D.; Semerad, T.; Soper, J.M.; Beckman, B.; Milby, J.; Eskridge, K.M.; Volesky, J.D.; et al. Vegetation and Animal Performance Responses to Stocking Density Grazing Systems in Nebraska Sandhills Meadows. Rangel. Ecol. Manag. 2022, 82, 86–96. [Google Scholar] [CrossRef]
- Badgery, W.; Millar, G.; Broadfoot, K.; Martin, J.; Pottie, D.; Simmons, A.; Cranney, P. Better Management of Intensive Rotational Grazing Systems Maintains Pastures and Improves Animal Performance. Crop Pasture Sci. 2017, 68, 1131–1140. [Google Scholar] [CrossRef]
- Knight, J.C.; Kothmann, M.M.; Mathis, G.W.; Hinnant, R.T. Cow-Calf Production with Alternative Grazing Systems. J. Prod. Agric. 1990, 3, 407–414. [Google Scholar] [CrossRef]
- Reardon, P.O.; Merrill, L.B. Vegetative Response under Various Grazing Management Systems in the Edwards Plateau of Texas. J. Range Manag. 1976, 29, 195–198. [Google Scholar] [CrossRef]
- Hart, R.H.; Samuel, M.J.; Test, P.S.; Smith, M.A. Cattle, Vegetation, and Economic Responses to Grazing Systems and Grazing Pressure. J. Range Manag. 1988, 41, 282–286. [Google Scholar] [CrossRef]
- Manley, W.A.; Hart, R.H.; Samuel, M.J.; Smith, M.A.; Waggoner, J.W.; Manley, J.T. Vegetation, Cattle, and Economic Responses to Grazing Strategies and Pressures. J. Range Manag. 1997, 50, 638–646. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Kothmann, M.M.; Rawlins, W.J. Cow-Calf Response to Stocking Rates, Grazing Systems, and Winter Supplementation at the Texas Experimental Ranch. J. Range Manag. 1982, 35, 204–210. [Google Scholar] [CrossRef]
- Döbert, T.F.; Bork, E.W.; Apfelbaum, S.; Carlyle, C.N.; Chang, S.X.; Khatri-Chhetri, U.; Silva Sobrinho, L.; Thompson, R.; Boyce, M.S. Adaptive Multi-Paddock Grazing Improves Water Infiltration in Canadian Grassland Soils. Geoderma 2021, 401, 115314. [Google Scholar] [CrossRef]
- Dowhower, S.L.; Teague, W.R.; Casey, K.D.; Daniel, R. Soil Greenhouse Gas Emissions as Impacted by Soil Moisture and Temperature under Continuous and Holistic Planned Grazing in Native Tallgrass Prairie. Agric. Ecosyst. Environ. 2020, 287, 106647. [Google Scholar] [CrossRef]
- Johnson, D.C.; Teague, R.; Apfelbaum, S.; Thompson, R.; Byck, P. Adaptive Multi-Paddock Grazing Management’s Influence on Soil Food Web Community Structure for: Increasing Pasture Forage Production, Soil Organic Carbon, and Reducing Soil Respiration Rates in Southeastern USA Ranches. PeerJ 2022, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Mosier, S.; Apfelbaum, S.; Byck, P.; Calderon, F.; Teague, R.; Thompson, R.; Cotrufo, M.F. Adaptive Multi-Paddock Grazing Enhances Soil Carbon and Nitrogen Stocks and Stabilization through Mineral Association in Southeastern U.S. Grazing Lands. J. Environ. Manag. 2021, 288, 112409. [Google Scholar] [CrossRef]
- Allan, B.E.; O’Connor, K.F.; White, J.G.H. Grazing Management of Oversown Tussock Country: 2. Effects on Botanical Composition. N. Z. J. Agric. Res. 1992, 35, 7–19. [Google Scholar] [CrossRef]
- Scohier, A.; Farruggia, A.A.; Lanore, L.; Dumont, B. Un Pâturage Tournant Alternatif Conciliant Performances Animales et Préservation des Insectes Prairiaux; Institut de l’Elevage—INRA: Paris, France, 2012; Volume 19, pp. 9–12. [Google Scholar]
- Anderson, D. Seasonal Stocking of Tobosa Managed under Continuous and Rotation Grazing. J. Range Manag. 1988, 41, 78–83. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D.; Fernández-Giménez, M.E.; Porensky, L.M.; Wilmer, H.; Briske, D.D. Adaptive, Multipaddock Rotational Grazing Management: A Ranch-Scale Assessment of Effects on Vegetation and Livestock Performance in Semiarid Rangeland. Rangel. Ecol. Manag. 2020, 73, 796–810. [Google Scholar] [CrossRef]
- Lefrileux, Y.; Morand-Fehr, P.; Pommaret, A. Aptitude des chèvres hautes productrices de lait à valoriser les prairies temporaires au pâturage. INRAE Prod. Anim. 2012, 25, 277–290. [Google Scholar] [CrossRef]
- Muenger, A.; Jans, F. Comparison of Rotational and Continuous Grazing for Dairy Cows. Grassl. Sci. Eur. 2002, 7, 254–255. [Google Scholar]
- Pulido, R.G.; Leaver, J.D. Continuous and Rotational Grazing of Dairy Cows—The Interactions of Grazing System with Level of Milk Yield, Sward Height and Concentrate Level. Grass Forage Sci. 2003, 58, 265–275. [Google Scholar] [CrossRef]
- Farruggia, A.; Coppa, M.; Ferlay, A.; Bethier, A.; Pradel, P.; Verdier-Metz, I.; Martin, B.; Pomiès, D. Performances laitières et qualité des laits et des fromages dans deux systèmes de pâturage du Massif Central présentant des niveaux de biodiversité contrastés. In Rencontres Recherches Ruminants; INRAE: Paris, France, 2010; Volume 17, pp. 49–52. [Google Scholar]
- Coppa, M.; Ferlay, A.; Monsallier, F.; Verdier-Metz, I.; Pradel, P.; Didienne, R.R.; Montel, M.-C.M.-C.; Pomiès, D.; Martin, B.; Farruggia, A.A. Le système de pâturage influence-t-il les caractéristiques nutritionnelles et sensorielles des fromages ? Fourrages 2012, 209, 33–41. [Google Scholar]
- Gillen, R.L.; McCollum, F.T.; Tate, K.W.; Hodges, M.E. Tallgrass Prairie Response to Grazing System and Stocking Rate. J. Range Manag. 1998, 51, 139–146. [Google Scholar] [CrossRef]
- Dozias, D.; Micol, D. Influence du système de pâturage sur la croissance de jeunes bovins. Ann. Zootech. 1995, 44, 334. [Google Scholar] [CrossRef]
- Barnes, D.L.; Denny, R.P. A Comparison of Continuous and Rotational Grazing on Veld at Two Stocking Rates. J. Grassl. Soc. S. Afr. 1991, 8, 168–173. [Google Scholar] [CrossRef]
- Bogdan, A.Y.; Kidner, E.M. Grazing Natural Grassland in Western Kenya. East Afr. Agric. For. J. 1967, 33, 31–34. [Google Scholar] [CrossRef]
- Fisher, C.E.; Marion, P.T. Continuous and Totation Grazing on Buffalo and Tobosa Grassland. J. Range Manag. 1951, 4, 48. [Google Scholar] [CrossRef]
- Fourie, J.H.; Engels, E.A.N.; Roberts, B.R. Herbage Intake by Cattle on Tarchonanthus Veld in the Northern Cape as Affected by Stocking Rate and Grazing System. J. Grassl. Soc. S. Afr. 1986, 3, 85–89. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Frasure, J.R.; Price, D.L.; Rittenhouse, L.R. Short Duration Grazing at the Texas Experimental Ranch: Weight Gains of Growing Heifers. J. Range Manag. 1982, 35, 375–379. [Google Scholar] [CrossRef]
- Hepworth, K.W.; Test, P.S.; Hart, R.H.; Waggoner, J.W.; Smith, M.A. Grazing Systems, Stocking Rates, and Cattle Behavior in Southeastern Wyoming. J. Range Manag. 1991, 44, 259–262. [Google Scholar] [CrossRef]
- Hubbard, W.A. Rotational Grazing Studies in Western Canada. J. Range Manag. 1951, 4, 25–29. [Google Scholar] [CrossRef]
- McIlvain, E.H.; Savage, D.A. Eight-Year Comparisons of Continuous and Rotational Grazing on the Southern Plains Experimental Range. J. Range Manag. 1951, 4, 42–47. [Google Scholar] [CrossRef]
- Merrill, L.B. A Variation of Deferred Rotation Grazing for Use under Southwest Range Conditions. J. Range Manag. 1954, 7, 152–154. [Google Scholar] [CrossRef]
- Pitts, J.S.; Bryant, F.C. Steer and Vegetation Response to Short Duration and Continuous Grazing. J. Range Manag. 1987, 40, 386–389. [Google Scholar] [CrossRef]
- Ratliff, R.D. Cattle Responses to Continuous and Seasonal Grazing of California Annual Grassland. J. Range Manag. 1986, 39, 482–485. [Google Scholar] [CrossRef]
- Rogler, G.A. A Twenty-Five Year Comparison of Continuous and Rotation Grazing in the Northern Plains. J. Range Manag. 1951, 4, 35–41. [Google Scholar] [CrossRef]
- Smoliak, S. Effects of Deferred-Rotation and Continuous Grazing on Yearling Steer Gains and Shortgrass Prairie Vegetation of Southeastern Alberta. J. Range Manag. 1960, 13, 239–243. [Google Scholar] [CrossRef]
- Walker, B.; Scott, G.D. Grazing Experiments at Ukiriguru, Tanzania: I. Comparisons of Rotational and Continuous Grazing Systems on Natural Pastures of Hardpan Soils. East Afr. Agric. For. J. 1968, 34, 224–234. [Google Scholar] [CrossRef]
- White, M.R.; Pieper, R.D.; Donart, G.B.; Trifaro, L.W. Vegetational Response to Short-Duration and Continuous Grazing in Southcentral New Mexico. J. Range Manag. 1991, 44, 399–403. [Google Scholar] [CrossRef]
- Winder, J.A.; Beck, R.F. Utilization of Linear Prediction Procedures to Evaluate Animal Response to Grazing Systems. J. Range Manag. 1990, 43, 396–400. [Google Scholar] [CrossRef]
- Teutscherová, N.; Vázquez, E.; Sotelo, M.; Villegas, D.; Velásquez, N.; Baquero, D.; Pulleman, M.; Arango, J. Intensive Short-Duration Rotational Grazing Is Associated with Improved Soil Quality within One Year after Establishment in Colombia. Appl. Soil Ecol. 2021, 159, 103835. [Google Scholar] [CrossRef]
- Du, W.C.; Yan, T.; Chang, S.H.; Wang, Z.F.; Hou, F.J. Seasonal Hogget Grazing as a Potential Alternative Grazing System for the Qinghai-Tibetan Plateau: Weight Gain and Animal Behaviour under Continuous or Rotational Grazing at High or Low Stocking Rates. Rangel. J. 2017, 39, 329–339. [Google Scholar] [CrossRef]
- Fritzler, L.D.; Steffens, T.J.; Rhoades, M.B.; Lust, D.G. Grazing Patterns, Diet Quality, and Performance of Cow-Calf Pairs Using Continuous or Rotational Grazing in the Texas Panhandle USA. J. Arid Environ. 2023, 211, 104925. [Google Scholar] [CrossRef]
- Di Grigoli, A.; Todaro, M.; Di Miceli, G.; Genna, V.; Tornambè, G.; Alicata, M.L.; Giambalvo, D.; Bonanno, A. Effects of Continuous and Rotational Grazing of Different Forage Species on Ewe Milk Production. Small Rumin. Res. 2012, 106, 29–36. [Google Scholar] [CrossRef]
- Correa, L.D.A.; de Alencar, M.M.; Barbosa, R.T.; Cruz, G.M.D.; Packer, I.U.; Cordeiro, C.A. Performance of Nellore Cattle Under Two Grazing Management Systems; FEALQ: Sao Pedro, Cap-Vert, 2001; pp. 840–841. [Google Scholar]
- Soares, É.M.; Quadros, F.L.F.D.; Carvalho, R.M.R.D.; Oliveira, L.B.D.; Jochims, F.; Dutra, G.M.; Fernandes, A.M.; Trindade, J.P.P.; Ilha, G.F. Beef Heifers Performance in Natural Grassland under Continuous and Rotational Grazing in the Autumn-Winter. Ciênc. Rural 2015, 45, 1859–1864. [Google Scholar] [CrossRef]
- Kenny, L.B.; Giménez, D.; Caplan, J.S.; Al-Sarraji, A.; AlHello, M.; Robson, M.G.; Meyer, W.; Williams, C.A. Rotational Horse Grazing and Dry Weather Maximize Infiltration into Soil Macropores. Soil Tillage Res. 2023, 225, 105539. [Google Scholar] [CrossRef]
- Pavlů, V.; Hejcman, M.; Pavlů, L.; Gaisler, J. Effect of Rotational and Continuous Grazing on Vegetation of an Upland Grassland in the Jizerské Hory Mts., Czech Republic. Folia Geobot. 2003, 38, 21–34. [Google Scholar] [CrossRef]
- Hao, J.; Dickhoefer, U.; Lin, L.; Müller, K.; Glindemann, T.; Schönbach, P.; Schiborra, A.; Wang, C.; Susenbeth, A. Effects of Rotational and Continuous Grazing on Herbage Quality, Feed Intake and Performance of Sheep on a Semi-Arid Grassland Steppe. Arch. Anim. Nutr. 2013, 67, 62–76. [Google Scholar] [CrossRef]
- Jacobo, E.J.; Rodríguez, A.M.; Bartoloni, N.; Deregibus, V.A. Rotational Grazing Effects on Rangeland Vegetation at a Farm Scale. Rangel. Ecol. Manag. 2006, 59, 249–257. [Google Scholar] [CrossRef]
- Subedi, A.; Franklin, D.; Cabrera, M.; Dahal, S.; Hancock, D.; McPherson, A.; Stewart, L. Extreme Weather and Grazing Management Influence Soil Carbon and Compaction. Agronomy 2022, 12, 2073. [Google Scholar] [CrossRef]
- Alemu, A.; Kröbel, R.; McConkey, B.; Iwaasa, A. Effect of Increasing Species Diversity and Grazing Management on Pasture Productivity, Animal Performance, and Soil Carbon Sequestration of Re-Established Pasture in Canadian Prairie. Animals 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Marley, C.L.; Fraser, M.D.; Fisher, W.J.; Forbes, A.B.; Jones, R.; Moorby, J.M.; MacRae, J.C.; Theodorou, M.K. Effects of Continuous or Rotational Grazing of Two Perennial Ryegrass Varieties on the Chemical Composition of the Herbage and the Performance of Finishing Lambs. Grass Forage Sci. 2007, 62, 255–264. [Google Scholar] [CrossRef]
- Sanderman, J.; Reseigh, J.; Wurst, M.; Young, M.-A.; Austin, J. Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia. PLoS ONE 2015, 10, e0136157. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, M.C.; Golluscio, R.A.; Rodríguez, A.M.; Taboada, M.A. Improvement of Saline-Sodic Grassland Soils Properties by Rotational Grazing in Argentina. Rangel. Ecol. Manag. 2018, 71, 807–814. [Google Scholar] [CrossRef]
- Orgill, S.E.; Waters, C.M.; Melville, G.; Toole, I.; Alemseged, Y.; Smith, W. Sensitivity of Soil Organic Carbon to Grazing Management in the Semi-Arid Rangelands of South-Eastern Australia. Rangel. J. 2017, 39, 153–167. [Google Scholar] [CrossRef]
- Beck, P.A.; Stewart, C.B.; Sims, M.B.; Gadberry, M.S.; Jennings, J.A. Effects of Stocking Rate, Forage Management, and Grazing Management on Performance and Economics of Cow–Calf Production in Southwest Arkansas. J. Anim. Sci. 2016, 94, 3996–4005. [Google Scholar] [CrossRef]
- Cassels, D.M.; Gillen, R.L.; McCollum, F.T.; Tate, K.W.; Hodges, M.E. Effects of Grazing Management on Standing Crop Dynamics in Tallgrass Prairie. J. Range Manag. 1995, 48, 81–84. [Google Scholar] [CrossRef]
- Kothmann, M.M.; Mathis, G.W.; Waldrip, W.J. Cow-Calf Response to Stocking Rates and Grazing Systems on Native Range. J. Range Manag. 1971, 24, 100–105. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Brockett, G.M.; Lyle, A.D.; Tainton, N.M.; Bransby, D.I. Evaluation of Yeld Potential in East Griqualand Using Beef Cattle under Two Grazing Management Systems. J. Grassl. Soc. South. Afr. 1984, 1, 5–10. [Google Scholar] [CrossRef]
- Murray, R.B.; Klemmedson, J.O. Cheatgrass Range in Southern Idaho: Seasonal Cattle Gains and Grazing Capacities. J. Range Manag. 1968, 21, 308–313. [Google Scholar] [CrossRef]
- Wood, M.K.; Blackburn, W.H. Vegetation and Soil Responses to Cattle Grazing Systems in the Texas Rolling Plains. J. Range Manag. 1984, 37, 303. [Google Scholar] [CrossRef]
- Paine, L.K.; Undersander, D.; Casler, M.D. Pasture Growth, Production, and Quality under Rotational and Continuous Grazing Management. J. Prod. Agric. 1999, 12, 569–577. [Google Scholar] [CrossRef]
- Toor, G.S.; Yang, Y.; Morris, M.; Schwartz, P.; Darwish, Y.; Gaylord, G.; Webb, K. Phosphorus Pools in Soils under Rotational and Continuous Grazed Pastures. Agrosyst. Geosci. Environ. 2020, 3, e20103. [Google Scholar] [CrossRef]
- Welchons, C.A.; Bondurant, R.G.; Hischer, F.H.; Klopfenstein, T.J.; Watson, A.K.; MacDonald, J.C. Effect of Continuous or Rotational Grazing on Growing Steer Performance and Land Production. Neb. Beef Cattle Rep. 2018, 67–69. [Google Scholar] [CrossRef]
- Sanjari, G.; Ghadiri, H.; Ciesiolka, C.A.A.; Yu, B. Comparing the Effects of Continuous and Time-Controlled Grazing Systems on Soil Characteristics in Southeast Queensland. Aust. J. Soil Res. 2008, 46, 348–358. [Google Scholar] [CrossRef]
- González-Hernández, M.P.; Mouronte, V.; Romero, R.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Plant Diversity and Botanical Composition in an Atlantic Heather-Gorse Dominated Understory after Horse Grazing Suspension: Comparison of a Continuous and Rotational Management. Glob. Ecol. Conserv. 2020, 23, e01134. [Google Scholar] [CrossRef]
- Weinert, J.R.; Williams, C.A. Recovery of Pasture Forage Production Following Winter Rest in Continuous and Rotational Horse Grazing Systems. J. Equine Vet. Sci. 2018, 70, 32–37. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing Management Impacts on Vegetation, Soil Biota and Soil Chemical, Physical and Hydrological Properties in Tall Grass Prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Gutman, M.; Seligman, N.G. Grazing Management of Mediterranean Foothill Range in the Upper Jordan River Valley. J. Range Manag. 1979, 32, 86–92. [Google Scholar] [CrossRef]
- Hart, R.H.; Bissio, J.; Samuel, M.J.; Waggoner, J.W. Grazing Systems, Pasture Size, and Cattle Grazing Behavior, Distribution and Gains. J. Range Manag. 1993, 46, 81–87. [Google Scholar] [CrossRef]
- Tom, N.; Raman, A.; Hodgkins, D.S.; Nicol, H. Populations of Soil Organisms under Continuous Set Stocked and High Intensity-short Duration Rotational Grazing Practices in the Central Tablelands of New South Wales (Australia). N. Z. J. Agric. Res. 2006, 49, 261–272. [Google Scholar] [CrossRef]
- Moojen, F.G.; Bremm, C.; Laca, E.A.; Machado, D.R.; Savian, J.V.; Carvalho, P.C. de F. Herbage Allowance and Stocking Method Effect on Grazing Systems: Results of a Long-Term Experiment. Grass Forage Sci. 2022, 77, 45–54. [Google Scholar] [CrossRef]
- Jacobo, E.J.; Rodriguez, A.M.; Rossi, J.L.; Salgado, L.P.; Deregibus, V.A. Rotational Stocking and Production of Italian Ryegrass on Argentinean Rangelands. J. Range Manag. 2000, 53, 483–488. [Google Scholar] [CrossRef]
- McCollum, F.T.; Gillen, R.L.; Karges, B.R.; Hodges, M.E. Stocker Cattle Response to Grazing Management in Tallgrass Prairie. J. Range Manag. 1999, 52, 120–126. [Google Scholar] [CrossRef]
- Fontenot, J.P.; Allen, V.G.; Cochran, M.A.; Frank, N.B. Intensive Grazing Systems for Beef Cattle Production; IGC Proceedings: Sao Pedro, Cap-Vert, 2001; Volume 9, p. 6. [Google Scholar]
- Stejskalová, M.; Hejcmanová, P.; Pavlů, V.; Hejcman, M. Grazing Behavior and Performance of Beef Cattle as a Function of Sward Structure and Herbage Quality under Rotational and Continuous Stocking on Species-Rich Upland Pasture. Anim. Sci. J. 2013, 84, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Hulvey, K.B.; Mellon, C.D.; Kleinhesselink, A.R. Rotational Grazing Can Mitigate Ecosystem Service Trade-offs between Livestock Production and Water Quality in Semi-arid Rangelands. J. Appl. Ecol. 2021, 58, 2113–2123. [Google Scholar] [CrossRef]
- Martin, S.C.; Severson, K.E. Vegetation Response to the Santa Rita Grazing System. J. Range Manag. 1988, 41, 291–295. [Google Scholar] [CrossRef]
- Ma, Z.; Shrestha, B.M.; Bork, E.W.; Chang, S.X.; Carlyle, C.N.; Döbert, T.F.; Sobrinho, L.S.; Boyce, M.S. Soil Greenhouse Gas Emissions and Grazing Management in Northern Temperate Grasslands. Sci. Total Environ. 2021, 796, 148975. [Google Scholar] [CrossRef]
- Díaz De Otálora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Conner, J.R.; Canon, S.K.; Pinchak, W.E.; Walker, J.W.; Dowhower, S.L. Cow/Calf Production and Economic Returns from Yearlong Continuous, Deferred Rotation and Rotational Grazing Treatments. J. Prod. Agric. 1990, 3, 92–99. [Google Scholar] [CrossRef]
- Owensby, C.E.; Smith, E.F.; Anderson, K.L. Deferred-Rotation Grazing with Steers in the Kansas Flint Hills. J. Range Manag. 1973, 26, 393–395. [Google Scholar] [CrossRef]
- Holechek, J.L.; Berry, T.J.; Vavra, M. Grazing System Influences on Cattle Performance on Mountain Range. J. Range Manag. 1987, 40, 55–59. [Google Scholar] [CrossRef]
- Chaplot, V.; Dlamini, P.; Chivenge, P. Potential of Grassland Rehabilitation through High Density-Short Duration Grazing to Sequester Atmospheric Carbon. Geoderma 2016, 271, 10–17. [Google Scholar] [CrossRef]
- Hoden, A.; Jeannin, B.; Huguet, L.; Müller, A.; Weiss, P. Le paturage simplifie pour vaches laitieres: Synthese de resultats experimentaux. Fourrages 1987, 239–257. [Google Scholar]
- Gielen, M.; Dufrasne, I.; Limbourg, P.; Istasse, L.; Van Eenaeme, C.; Bienfait, J.-M. Effet du système de pâturage, des niveaux de complémentation et de fumure azotée sur la concentration en urée dans le lait et le sang de vaches laitières. Ann. Médecine Vét. 1989, 133, 589–598. [Google Scholar]
- Taylor, C.A.; Brooks, T.D.; Garza, N.E. Effects of Short Duration and High-Intensity, Low-Frequency Grazing Systems on Forage Production and Composition. J. Range Manag. 1993, 46, 118–121. [Google Scholar] [CrossRef]
- Volesky, J.D.; Lewis, J.K.; Butterfield, C.H. High-Performance Short-Duration and Repeated-Seasonal Grazing Systems: Effect on Diets and Performance of Calves and Lambs. J. Range Manag. 1990, 43, 310–315. [Google Scholar] [CrossRef]
- Willems, H.; Werder, C.; Kreuzer, M.; Leiber, F. Le système de pâturage influence le poids d’abattage et la qualité de la viande d’agneaux d’alpage. Rech. Agron. Suisse 2013, 4, 4–9. [Google Scholar]
- Bartley, R.; Abbott, B.N.; Ghahramani, A.; Ali, A.; Kerr, R.; Roth, C.H.; Kinsey-Henderson, A. Do Regenerative Grazing Management Practices Improve Vegetation and Soil Health in Grazed Rangelands? Preliminary Insights from a Space-for-Time Study in the Great Barrier Reef Catchments, Australia. Rangel. J. 2022, 44, 221–246. [Google Scholar] [CrossRef]
- Kirby, D.R.; Pessin, M.F.; Clambey, G.K. Disappearance of Forage under Short Duration and Seasonlong Grazing. J. Range Manag. 1986, 39, 496–499. [Google Scholar] [CrossRef]
- Hyder, D.N.; Sawyer, W.A. Rotation-Deferred Grazing as Compared to Season-Long Grazing on Sagebrush-Bunchgrass Ranges in Oregon. J. Range Manag. 1951, 4, 30–34. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Dowhower, S.L.; Walker, J.W. Some Effects of a Rotational Grazing Treatment on Quantity and Quality of Available Forage and Amount of Ground Litter. J. Range Manag. 1987, 40, 318–321. [Google Scholar] [CrossRef]
- Norman, H.C.; Wilmot, M.G.; Thomas, D.T.; Barrett-Lennard, E.G.; Masters, D.G. Sheep Production, Plant Growth and Nutritive Value of a Saltbush-Based Pasture System Subject to Rotational Grazing or Set Stocking. Small Rumin. Res. 2010, 91, 103–109. [Google Scholar] [CrossRef]
- Culvenor, R.A. Comparison of Four Phalaris Cultivars under Grazing: Drought Survival and Subsequent Performance under Rotational Grazing versus Set Stocking. Aust. J. Exp. Agric. 2000, 40, 1047–1058. [Google Scholar] [CrossRef]
- Derner, J.D.; Hart, R.H. Grazing-Induced Modifications to Peak Standing Crop in Northern Mixed-Grass Prairie. Rangel. Ecol. Manag. 2007, 60, 270–276. [Google Scholar] [CrossRef]
- Biondini, M.E.; Manske, L. Grazing Frequency and Ecosystem Processes in a Northern Mixed Prairie, USA. Ecol. Appl. 1996, 6, 239–256. [Google Scholar] [CrossRef]
- Hirschfeld, D.J.; Kirby, D.R.; Caton, J.S.; Silcox, S.S.; Olson, K.C. Influence of Grazing Management on Intake and Composition of Cattle Diets. J. Range Manag. 1996, 49, 257–263. [Google Scholar] [CrossRef]
- Gutman, M.; Seligman, N.G.; Noy-Meir, I. Herbage Production of Mediterranean Grassland under Seasonal and Yearlong Grazing Systems. J. Range Manag. 1990, 43, 64–68. [Google Scholar] [CrossRef]
- Laycock, W.A.; Conrad, P.W. Responses of Vegetation and Cattle to Various Systems of Grazing on Seeded and Native Mountain Rangelands in Eastern Utah. J. Range Manag. 1981, 34, 52–58. [Google Scholar] [CrossRef]
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primer 2022, 2, 100. [Google Scholar] [CrossRef]
- Giordani, P.; Ferraro, M.B.; Martella, F. Hierarchical Clustering. In An introduction to clustering with R; Behaviormetrics: Quantitative approaches to human behavior; Springer: Singapore, 2020; Volume 1, pp. 9–73. ISBN 978-981-13-0552-8. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Cornillon, P.A.; Guyader, A.; Husson, F.; Jégou, N.; Josse, J.; Klutchnikoff, N.; Le Pennec, E.; Matzner-Lober, E.; Rouvière, L.; Thieurmel, B. Classification non supervisée. In R pour la Statistique et la Science des Données; Pratique de la statistique; Presses Universitaires de Rennes: Rennes, France, 2018; pp. 243–262. ISBN 978-2-7535-7573-8. [Google Scholar]
- Sampson, A.W. Range Improvement by Deferred and Rotation Grazing. Bull. US Dep. Agric. 1913, 34, 16. [Google Scholar]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-Paddock Grazing on Rangelands: Why the Perceptual Dichotomy between Research Results and Rancher Experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Savory, A.; Parsons, S.D. The Savory Grazing Method. Rangelands 1980, 2, 234–237. [Google Scholar]
- Raynor, E.J.; Derner, J.D.; Hartman, M.D.; Dorich, C.D.; Parton, W.J.; Hendrickson, J.R.; Harmoney, K.R.; Brennan, J.R.; Owensby, C.E.; Kaplan, N.E.; et al. Secondary Production of the Central Rangeland Region of the United States. Ecol. Appl. 2024, 34, e2978. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Q.; Chu, H.; Shi, J.; Li, S.; Wang, Y.; Yang, X. Grassland Community Composition Response to Grazing Intensity under Different Grazing Regimes. Rangel. Ecol. Manag. 2018, 71, 196–204. [Google Scholar] [CrossRef]
- Scanlan, J.C.; McIvor, J.G.; Bray, S.G.; Cowley, R.A.; Hunt, L.P.; Pahl, L.I.; MacLeod, N.D.; Whish, G.L. Resting Pastures to Improve Land Condition in Northern Australia: Guidelines Based on the Literature and Simulation Modelling. Rangel. J. 2014, 36, 429–443. [Google Scholar] [CrossRef]
- Roche, L.M.; Cutts, B.B.; Derner, J.D.; Lubell, M.N.; Tate, K.W. On-Ranch Grazing Strategies: Context for the Rotational Grazing Dilemma. Rangel. Ecol. Manag. 2015, 68, 248–256. [Google Scholar] [CrossRef]
- Couvreur, S.; Petit, T.; Le Guen, R.; Ben Arfa, N.; Jacquerie, V.; Sigwalt, A.; Haimoud-Lekhal, D.A.; Chaib, K.; Defois, J.; Martel, G. Déterminants Techniques et Sociologiques Du Maintien Des Prairies Dans Les Élevages Bovins Laitiers de Plaine. INRA Prod. Anim. 2019, 32, 399–416. [Google Scholar] [CrossRef]
- Delaby, L.; O’Donovan, M.; Horan, B. En Irlande: ”Grazing is good for you”. Fourrages 2017, 230, 115–122. [Google Scholar]
- Läpple, D.; Hennessy, T.; O’Donovan, M. Extended Grazing: A Detailed Analysis of Irish Dairy Farms. J. Dairy Sci. 2012, 95, 188–195. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, K.; Penno, J. Management Decision Rules to Optimise Milksolids Production on Dairy Farms. Proc. N. Z. Soc. Anim. Prod. 1998, 58, 132–135. [Google Scholar]
- Roche, J.R.; Berry, D.P.; Bryant, A.M.; Burke, C.R.; Butler, S.T.; Dillon, P.G.; Donaghy, D.J.; Horan, B.; Macdonald, K.A.; Macmillan, K.L. A 100-Year Review: A Century of Change in Temperate Grazing Dairy Systems. J. Dairy Sci. 2017, 100, 10189–10233. [Google Scholar] [CrossRef]
- Dillon, P.; Roche, J.R.; Shalloo, L.; Horan, B. Optimising Financial Return from Grazing in Temperate Pastures. In Utilisation of Grazed Grass in Temperate Animal Systems; J.J. Murphy: Cork, Ireland, 2005; Volume 2005, pp. 131–147. [Google Scholar]
- O’Donovan, M.; Lewis, E.; O’Kiely, P. Requirements of Future Grass-Based Ruminant Production Systems in Ireland. Ir. J. Agric. Food Res. 2011, 50, 1–21. [Google Scholar]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative Assessment of the Contributions of Climate Change and Human Activities on Global Grassland Degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.C.B.; Silveira, M.L. Grassland Management Affects Delivery of Regulating and Supporting Ecosystem Services. Crop Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
- Lescourret, F.; Magda, D.; Richard, G.; Adam-Blondon, A.-F.; Bardy, M.; Baudry, J.; Doussan, I.; Dumont, B.; Lefèvre, F.; Litrico, I.; et al. A Social–Ecological Approach to Managing Multiple Agro-Ecosystem Services. Curr. Opin. Environ. Sustain. 2015, 14, 68–75. [Google Scholar] [CrossRef]
- Manning, P.; Van Der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining Ecosystem Multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Stokes, A.; Bocquého, G.; Carrere, P.; Salazar, R.C.; Deconchat, M.; Garcia, L.; Gardarin, A.; Gary, C.; Gaucherel, C.; Gueye, M.; et al. Services Provided by Multifunctional Agroecosystems: Questions, Obstacles and Solutions. Ecol. Eng. 2023, 191, 106949. [Google Scholar] [CrossRef]
Grazing Method | Citation |
---|---|
10-paddock rotational grazing system | [22] |
11-paddock rotational grazing | [23] |
120-pasture, ultra-high stocking density system | [24] |
15-paddock grazing system | [25] |
2-pasture 1-herd deferred-rotation grazing system | [26] |
3-pasture 2-herd deferred-rotation grazing system | [26] |
30-paddock grazing system | [25] |
4-pasture deferred-rotation system | [27] |
4-pasture rotation system | [24] |
4-pasture rotationally deferred grazing | [28,29] |
4-pasture 3-herd deferred-rotation grazing | [26] |
4-pasture 3-herd deferred-rotation system | [30] |
6-paddock rotational grazing | [23] |
8-paddock short-duration rotation grazing | [28] |
8-paddock time-controlled rotational grazing | [29] |
Adaptative multi-paddock grazing | [31,32,33,34] |
Alternating stocking | [35] |
Alternative rotational grazing | [36] |
Cell stocking | [37] |
Collaborative, adaptative rangeland management | [38] |
Continuous grazing | [23,27,28,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Continuous grazing management | [78] |
Continuous grazing system | [22,25,44,79,80,81,82,83,84,85,86,87,88,89,90] |
Continuous heavy grazing | [91] |
Continuous large pasture | [92] |
Continuous moderate grazing | [91] |
Continuous set stocking grazing | [93] |
Continuous small pastures | [92] |
Continuous stocking | [35,37,94,95,96,97] |
Continuous stocking system | [98] |
Continuous turnout grazing | [99] |
Continuous yearlong grazing | [100] |
Continuous yearlong grazing system | [26] |
Conventional grazing | [31,34,101] |
Conventional grazing management | [33] |
Conventional rotational grazing | [102] |
Deferred rotation grazing | [58,103] |
Deferred rotation grazing system | [83] |
Deferred rotation system | [54,104] |
Deferred system | [57] |
Deferred-rotation grazing | [99,105] |
Deferred-rotational grazing | [52,73] |
Divisional rotation grazing | [53] |
Flexible grazing system | [25] |
Four-paddock rotational grazing | [47] |
Free grazing | [106] |
Free-range intensive grazing | [107] |
Grazing in rotation | [45,108] |
Grazing switchback system | [80] |
Heavily stocked continuous grazing | [32] |
Heavy continuous grazing | [30,90] |
High-density short-duration grazing | [106] |
High-intensity, low-frequency grazing | [109] |
High-intensity-short duration rotational grazing | [93] |
High-performance short-duration grazing | [110] |
Hight intensity low frequency grazing system | [83] |
Intensive free-range grazing in spring followed by simplified rotational grazing | [107] |
Intensive rotational grazing management | [84] |
Intensive short-duration rotational grazing | [62] |
Intensive time-controlled rotation grazing system | [92] |
Light continuous grazing | [90] |
Merrill system | [80] |
Moderate continuous grazing | [30] |
Moderately stocked continuous grazing | [32] |
Multi-paddock grazing | [90] |
Permanent grazing | [111] |
Planned rotational grazing | [112] |
Rationed grazing | [107] |
Regenerative rotational grazing | [102] |
Repeated season-long grazing | [113] |
Repeated seasonal grazing | [56,110] |
Rest-rotation grazing | [105] |
Rotated seasonal grazing | [56] |
Rotation deferred grazing | [114] |
Rotation grazing | [48] |
Rotational grazing | [35,39,40,41,42,43,46,49,59,61,62,63,64,65,66,67,68,69,70,71,74,75,76,77,103,107,111,112,115,116,117] |
Rotational grazing management | [78] |
Rotational grazing system | [11,22,44,79,81,82,85,86,88,89] |
Rotational heavy grazing | [91] |
Rotational moderate grazing | [91] |
Rotational plus reserve grazing | [59] |
Rotational stocking | [94,95,96,97] |
Rotational stocking system | [98] |
Santa Rita grazing system | [100] |
Season-long continuous grazing | [118] |
Season-long grazing | [29,105,114,119,120] |
Season-long stocking | [104] |
Seasonal continuous heavy grazing | [121] |
Seasonal continuous light grazing | [121] |
Seasonal rotational heavy grazing | [121] |
Set stocking grazing | [112,116,117] |
Short duration grazing | [50,55,60,109,113,120] |
Short-duration rotation grazing | [51] |
Short-duration rotational grazing | [118] |
Simplified rotational grazing | [107] |
Strategic grazing | [72] |
Summer-long grazing every year | [122] |
Summer-long grazing in alternate years | [122] |
Three-paddock deferred grazing | [47] |
Three-unit rest-rotation grazing | [122] |
Time-controlled grazing | [87] |
Time-controlled rotation grazing | [99] |
Traditional rangeland management | [38] |
Twice-over rotation grazing | [119] |
Yearlong continuous grazing | [103] |
Yearlong continuously grazed treatment | [115] |
Clustering Application | Criteria Used in the Clustering | n | Median | Mean | Min | Max |
---|---|---|---|---|---|---|
Management criteria used as active variables | Number of paddocks | 249 | 3 | 9.46 ± 21.709 | 1 | 150 |
Rest period (days) | 249 | 26 | 38.6 ± 60.61 | 0 | 450 | |
Stocking ratio (%) | 249 | 50 | 56.7 ± 40.43 | 0.667 | 100 | |
Management criteria used as illustrative variables | Stocking season duration (days) | 237 | 200 | 238 ± 113.2 | 47 | 365 |
Stocking period (days) | 249 | 70 | 126 ± 139.7 | 0.500 | 365 | |
Stocking cycle duration (days) | 249 | 120 | 164 ± 141.5 | 2 | 781 | |
Number of cycles in one stocking season (nb) | 237 | 1 | 2.61 ± 2.652 | 0.300 | 15.9 |
Group 1 (n = 110) | Group 2 (n = 83) | Group 3 (n = 30) | Group 4 (n = 17) | Group 5 (n = 4) | Group 6 (n = 5) | ||
---|---|---|---|---|---|---|---|
Grazing method family | Continuous grazing | Conventional rotational grazing | Deferred rotational grazing | Adaptative multi-paddock grazing | Deferred rotational grazing | Adaptative multi-paddock grazing | |
Number of paddocks | Mean | 1.24 | 7.26 | 4.76 | 46.0 | 3.03 | 136 |
Sd | 0.823 | 4.901 | 3.151 | 13.18 | 2.696 | 14.3 | |
Min | 1 | 2 | 2 | 25.5 | 1 | 120 | |
Max | 5 | 25 | 15 | 61 | 7 | 150 | |
Rest period (days) | Mean | 1.39 | 36.7 | 104 | 73.0 | 398 | 93.2 |
Sd | 6.706 | 16.57 | 32.5 | 20.90 | 42.5 | 41.83 | |
Min | 0 | 1 | 60 | 45 | 362 | 44.8 | |
Max | 41.5 | 84 | 225 | 120 | 450 | 149 | |
Stocking ratio (%) | Mean | 98.7 | 20.3 | 46.5 | 3.42 | 28.0 | 1.05 |
Sd | 6.14 | 11.92 | 21.86 | 3.235 | 24.23 | 0.303 | |
Min | 66.8 | 4.65 | 6.67 | 1.52 | 0.822 | 0.667 | |
Max | 100 | 50 | 76.5 | 15.4 | 50 | 1.41 | |
Stocking season duration (days) | Mean | 231 | 208 | 283 | 342 | 365 | 263 |
Sd | 113.6 | 106.7 | 104.4 | 55.6 | 0.0 | 176.1 | |
Min | 47 | 47 | 90 | 217 | 365 | 60 | |
Max | 365 | 365 | 365 | 365 | 365 | 365 | |
Stocking period (days) | Mean | 234 | 9.74 | 132 | 2.73 | 202 | 0.900 |
Sd | 117.6 | 9.147 | 126.2 | 3.268 | 190.5 | 0.2236 | |
Min | 43.5 | 1 | 8 | 1 | 3 | 0.5 | |
Max | 365 | 47 | 365 | 15 | 365 | 1 | |
Stocking cycle duration (days) | Mean | 235 | 46.4 | 236 | 75.7 | 600 | 94.1 |
Sd | 115.9 | 22.11 | 138.7 | 21.91 | 191.9 | 41.97 | |
Min | 47 | 2 | 113 | 47 | 365 | 45.3 | |
Max | 365 | 100 | 485 | 122 | 781 | 150 | |
Number of stocking cycles per stocking season | Mean | 1.02 | 4.86 | 1.45 | 4.72 | 0.675 | 2.23 |
Sd | 0.235 | 3.172 | 0.807 | 1.359 | 0.2363 | 0.862 | |
Min | 0.3 | 1 | 0.7 | 3 | 0.5 | 1.3 | |
Max | 3.2 | 15.9 | 3.2 | 6.3 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russias, R.; Delagarde, R.; Klumpp, K.; Michaud, A. Clarifying Grazing Management Methods: A Data-Driven Review. Sustainability 2025, 17, 5200. https://doi.org/10.3390/su17115200
Russias R, Delagarde R, Klumpp K, Michaud A. Clarifying Grazing Management Methods: A Data-Driven Review. Sustainability. 2025; 17(11):5200. https://doi.org/10.3390/su17115200
Chicago/Turabian StyleRussias, Robin, Rémy Delagarde, Katja Klumpp, and Audrey Michaud. 2025. "Clarifying Grazing Management Methods: A Data-Driven Review" Sustainability 17, no. 11: 5200. https://doi.org/10.3390/su17115200
APA StyleRussias, R., Delagarde, R., Klumpp, K., & Michaud, A. (2025). Clarifying Grazing Management Methods: A Data-Driven Review. Sustainability, 17(11), 5200. https://doi.org/10.3390/su17115200