Forecasting Air Pollutant Emissions Using Deep Sparse Transformer Networks: A Case Study of the Ekibastuz Coal-Fired Power Plant
Abstract
:1. Introduction
2. Literature Review
- To investigate the presence of long-term memory in the structure of the time series of air pollution indicators based on the fractal analysis method.
- To implement and verify Deep Sparse Transformer Networks, as well as to evaluate the accuracy on a real dataset.
3. Materials and Methods
3.1. Area of Study and Collection of Data
3.2. Investigation of the Presence of Long-Term Dependencies in the Structure of the Time Series of Air Pollution Indicators Based on the Fractal Analysis Method
- If , , , then this indicates the presence of long-term memory in the structure of time series Q. That is, the time series is persistent, and the current trend of the time series is likely to continue in the future. The estimate of depends on the length of the time series and is described in [36]. Such time series can be effectively forecasted based on both traditional forecasting models and machine learning models.
- If , then time series Q is random. This means that pollutant emissions are not stable, which does not allow for an accurate forecast. It may also indicate an accident at the facility where the time series values were recorded.
- If , then time series Q is anti-persistent. This is a time series that changes faster than a random series. The interpretation for the time series of air pollution indicators is similar to that in the previous paragraph.
3.3. Time Series Forecasting with Deep Sparse Transformer Networks
4. Results
4.1. Results of a Study of Long-Term Memory in the Time Series of Atmospheric Pollutant Emissions
4.2. Verification Results of Deep Sparse Transformer Network for Predicting Air Pollution Indicators
5. Discussion
5.1. Findings
5.2. Limitations and Future Research Lines
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Energy Institute. Statistical Review of World Energy. 2024. Available online: https://www.energyinst.org/statistical-review (accessed on 12 April 2025).
- Finkelman, R.B.; Wolfe, A.; Hendryx, M.S. The future environmental and health impacts of coal. Energy Geosci. 2021, 2, 99–112. [Google Scholar] [CrossRef]
- Amster, E. Public health impact of coal-fired power plants: A critical systematic review of the epidemiological literature. Int. J. Environ. Health Res. 2019, 31, 558–580. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, H.; Zhao, Y. Ambient air pollution and daily hospital admissions for respiratory system–related diseases in a heavy polluted city in Northeast China. Environ. Sci. Pol. Res. 2020, 27, 10055–10064. [Google Scholar] [CrossRef]
- Yan, X.; Zang, Z.; Luo, N.; Jiang, Y.; Li, Z. New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environ. Int. 2020, 144, 106060. [Google Scholar] [CrossRef]
- Mahlangeni, N.; Kapwata, T.; Webster, C.; Howlett-Downing, C.; Wright, C.Y. Exposure to air pollution from coal-fired power plants and impacts on human health: A scoping review. Rev. Environ. Health 2025. [Google Scholar] [CrossRef] [PubMed]
- American Lung Association. Toxic Air: The Case for Cleaning Up Coal-Fired Power Plants. 2011. Available online: https://www.lung.org/getmedia/c3b2b744-7c7e-4941-b0cd-5a5e468515d1/toxic-air-report.pdf (accessed on 12 April 2025).
- Li, T.; Cheng, X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. Int. J. Appl. Earth. Obs. Geoinf. 2021, 101, 102356. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Zhu, L. Global spatiotemporal estimation of daily high-resolution surface carbon monoxide concentrations using Deep Forest. J. Clean. Prod. 2022, 350, 131500. [Google Scholar] [CrossRef]
- Carbon Border Adjustment Mechanism. 2025. Available online: https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (accessed on 6 April 2025).
- Kuznetsova, E.; Vaillancourt, K. Energy Transition in Monocities. Coal Phase-Out Roadmap and Just Transition Action Plan for Ekibastuz (Kazakhstan). 2030 Roadmap and Action Plan. 2023. Available online: https://www.un-page.org/static/dc10131616a8f9f1411d844e623463c9/esmia-undp-kazakstan-ekibastuz-2023-06-29-final.pdf (accessed on 12 April 2025).
- Nugmanova, D.; Feshchenko, Y.; Iashyna, L.; Gyrina, O.; Malynovska, K.; Mammadbayov, E.; Akhundova, I.; Nurkina, N.; Tariq, L.; Makarova, J.; et al. The Prevalence, Burden and Risk Factors Associated with Chronic Obstructive Pulmonary Disease in Commonwealth of Independent States (Ukraine, Kazakhstan and Azerbaijan): Results of the CORE Study. BMC Pulm. Med. 2018, 18, 26. [Google Scholar] [CrossRef]
- Nugmanova, D.; Sokolova, L.; Feshchenko, Y.; Iashyna, L.; Gyrina, O.; Malynovska, K.; Mustafayev, I.; Aliyeva, G.; Makarova, J.; Vasylyev, A.; et al. The Prevalence, Burden and Risk Factors Associated with Bronchial Asthma in Commonwealth of Independent States Countries (Ukraine, Kazakhstan and Azerbaijan): Results of the CORE Study. BMC Pulm. Med. 2018, 18, 110. [Google Scholar] [CrossRef]
- Semenova, Y.; Zhunussov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalny, A.; Zhanaspayev, M.; Bulegenov, T.; Glushkova, N.; et al. Trace Element Biomonitoring in Hair and Blood of Occupationally Unexposed Population Residing in Polluted Areas of East Kazakhstan and Pavlodar Regions. J. Trace Elem. Med. Biol. 2019, 56, 31–37. [Google Scholar] [CrossRef]
- Assanov, D.; Zapasnyi, V.; Kerimray, A. Air Quality and Industrial Emissions in the Cities of Kazakhstan. Atmosphere 2021, 12, 314. [Google Scholar] [CrossRef]
- IQAir. World’s Most Polluted Countries & Regions. 2024. Available online: https://www.iqair.com/world-most-polluted-countries (accessed on 12 April 2025).
- Cekim, H.O. Forecasting PM 10 concentrations using time series models: A case of the most polluted cities in Turkey. Environ. Sci. Pollut. Res. 2020, 27, 25612–25624. [Google Scholar] [CrossRef]
- Jian, L.; Zhao, Y.; Zhu, Y.-P.; Zhang, M.-B.; Bertolatti, D. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 2012, 426, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Dong, Y.; Han, X.; Xie, J.; Xu, X.; Xie, G. Short-term prediction of urban PM 2.5 based on a hybrid modified variational mode decomposition and support vector regression model. Environ. Sci. Pollut. Res. 2021, 28, 56–72. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, S.R.S.; Rahman, M.H.; Vranckx, S.; Maiheu, B.; Blyth, L.; Janssen, S.; Gargava, P.; Shukla, V.K.; Batra, S. Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions. Sci. Total Environ. 2020, 735, 139454. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision Transformers for remote sensing image classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wang, Z.; Liu, S.; Li, J. Developing real-time streaming transformer transducer for speech recognition on large-scale dataset. In Proceedings of the ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021; pp. 5904–5908. [Google Scholar]
- Zhang, Z.; Zhang, S. Modeling air quality PM2.5 forecasting using deep sparse attention-based transformer networks. Int. J. Environ. Sci. Technol. 2023, 20, 13535–13550. [Google Scholar] [CrossRef]
- Cui, B.; Liu, M.; Li, S.; Jin, Z.; Zeng, Y.; Lin, Z. Deep learning methods for atmospheric PM2.5 prediction: A comparative study of transformer and CNN-LSTM-attention. Atmos. Pollut. Res. 2023, 14, 101833. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Zhao, X.; Chen, L.; Yao, J. Temporal Difference-Based Graph Transformer Networks for Air Quality PM2.5 Prediction: A Case Study in China. Front. Environ. Sci. 2022, 10, 924986. [Google Scholar] [CrossRef]
- Xue, Y.; Pan, W.; Lu, W.Z.; He, H.D. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Thompson, J.R.; Wilson, J.R. Multifractal detrended fluctuation analysis: Practical applications to financial time series. Comput. Simul. 2016, 126, 63–88. [Google Scholar] [CrossRef]
- Liu, X.; Hadiatullah, H.; Tai, P.; Xu, Y.; Zhang, X.; Schnelle-Kreis, J.; Schloter-Hai, B.; Zimmermann, R. Air pollution in Germany: Spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018. Environ. Pollut. 2021, 276, 116732. [Google Scholar] [CrossRef] [PubMed]
- Biloshchytskyi, A.; Neftissov, A.; Kuchanskyi, O.; Andrashko, Y.; Biloshchytska, S.; Mukhatayev, A.; Kazambayev, I. Fractal Analysis of Air Pollution Time Series in Urban Areas in Astana, Republic of Kazakhstan. Urban. Sci. 2024, 8, 131. [Google Scholar] [CrossRef]
- Bureau of National Statistics of Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. The Population of Kazakhstan by Individual Ethnic Groups at the Beginning of 2021. 2021. Available online: https://stat.gov.kz/ (accessed on 12 April 2025).
- Biloshchytskyi, A.; Kuchanskyi, O.; Neftissov, A.; Andrashko, Y.; Biloshchytska, S.; Kazambayev, I. Fractal Analysis of Mining Wastewater Time Series Parameters: Balkhash Urban Region and Sayak Ore District. Urban. Sci. 2024, 8, 200. [Google Scholar] [CrossRef]
- Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1994; p. 336. [Google Scholar]
- Anis, A.; Lloyd, E. The expected value of the adjusted rescaled Hurst Range of independent normal summands. Biometrika 1976, 63, 111–116. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Smith, T.G. Pmdarima. Tips to Using Auto_Arima. Available online: https://alkaline-ml.com/pmdarima/tips_and_tricks.html (accessed on 23 May 2025).
- Zheng, Y.; Cheng, P.; Li, Z.; Fan, C.; Wen, J.; Yu, Y.; Jia, L. Efficient removal of gaseous elemental mercury by Fe-UiO-66@BC composite adsorbent: Performance evaluation and mechanistic elucidation. Sep. Purif. Technol. 2025, 372, 133463. [Google Scholar] [CrossRef]
- The 17 Goals. Department of Economic and Social Affairs. Sustainable Development. 2025. Available online: https://sdgs.un.org/goals (accessed on 23 May 2025).
- Transforming Our World: The 2030 Agenda for Sustainable Development. 2025. Available online: https://sdgs.un.org/2030agenda (accessed on 23 May 2025).
Pollution | Performance Metrics | DSTN | ARIMA | |||
---|---|---|---|---|---|---|
Forecast Horizon | ||||||
1 | 6 | 12 | 24 | 24 | ||
PM2.5 | RMSE | 58.59 | 137.07 | 172.32 | 209.87 | 325.55 |
MSE | 34.71 | 90.36 | 119.88 | 145.38 | 298.82 | |
R2 | 0.95 | 0.81 | 0.65 | 0.38 | −1.43 | |
NOx | RMSE | 63.33 | 87.94 | 105.16 | 117.37 | 35.14 |
MSE | 42.99 | 63.30 | 73.45 | 86.88 | 24.13 | |
R2 | 0.93 | 0.75 | 0.52 | 0.26 | −0.16 | |
SO2 | RMSE | 17.12 | 23.77 | 28.48 | 31.82 | 73.94 |
MSE | 11.63 | 17.19 | 19.85 | 23.38 | 58.50 | |
R2 | 0.93 | 0.76 | 0.51 | 0.27 | −0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrashko, Y.; Kuchanskyi, O.; Biloshchytskyi, A.; Neftissov, A.; Biloshchytska, S. Forecasting Air Pollutant Emissions Using Deep Sparse Transformer Networks: A Case Study of the Ekibastuz Coal-Fired Power Plant. Sustainability 2025, 17, 5115. https://doi.org/10.3390/su17115115
Andrashko Y, Kuchanskyi O, Biloshchytskyi A, Neftissov A, Biloshchytska S. Forecasting Air Pollutant Emissions Using Deep Sparse Transformer Networks: A Case Study of the Ekibastuz Coal-Fired Power Plant. Sustainability. 2025; 17(11):5115. https://doi.org/10.3390/su17115115
Chicago/Turabian StyleAndrashko, Yurii, Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Alexandr Neftissov, and Svitlana Biloshchytska. 2025. "Forecasting Air Pollutant Emissions Using Deep Sparse Transformer Networks: A Case Study of the Ekibastuz Coal-Fired Power Plant" Sustainability 17, no. 11: 5115. https://doi.org/10.3390/su17115115
APA StyleAndrashko, Y., Kuchanskyi, O., Biloshchytskyi, A., Neftissov, A., & Biloshchytska, S. (2025). Forecasting Air Pollutant Emissions Using Deep Sparse Transformer Networks: A Case Study of the Ekibastuz Coal-Fired Power Plant. Sustainability, 17(11), 5115. https://doi.org/10.3390/su17115115