Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture
Abstract
:1. Introduction
- (Q1) Are farmers implementing values and practices of the circular bioeconomy?
- (Q2) Are farm advisors promoting these values and practices to farmers?
- (Q3) What are the potential barriers preventing farmers from transitioning to the circular bioeconomy?
2. What Does Circular Bioeconomy Mean in Agricultural Production?
3. Role of the Farm Advisor in Building Farmer Awareness
4. Materials and Methods
5. Results
5.1. Survey Results (P1)
5.2. Results of Qualitative Research: Interviews with Farm Advisors (P2)
- Knowledge of advisors about the circular bioeconomy strategy
- Are actions integral to the circular bioeconomy being recommended to farmers?
- Assessment of the behavior of the farmers and their institutional environment
6. Discussion
- -
- A lack of action, despite declared knowledge, allows us to suppose that, in reality, that knowledge and awareness are incomplete, or that the farmers who are aware do not have the means to transform that awareness into action;
- -
- Advisors point to the low level of knowledge about the bioeconomy among farmers but assess their own level of knowledge in that area as inadequate. According to them, concepts related to the bioeconomy seem to be unclear, making them difficult to promote and implement;
- -
- Farmers and farm advisors have a limited awareness of the possibility of using biomass in innovative ways, such as in the production of bioplastics, biochemicals, or biocomposites. Biomass is often treated solely as a fertilizer or fuel, limiting its circular potential;
- -
- Openness to innovation and implementation of practices of the bioeconomy are more visible among younger farmers with larger farms and higher incomes. Most of those surveyed belong to the groups defined in the survey as the “Silent majority” or the “Marginalized” group, characterized by a low level of implementation of circular practices and a lack of initiative;
- -
- Low social capital manifesting itself in the form of a reluctance to cooperate and low trust in public institutions, coupled with prejudices of a political nature. Both quantitative and qualitative studies underline the problem of the inability of farmers to cooperate with each other, making it difficult to create groups of producers or cooperatives, which could support the implementation of the principles of the circular bioeconomy;
- -
- Insufficient funds of their own for investment or an inability to obtain funds;
- -
- A lack of clear guidelines or a consistent communications strategy on the part of institutions is also limiting the development of this approach;
- -
- A lack of consistent messaging on the subject of the implementation of bioeconomy strategy and barriers to the dissemination of knowledge of its benefits, which may be the result of inadequate state involvement in the development and promotion of bioeconomy strategy.
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five Cornerstones of a Global Bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond Six of Nine Planetary Boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Change 2016, 37, 43–55. [Google Scholar] [CrossRef]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2023–2032. In OECD-FAO Agricultural Outlook; OECD: Paris, France, 2023. [Google Scholar] [CrossRef]
- Mackenzie, F.T.; Ver, L.M.; Lerman, A. Century-Scale Nitrogen and Phosphorus Controls of the Carbon Cycle. Chem. Geol. 2002, 190, 13–32. [Google Scholar] [CrossRef]
- Lehnert, N.; Dong, H.T.; Harland, J.B.; Hunt, A.P.; White, C.J. Reversing Nitrogen Fixation. Nat. Rev. Chem. 2018, 2, 278–289. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; Zhou, J.; Muhoza, B.; Wang, F.; Herzberger, A.; Yu, X. Integrated Eco-Strategies towards Sustainable Carbon and Nitrogen Cycling in Agriculture. J. Environ. Manag. 2021, 293, 112856. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Kehoe, L.; Romero-Muñoz, A.; Polaina, E.; Estes, L.; Kreft, H.; Kuemmerle, T. Biodiversity at Risk under Future Cropland Expansion and Intensification. Nat. Ecol. Evol. 2017, 1, 1129–1135. [Google Scholar] [CrossRef]
- Dsouza, A.; Price, G.W.; Dixon, M.; Graham, T. A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture. Sustainability 2021, 13, 2471. [Google Scholar] [CrossRef]
- Montemayor, E.; Bonmatí, A.; Torrellas, M.; Camps, F.; Ortiz, C.; Domingo, F.; Riau, V.; Antón, A. Environmental Accounting of Closed-Loop Maize Production Scenarios: Manure as Fertilizer and Inclusion of Catch Crops. Resour. Conserv. Recycl. 2019, 146, 395–404. [Google Scholar] [CrossRef]
- Banasik, A.; Kanellopoulos, A.; Claassen, G.D.H.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G. Closing Loops in Agricultural Supply Chains Using Multi-Objective Optimization: A Case Study of an Industrial Mushroom Supply Chain. Int. J. Prod. Econ. 2017, 183, 409–420. [Google Scholar] [CrossRef]
- Bioeconomy Strategy. Available online: https://environment.ec.europa.eu/strategy/bioeconomy-strategy_en (accessed on 30 March 2025).
- Nowak, A.; Kobiałka, A.; Krukowski, A. Significance of Agriculture for Bioeconomy in the Member States of the European Union. Sustainability 2021, 13, 8709. [Google Scholar] [CrossRef]
- Monika, S.; Diana, K. Bioeconomy-Present and Future. In Proceedings of the Innovative Development of Agricultural Business and Rural Areas, Sofia, Bulgaria, 28–29 September 2023. [Google Scholar] [CrossRef]
- Ronzon, T.; Iost, S.; Philippidis, G. Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis. Environ. Dev. Sustain. 2022, 24, 8195–8217. [Google Scholar] [CrossRef]
- Muradin, M. The environmental assessment of biomass waste conversion to sustainable energy in the agricultural biogas plant. In Towards a Sustainable Future-Life Cycle Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 133–141. [Google Scholar] [CrossRef]
- Mak, T.M.; Xiong, X.; Tsang, D.C.; Yu, I.K.; Poon, C.S. Sustainable Food Waste Management towards Circular Bioeconomy: Policy Review, Limitations and Opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef]
- Gatto, F.; Re, I. Circular Bioeconomy Business Models to Overcome the Valley of Death. A Systematic Statistical Analysis of Studies and Projects in Emerging Bio-Based Technologies and Trends Linked to the SME Instrument Support. Sustainability 2021, 13, 1899. [Google Scholar] [CrossRef]
- Salvador, R.; Puglieri, F.N.; Halog, A.; de Andrade, F.G.; Piekarski, C.M.; De Francisco, A.C. Key Aspects for Designing Business Models for a Circular Bioeconomy. J. Clean. Prod. 2021, 278, 124341. [Google Scholar] [CrossRef]
- Muscat, A.; de Olde, E.M.; Ripoll-Bosch, R.; Van Zanten, H.H.E.; Metze, T.A.P.; Termeer, C.J.A.M.; van Ittersum, M.K.; de Boer, I.J.M. Principles, Drivers and Opportunities of a Circular Bioeconomy. Nat. Food 2021, 2, 561–566. [Google Scholar] [CrossRef]
- Patel, S.K.; Sharma, A.; Singh, G.S. Traditional Agricultural Practices in India: An Approach for Environmental Sustainability and Food Security. Energy Ecol. Environ. 2020, 5, 253–271. [Google Scholar] [CrossRef]
- Ba, Q.X.; Lu, D.J.; Kuo, W.H.J.; Lai, P.H. Traditional Farming and Sustainable Development of an Indigenous Community in the Mountain Area—A Case Study of Wutai Village in Taiwan. Sustainability 2018, 10, 3370. [Google Scholar] [CrossRef]
- Dahlin, J.; Svensson, E. Revitalizing Traditional Agricultural Practices: Conscious Efforts to Create a More Satisfying Culture. Sustainability 2021, 13, 11424. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.J.; Chang, J.S. Circular Bioeconomy: An Introduction. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–23. [Google Scholar] [CrossRef]
- Zhao, S.; Schmidt, S.; Qin, W.; Li, J.; Li, G.; Zhang, W. Towards the Circular Nitrogen Economy-A Global Meta-Analysis of Composting Technologies Reveals Much Potential for Mitigating Nitrogen Losses. Sci. Total Environ. 2020, 704, 135401. [Google Scholar] [CrossRef] [PubMed]
- Nordahl, S.L.; Preble, C.V.; Kirchstetter, T.W.; Scown, C.D. Greenhouse Gas and Air Pollutant Emissions from Composting. Environ. Sci. Technol. 2023, 57, 2235–2247. [Google Scholar] [CrossRef]
- Yang, F.; Li, Y.; Han, Y.; Qian, W.; Li, G.; Luo, W. Performance of Mature Compost to Control Gaseous Emissions in Kitchen Waste Composting. Sci. Total Environ. 2019, 657, 262–269. [Google Scholar] [CrossRef]
- Baglan, M.; Mwalupaso, G.E.; Zhou, X.; Geng, X. Towards Cleaner Production: Certified Seed Adoption and Its Effect on Technical Efficiency. Sustainability 2020, 12, 1344. [Google Scholar] [CrossRef]
- Prasetyo, T.; Setiani, C.; Wulanjari, M.E. Cost Efficiency and Farmers’ Profit in Using Certified Rice Seeds and Non-Certified Rice Seeds in Rainfed Rice Field. E3S Web Conf. 2022, 361, 02027. [Google Scholar] [CrossRef]
- Mattana, E.; Ulian, T.; Pritchard, H.W. Seeds as Natural Capital. Trends Plant Sci. 2022, 27, 139–146. [Google Scholar] [CrossRef]
- Chable, V.; Nuijten, E.; Costanzo, A.; Goldringer, I.; Bocci, R.; Oehen, B.; Rey, F.; Fasoula, D.; Feher, J.; Keskitalo, M.; et al. Embedding Cultivated Diversity in Society for Agro-Ecological Transition. Sustainability 2020, 12, 784. [Google Scholar] [CrossRef]
- Rodias, E.; Aivazidou, E.; Achillas, C.; Aidonis, D.; Bochtis, D. Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework. Energies 2020, 14, 159. [Google Scholar] [CrossRef]
- Ansari, A.; Wuryandani, S.; Pranesti, A.; Telaumbanua, M.; Ngadisih; Hardiansyah, M.Y.; Alam, T.; Supriyanta; Martini, T.; Taryono. Optimizing Water-Energy-Food Nexus: Achieving Economic Prosperity and Environmental Sustainability in Agriculture. Front. Sustain. Food Syst. 2023, 7, 1207197. [Google Scholar] [CrossRef]
- Toplicean, I.M.; Datcu, A.D. An Overview on Bioeconomy in Agricultural Sector, Biomass Production, Recycling Methods, and Circular Economy Considerations. Agriculture 2024, 14, 1143. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic Pollution in Agriculture as a Threat to Food Security, the Ecosystem, and the Environment: An Overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; de Vries, H. A New Circular Business Model Typology for Creating Value from Agro-Waste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef] [PubMed]
- Baur, I.; Dobricki, M.; Lips, M. The Basic Motivational Drivers of Northern and Central European Farmers. J. Rural Stud. 2016, 46, 93–101. [Google Scholar] [CrossRef]
- Ingham, H.; Ingham, M. How big is the problem of Polish agriculture? Eur. Stud. 2004, 56, 213–234. [Google Scholar] [CrossRef]
- Chloupkova, J.; Svendsen, G.L.H.; Svendsen, G.T. Building and Destroying Social Capital: The Case of Cooperative Movements in Denmark and Poland. Agric. Hum. Values 2003, 20, 241–252. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Biłyj, J. Conditions for introducing innovation on agricultural farms. Ann. Pol. Assoc. Agric. Agribus. Econ. 2023, XXV, 297–311. [Google Scholar] [CrossRef]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus Expectation: Farmers’ Perceptions of Smart Farming Technologies for Cropping Systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112 Pt 1, 9–21. [Google Scholar] [CrossRef]
- Kujawiński, W. Słownik Metodyczny Doradcy Rolniczego; Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Poznaniu: Poznań, Poland, 2005.
- Wortal PSZ. Ministerstwo Rodziny, Pracy i Polityki Społecznej. Available online: https://psz.praca.gov.pl/ (accessed on 30 March 2025).
- Bogusz, M.; Kiełbasa, B. Formy i Metody Doradztwa w Agrobiznesie Na Podstawie Działalności Szkoleniowej Ośrodków Doradztwa Rolniczego w Dobie Pandemii COVID-19. Tur. Rozw. Reg. 2021, 16, 15–26. [Google Scholar] [CrossRef]
- Kiełbasa, B.; Okrajni, M. Znaczenie Umiejętności Miękkich w Budowaniu Kompetencji Zawodowych Doradcy Rolniczego. Wieś Rol. 2023, 2, 91–106. [Google Scholar] [CrossRef]
- Labarthe, P.; Beck, M. CAP and Advisory Services: From Farm Advisory Systems to Innovation Support. EuroChoices 2022, 21, 5–14. [Google Scholar] [CrossRef]
- Skaalsveen, K.; Ingram, J.; Urquhart, J. The role of farmers’ social networks in the implementation of no-till farming practices. Agric. Syst. 2020, 181, 102824. [Google Scholar] [CrossRef]
- Materia, V.C.; Giarè, F.; Klerkx, L. Increasing knowledge flows Between the agricultural research and advisory system in Italy: Combining virtual and non-virtual interaction in communities of practice. J. Agric. Educ. Ext. 2014, 21, 203–218. [Google Scholar] [CrossRef]
- Sutherland, L.A.; Mills, J.; Ingram, J.; Burton, R.J.; Dwyer, J.; Blackstock, K. Considering the Source: Commercialisation and Trust in Agri-Environmental Information and Advisory Services in England. J. Environ. Manag. 2013, 118, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.; Grogan, P.; Heanue, K. Building Advisory Relationships with Farmers to Foster Innovation. In Proceedings of the European Seminar of Extension and Education, Acireale, Italy, 18–21 June 2019; Available online: http://hdl.handle.net/10197/10779 (accessed on 30 March 2025).
- Ingram, J. Agronomist–Farmer Knowledge Encounters: An Analysis of Knowledge Exchange in the Context of Best Management Practices in England. Agric. Hum. Values 2008, 25, 405–418. [Google Scholar] [CrossRef]
- Saeipour, P.; Sarbakhsh, P.; Salemi, S.; Aghdam, F.B. A Fuzzy Clustering Approach to Identify Pedestrians’ Traffic Behavior Patterns. J. Res. Health Sci. 2023, 23, e00592. [Google Scholar] [CrossRef]
- Gallardo, J.C.; Chiock, C.H.M.; Flores, J.W.S.; Rodríguez, I.D.S.; Chacón, R.F.V.; Ruiz, R.N.S.; Villena, F.R.R.; Nina, F.R.C. Pattern Identification Using Fuzzy Cluster Analysis and Latent Class Analysis: A Case Study in Perú. Acad. J. Interdiscip. Stud. 2024, 13, 223. [Google Scholar] [CrossRef]
- Patil, A.J.; Patil, C.S.; Karhe, R.R.; Aher, M.A. Comparative study of different clustering algorithms. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2014, 3, 10490–10497. [Google Scholar]
- Panda, S.; Sahu, S.; Jena, P.; Chattopadhyay, S. Comparing fuzzy-C means and K-means clustering techniques: A comprehensive study. In Advances in Computer Science, Engineering & Applications: Proceedings of the Second International Conference on Computer Science, Engineering and Applications (ICCSEA 2012), 25–27 May 2012, New Delhi, India; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 451–460. [Google Scholar]
- JASP. Available online: https://jasp-stats.org (accessed on 30 March 2025).
- Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique Based on Elbow Method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Papadopoulou, C.I.; Loizou, E.; Chatzitheodoridis, F.; Michailidis, A.; Karelakis, C.; Fallas, Y.; Paltaki, A. What Makes Farmers Aware in Adopting Circular Bioeconomy Practices? Evidence from a Greek Rural Region. Land 2023, 12, 809. [Google Scholar] [CrossRef]
- Balan, E.M.; Zeldea, C.G. Bioeconomy in Romania: Investigating Farmers’ Knowledge. Sustainability 2023, 15, 7883. [Google Scholar] [CrossRef]
Spearman’s Rho Coefficient | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 |
---|---|---|---|---|---|---|---|
Q8 | rs = 0.02589, p = 0.79816 n.s. | rs = 0.14304, p = 0.15568 n.s. | rs = 0.21208, p = 0.03415 | rs = 0.10182, p = 0.31345 n.s. | rs = 0.1414, p = 0.16054 n.s. | rs = 0.01279, p = 0.8995 n.s. | rs = −0.04652, p = 0.64579 n.s. |
Q9 | rs = 0.07, p = 0.473 n.s. | rs = 0.1, p = 0.304 n.s. | rs = 0.08, p = 0.405 n.s. | rs = 0.04, p = 0.673 n.s. | rs = 0.06, p = 0.521 n.s. | rs = 0.05, p = 0.645 n.s. | rs = 0.11, p = 0.294 n.s. |
Q10 | rs = 0.09065, p = 0.36974 n.s. | rs = 0.07304, p = 0.4702 n.s. | rs = 0.08292, p = 0.41213 n.s. | rs = 0.13972, p = 0.16561 n.s. | rs = 0.18825, p = 0.06071 n.s. | rs = 0.14164, p = 0.1598 n.s. | rs = 0.11867, p = 0.23963 n.s. |
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | |
---|---|---|---|---|---|---|---|---|---|---|
Age | rs = 0.07838, p = 0.43825 n.s. | rs = 0.10639, p = 0.29212 n.s. | rs = 0.1261, p = 0.21124 n.s. | rs = −0.05864, p = 0.56225 n.s. | rs = −0.10189, p = 0.3131 n.s. | rs = 0.0501, p = 0.62056 n.s. | rs = −0.13081, p = 0.19456 n.s. | rs = 0.03952, p = 0.69629 n.s. | rs = 0.23604, p = 0.01807 | rs = 0.00445, p = 0.96498 n.s. |
Education | rs = −0.04078, p = 0.68704 n.s. | rs = −0.00214, p = 0.98318 n.s. | rs = 0.03563, p = 0.72489 n.s. | rs = −0.02888, p = 0.77545 n.s. | rs = −0.01434, p = 0.88738 n.s. | rs = −0.1559, p = 0.12142 n.s. | rs = −0.24337, p = 0.01469 | rs = 0.21754, p = 0.0297 | rs = −0.00581, p = 0.95428 n.s. | rs = 0.18975, p = 0.05864 n.s. |
Income per person in household (net) | rs = −0.03984, p = 0.69394 n.s. | rs = 0.03647, p = 0.71866 n.s. | rs = −0.08246, p = 0.4147 n.s. | rs = 0.01738, p = 0.86373 n.s. | rs = −0.03744, p = 0.71155 n.s. | rs = 0.14393, p = 0.15311 n.s. | rs = −0.14583, p = 0.14769 n.s. | rs = 0.24204, p = 0.01526 | rs = −0.01968, p = 0.84589 n.s. | rs = 0.20124, p = 0.04468 |
Farm size | rs = 0.14284, p = 0.15626 n.s. | rs = 0.12711, p = 0.20759 n.s. | rs = 0.20038, p = 0.04561 | rs = 0.06848, p = 0.49842 n.s. | rs = 0.01827, p = 0.85683 n.s. | rs = −0.0384, p = 0.70448 n.s. | rs = 0.25011, p = 0.01208 | rs = 0.19331, p = 0.05398 n.s. | rs = 0.08151, p = 0.42011 n.s. | rs = 0.14366, p = 0.15389 n.s. |
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | |
---|---|---|---|---|---|---|---|---|---|---|
Gender | z = −0.44, p = 0.660 n.s. | z = −4.79026 p < 0.00001 p < 0.05 | z = −5.18365 p = <0.00001 p < 0.05. | z = −2.69139 p = 0.00714 p < 0.05 | z = −1.42083 p = 0.1556 n.s. | z = 6.5153 p < 0.00001 p < 0.05 | z = 0.45814 p = 0.64552 n.s. | z = −11 p < 0.00001 p < 0.05 | z = −9.88717 p < 0.00001 p < 0.05 | z = −10.9134 p < 0.00001 p < 0.05 |
Type of production | H(2, N = 100) = 20.34, p < 0.001, p < 0.001, p < 0.05 | H(2, N = 100) = 8.9623, p = 0.01132, p < 0.05 | H(2, N = 100) = 4.5306, p = 0.1038 n.s. | H(2, N = 100) = 7.228, p = 0.02694, p < 0.05 | H(2, N = 100) = 0.1495, p = 0.928 n.s. | H(2, N = 100) = 1.1678, p = 0.55771 n.s. | H(2, N = 100) = 2.7212, p = 0.25651 n.s. | H(2, N = 100) = 0.0838, p = 0.95897 n.s. | H(2, N = 100) = 0.857, p = 0.65148 n.s. | H(2, N = 100) = 1.7828, p = 0.41008 |
Dunn’s test * | x1–x2 x1–x3 | x1–x2 x2–x3 | x1–x2 |
M2 | M3 | M4 | M6 | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gr. 1: Question marks | 2.3 | 3.3 | 3.4 | 5.9 | 4.1 | 1.6 | 1.4 | 1.4 | 1.7 | 1.0 | 3.4 | 4.6 | 2.9 | 3.3 |
Gr. 2: Marginalized | 4.3 | 3.3 | 1.6 | 3.4 | 4.5 | 3.6 | 3.1 | 3.0 | 2.4 | 1.0 | 1.1 | 4.0 | 3.0 | 3.6 |
Gr. 3: Struggling | 3.1 | 3.1 | 2.4 | 5.2 | 1.0 | 2.6 | 3.8 | 3.4 | 3.1 | 1.1 | 2.6 | 4.1 | 3.0 | 3.5 |
Gr. 4: Open to innovation | 2.8 | 3.4 | 4.1 | 6.0 | 3.2 | 3.9 | 3.3 | 2.6 | 3.2 | 1.7 | 3.6 | 4.8 | 4.0 | 4.7 |
Gr. 5: Silent majority of smaller producers | 3.2 | 3.4 | 3.1 | 4.0 | 1.4 | 2.5 | 2.0 | 1.9 | 1.7 | 1.3 | 1.4 | 4.2 | 3.5 | 3.5 |
Gr. 6: Silent majority of bigger producers | 3.4 | 3.2 | 2.7 | 5.8 | 4.3 | 2.5 | 2.9 | 2.3 | 1.9 | 1.5 | 1.8 | 4.1 | 3.7 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pink, M.; Kiełbasa, B.; Niewiadomski, M.; Piecuch, K. Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture. Sustainability 2025, 17, 4729. https://doi.org/10.3390/su17104729
Pink M, Kiełbasa B, Niewiadomski M, Piecuch K. Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture. Sustainability. 2025; 17(10):4729. https://doi.org/10.3390/su17104729
Chicago/Turabian StylePink, Małgorzata, Barbara Kiełbasa, Michał Niewiadomski, and Katarzyna Piecuch. 2025. "Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture" Sustainability 17, no. 10: 4729. https://doi.org/10.3390/su17104729
APA StylePink, M., Kiełbasa, B., Niewiadomski, M., & Piecuch, K. (2025). Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture. Sustainability, 17(10), 4729. https://doi.org/10.3390/su17104729