Denitrification by Purple Phototrophic Bacteria: A Carbon-Neutral and Resource-Efficient Route for Nitrogen Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. PPB Enrichment
2.2. Growth Tests
2.3. Batch Denitrification Experiments
- (a)
- NaNO3 was used as the sole nitrogen source (50 mg N/L). C/N was set to 10:1, 2.86:1, 1:1;
- (b)
- NaNO2 was as the sole nitrogen source (50 mg N/L). C/N was set to 10:1, 1.71:1, 1:1;
- (c)
- N2O was as the sole nitrogen source (0.38 ± 0.02 mg N/L). C/N was set to 10:1, 0.57:1, 0.1:1 (to minimize the potential hazards to experimental personnel due to the toxicity and low solubility of nitrous oxide, a low concentration of N2O was used for nitrogen source exploration. Meanwhile, experimental conditions such as biomass and reaction volume were scaled down accordingly).
2.4. Analytical Methods
2.5. Microbial Community Analysis
3. Results and Discussion
3.1. PPB Enrichment and Growth Performance
3.2. The Impact of Varying Nitrogen Sources and C/N Ratios on PPB Denitrification
3.3. Implications for Theory and Practice
4. Conclusions
- Incandescent light and sodium acetate were the ideal light source and carbon source, respectively, for PPB (Rps. palustris) growth.
- The true nitrite reduction rate of PPB denitrification (4.42 mg N/gVSS/h) was significantly higher than its nitrate reduction rate (1.51 mg N/gVSS/h), eliminating the possibility of nitrite accumulation.
- Under conditions of sufficient carbon, the N2O emission factor by PPB denitrification was ~0.17%, about 4 times lower than that of some conventional heterotrophic denitrification.
- The PPB biomass generated during the denitrification process could bring an additional revenue of USD 17.63 per kg−1 of biomass.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Su, J.; Zheng, Z.; Yang, S. Denitrification strategies of strain YSF15 in response to carbon scarcity: Based on organic nitrogen, soluble microbial products and extracellular polymeric substances. Bioresour. Technol. 2020, 314, 123733. [Google Scholar] [CrossRef]
- Sun, Y.; Ali, A.; Zheng, Z.; Su, J.; Zhang, S.; Min, Y.; Liu, Y. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio. Bioresour. Technol. 2022, 347, 126369. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 2010, 24, 2621–2628. [Google Scholar] [CrossRef]
- Hameed, A.; Nazir, S.; Rehman, J.U.; Ahmad, N.; Hussain, A.; Alam, I.; Nazir, A.; Tahir, M.B. Assessment of health hazards related to contaminations of fluorides, nitrates, and nitrites in drinking water of Vehari, Punjab, Pakistan. Hum. Ecol. Risk Assess. 2021, 27, 1509–1522. [Google Scholar] [CrossRef]
- Wang, X.; Xing, L.; Qiu, T.; Han, M. Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Environ. Sci. Pollut. Res. 2013, 20, 2236–2243. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, S. Dynamic Regeneration of D301f Anion Exchange Resin to Remove Nitrate Nitrogen in Wastewater. In Proceedings of the 4th International Conference on Technology of Architecture and Structure (ICTAS 2011), Xi’an, China, 22–24 September 2012; Volume 374–377, pp. 1005–1008. [Google Scholar]
- Lin, Z.; Cheng, S.; Li, H.; Li, L. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water. Sci. Total Environ. 2022, 806, 150945. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, X.; Zhao, C.; Chen, S.; Yang, S. Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits. Sci. Rep. 2018, 8, 17803. [Google Scholar] [CrossRef]
- Park, J.Y.; Yoo, Y.J. Biological nitrate removal in industrial wastewater treatment: Which electron donor we can choose. Appl. Microbiol. Biotechnol. 2009, 82, 415–429. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Dai, Y.; Su, X.; Xiao, Y.; Wu, D.; Sun, F.; Mei, R.; Chen, J.; Lin, H. Effective partial denitrification of biological effluent of landfill leachate for Anammox process: Start-up, influencing factors and stable operation. Sci. Total Environ. 2022, 807, 150975. [Google Scholar] [CrossRef]
- Sahinkaya, E.; Dursun, N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement. Chemosphere 2012, 89, 144–149. [Google Scholar] [CrossRef]
- Cao, K.F.; Zhi, R.; Zhang, G.M. Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. Bioresour. Technol. 2020, 299, 122648. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, G.; He, S.; Zhao, R.; Zhu, D. Purple non-sulfur bacteria technology: A promising and potential approach for wastewater treatment and bioresources recovery. World J. Microbiol. Biotechnol. 2021, 37, 161. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, G.; Yang, G.; Wang, H.; Meng, F.; Wang, H.; Peng, M. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria. Bioresour. Technol. 2017, 232, 408–411. [Google Scholar] [CrossRef]
- Hao, T.; Xu, Y.; Liang, C.; Peng, X.; Yu, S.; Peng, L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. Chemosphere 2024, 353, 141535. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, G.; Zhang, J.; Li, X.; Li, J. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). Bioresour. Technol. 2016, 210, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.J.; Prihastyanti, M.N.U.; Brotosudarmo, T.H.P. Preliminary Evaluation of the Pigments Content from Rhodobacter sphaeroides at Stages During Photosynthetic Growth. Procedia Chem. 2015, 14, 101–107. [Google Scholar] [CrossRef]
- Idi, A.; Ibrahim, Z.; Mohamad, S.E.; Majid, Z.A. Biokinetics of nitrogen removal at high concentrations by Rhodobacter sphaeroides ADZ101. Int. Biodeterior. Biodegrad. 2015, 105, 245–251. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, G.; Meng, F.; Zhi, R.; Zhang, P.; Zhu, Y. Nitrogen metabolism in photosynthetic bacteria wastewater treatment: A novel nitrogen transformation pathway. Bioresour. Technol. 2019, 294, 122162. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, P.; Zhang, G. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresour. Technol. 2015, 179, 505–509. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, X.; Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef]
- Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. Sci. Total Environ. 2022, 822, 153489. [Google Scholar] [CrossRef]
- Wockenfus, A.M.; Koch, C.D.; Conlon, P.M.; Sorensen, L.D.; Cambern, K.L.; Chihak, A.J.; Zmolek, J.A.; Petersen, A.E.; Burns, B.E.; Lieske, J.C.; et al. Discordance between urine pH measured by dipstick and pH meter: Implications for methotrexate administration protocols. Clin. Biochem. 2013, 46, 152–154. [Google Scholar] [CrossRef]
- Gilcreas, F.W. Standard methods for the examination of water and waste water. Am. J. Public Health Nations Health 1966, 56, 387–388. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T.; Hsieh, K.; Tait, S.; Barry, E.M.; Puyol, D.; Batstone, D.J. White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater-A comparison. Water Res. 2018, 144, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Y.; Liang, C.; Peng, L.; Zhou, Y. Nitrogen removal by algal-bacterial consortium during mainstream wastewater treatment: Transformation mechanisms and potential N2O mitigation. Water Res. 2023, 235, 119890. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.T.; Ni, B.J.; Yuan, Z.G. Modeling Electron Competition among Nitrogen Oxides Reduction and N2O Accumulation in Denitrification. Environ. Sci. Technol. 2013, 47, 11083–11091. [Google Scholar] [CrossRef]
- Pan, Y.; Ni, B.J.; Bond, P.L.; Ye, L.; Yuan, Z. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res. 2013, 47, 3273–3281. [Google Scholar] [CrossRef] [PubMed]
- Green, C.T.; Boehlke, J.K.; Bekins, B.A.; Phillips, S.P. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour. Res. 2010, 46, W08525.1–W08525.19. [Google Scholar] [CrossRef]
- Yu, S.; Peng, L.; Xu, Y.; Song, S.; Xie, G.-J.; Liu, Y.; Ni, B.-J. Optimizing light sources for selective growth of purple bacteria and efficient formation of value-added products. J. Clean. Prod. 2021, 280, 124493. [Google Scholar] [CrossRef]
- Muzziotti, D.; Adessi, A.; Faraloni, C.; Torzillo, G.; De Philippis, R. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance. Microbiol. Res. 2017, 197, 49–55. [Google Scholar] [CrossRef]
- Rashid, N.; Onwusogh, U.; Mackey, H.R. Exploring the metabolic features of purple non-sulfur bacteria for waste carbon utilization and single-cell protein synthesis. Biomass Convers. Biorefinery 2024, 14, 12653–12672. [Google Scholar] [CrossRef]
- Turon, V.; Anxionnaz-Minvielle, Z.; Willison, J.C. Replacing incandescent lamps with an LED panel for hydrogen production by photofermentation: Visible and NIR wavelength requirements. Int. J. Hydrog. Energy 2018, 43, 7784–7794. [Google Scholar] [CrossRef]
- Chong, S.C.; Soomro, D.M. Harmonic Behavior of Different Branded LED Lamps and Their Respective Cost Effectiveness. In Lecture Notes in Electrical Engineering, Proceedings of the 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, Penang, Malaysia, 2–3 February 2016; Springer: Singapore, 2016; pp. 725–736. [Google Scholar]
- Sivanesan, J.; Vijayalakshmi, A.; Sivaprakash, B.; Rajamohan, N. Biohythane as a sustainable fuel-A review on prospective synthesis based on feedstock preprocessing, optimization approach and circular economy concept. Process Saf. Environ. Prot. 2024, 185, 739–753. [Google Scholar] [CrossRef]
- Schink, B. An alternative to the glyoxylate shunt. Mol. Microbiol. 2009, 73, 975–977. [Google Scholar] [CrossRef]
- Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Wouwer, A.V.; Wattiez, R.; Dewasme, L.; Leroy, B. Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria: Experimental kinetics and dynamic modelling. Biochem. Eng. J. 2022, 186, 108547. [Google Scholar]
- Cerrillo, M.; Morey, L.; Vinas, M.; Bonmati, A. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol. 2016, 100, 10137–10146. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lu, W.-B.; Liu, C.-H.; Chang, J.-S. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour. Technol. 2008, 99, 3609–3616. [Google Scholar] [CrossRef] [PubMed]
- Alibaba. Manufacturers, Suppliers, Exporters & Importers from the World’s Largest Online B2B Marketplace. Available online: https://www.alibaba.com/ (accessed on 15 October 2024).
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef] [PubMed]
- Pelaz, L.; Gomez, A.; Letona, A.; Garralon, G.; Fdz-Polanco, M. Nitrogen removal in domestic wastewater. Effect of nitrate recycling and COD/N ratio. Chemosphere 2018, 212, 8–14. [Google Scholar] [CrossRef]
- Foglar, L.; Briski, F.; Sipos, L.; Vukovic, M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour. Technol. 2005, 96, 879–888. [Google Scholar] [CrossRef]
- Poh, L.S.; Jiang, X.; Zhang, Z.; Liu, Y.; Ng, W.J.; Zhou, Y. N2O accumulation from denitrification under different temperatures. Appl. Microbiol. Biotechnol. 2015, 99, 9215–9226. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhao, J.; Hu, B.; Wang, S.; Li, X.; Lan, L. Characteristics of N2O Accumulation during the Endogenous Denitrification of Nitrite. Pol. J. Environ. Stud. 2020, 29, 901–908. [Google Scholar]
- Newton, J.W.; Wilson, P.W. Nitrogen fixation and photoproduction of molecular hydrogen by Thiorhodaceae. Antonie Van Leeuwenhoek 1953, 19, 71–77. [Google Scholar] [CrossRef]
- Pino, C.; Olmo-Mira, F.; Cabello, P.; Castillo, F.; Roldán, M.D.; Moreno-Vivián, C. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem. Soc. Trans. 2006, 34, 127–129. [Google Scholar] [CrossRef]
- Fenu, A.; Dockx, L.; Sandra, V.D.; Frederik, W.; Verhaeghe, K.; Koen, V.L.; Joris, R.; Rosalia, D. Glycerol used for denitrification in full-scale wastewater treatment plants: Nitrous oxide emissions, sludge acclimatization, and other insights. Water Sci. Technol. 2023, 88, 645–657. [Google Scholar]
- Hu, Z.; Zhang, J.; Li, S.; Xie, H. Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ. Sci. Pollut. Res. 2013, 20, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Nitrous oxide emission during wastewater treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
- Capodici, M.; Avona, A.; Laudicina, V.A.; Viviani, G. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment. Sci. Total Environ. 2018, 630, 462–468. [Google Scholar] [CrossRef]
- Warneke, S.; Schipper, L.A.; Bruesewitz, D.A.; McDonald, I.; Cameron, S. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol. Eng. 2011, 37, 511–522. [Google Scholar] [CrossRef]
- Hao, X.-d.; Yang, Z.-L.; Yu, W.-B.; Liu, R.-B. N2O Emission from the Processes of Wastewater Treatment: Mechanisms and Control Strategies. Huan Jing Ke Xue Huanjing Kexue 2023, 44, 1163–1173. [Google Scholar]
- Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res. 2001, 35, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Wampler, D.A.; Ensign, S.A. Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Appl. Environ. Microbiol. 2005, 71, 5850–5857. [Google Scholar] [CrossRef] [PubMed]
- Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; et al. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol. Adv. 2020, 43, 107567. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, R.; Wang, C.; Zhang, G.; Chen, C.; Li, B.; Han, T. Exploration of flashing light interaction effect on improving biomass, protein, and pigments production in photosynthetic bacteria wastewater treatment. J. Clean. Prod. 2022, 348, 131304. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Liu, H.; Liu, S.; Lv, L.; Liang, J. Treatment of high salinity organic wastewater by photosynthetic bacteria to produce value-added products: Performance, community and metabolic characteristics. J. Water Process Eng. 2024, 64, 105593. [Google Scholar] [CrossRef]
- Bodik, I.; Blstakova, A.; Sedlacek, S.; Hutnan, M. Biodiesel waste as source of organic carbon for municipal WWTP denitrification. Bioresour. Technol. 2009, 100, 2452–2456. [Google Scholar] [CrossRef]
- Sapmaz, T.; Manafi, R.; Mahboubi, A.; Lorick, D.; Koseoglu-Imer, D.Y.; Taherzadeh, M.J. Potential of food waste-derived volatile fatty acids as alternative carbon source for denitrifying moving bed biofilm reactors. Bioresour. Technol. 2022, 364, 128046. [Google Scholar] [CrossRef]
- Alloul, A.; Ganigué, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. Capture-Ferment-Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. Environ. Sci. Technol. 2018, 52, 6729–6742. [Google Scholar] [CrossRef]
- Stegman, S.; Batstone, D.J.; Rozendal, R.; Jensen, P.D.; Hulsen, T. Purple phototrophic bacteria granules under high and low upflow velocities. Water Res. 2021, 190, 116760. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Eismann, F.; Hauth, B.; Bias, W.R. An integrated test strategy for the assessment of anaerobic biodegradability of wastewaters. Chemosphere 1993, 26, 2241–2254. [Google Scholar] [CrossRef]
- Zhi, R.; Cao, K.; Zhang, G.; Zhu, J.; Xian, G. Zero excess sludge wastewater treatment with value-added substances recovery using photosynthetic bacteria. J. Clean. Prod. 2020, 250, 119581. [Google Scholar] [CrossRef]
- Popescu, M.; Iancu, P.; Plesu, V.; Todasca, M.C.; Isopencu, G.O.; Bildea, C.S. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules 2022, 27, 4191. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Yu, S.; Liang, C.; Xu, Y.; Peng, L. Denitrification by Purple Phototrophic Bacteria: A Carbon-Neutral and Resource-Efficient Route for Nitrogen Removal. Sustainability 2025, 17, 4504. https://doi.org/10.3390/su17104504
Peng X, Yu S, Liang C, Xu Y, Peng L. Denitrification by Purple Phototrophic Bacteria: A Carbon-Neutral and Resource-Efficient Route for Nitrogen Removal. Sustainability. 2025; 17(10):4504. https://doi.org/10.3390/su17104504
Chicago/Turabian StylePeng, Xiaoshuai, Siwei Yu, Chuanzhou Liang, Yifeng Xu, and Lai Peng. 2025. "Denitrification by Purple Phototrophic Bacteria: A Carbon-Neutral and Resource-Efficient Route for Nitrogen Removal" Sustainability 17, no. 10: 4504. https://doi.org/10.3390/su17104504
APA StylePeng, X., Yu, S., Liang, C., Xu, Y., & Peng, L. (2025). Denitrification by Purple Phototrophic Bacteria: A Carbon-Neutral and Resource-Efficient Route for Nitrogen Removal. Sustainability, 17(10), 4504. https://doi.org/10.3390/su17104504