Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023
Abstract
:1. Introduction
Relevance of Proximity Analysis in Wildfire Assessments
- (i)
- Identify the pre-wildfire LC of the affected areas by the wildfires in 2023 in the Bío-Bío region using high-resolution remote sensing data;
- (ii)
- Conduct a comprehensive multiple buffer zone analysis of land cover (LC) surrounding destroyed buildings and infrastructure to evaluate spatial patterns and assess the extent of environmental and structural impacts;
- (iii)
- Compare the same analysis with non-affected rural houses inside the wildfire propagation polygon.
2. Materials and Methods
2.1. Study Area
Dominance of Forest Plantation in All Affected Municipalities
2.2. Data Collection and Sources
2.3. Sample Design and Validation
2.3.1. Sample Size Calculation
- n: Required sample size;
- N: Population size;
- Z: Z-score for confidence level (1.96 for 95%);
- p: Estimated proportion of the population (default 0.5 for maximum variability);
- e: Margin of error.
2.3.2. Spatial Validation
2.4. Spatial Analysis
2.4.1. Buffer Analysis—30 m and 100 m Buffer
2.4.2. Statistical Validation
- and → mean (average) of sample 1 and sample 2, respectively.
- and → variance of sample 1 and sample 2, respectively
- and → sample size (number of observations) in sample 1 and sample 2.
2.5. Scaling Land Cover Analysis
3. Results
3.1. Proximity Breeds Peril: Nearness of Forests Plantations in Amplifying Housing Damage or Loss Risk
3.2. Neither Protective nor Risky: Minimal Measurable Differences in Forest Land Cover
3.3. Protective Role of Mosaic Agricultural and Pasture LC During Wildfire Events
3.4. Protective Function with a Certain Degree of Uncertainty of the Shrubland LC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suazo Caamaño, N.; Torres Salinas, R. Fracturas Metabólicas Del Extractivismo Forestal En Comunidades Campesinas: Caso Tomé, Chile. Campos Cienc. Soc. 2023, 11. [Google Scholar] [CrossRef]
- Baker, B.; Dinh, Y.; Foxfoot, I.R.; Ortiz, E.; Sells, A.; Anderson, S.E. Social Inequity and Wildfire Response: Identifying Gaps and Interventions in Ventura County, California. Fire 2024, 7, 41. [Google Scholar] [CrossRef]
- Duarte, E.; Rubilar, R.; Matus, F.; Garrido-Ruiz, C.; Merino, C.; Smith-Ramirez, C.; Aburto, F.; Rojas, C.; Stehr, A.; Dörner, J.; et al. Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century. Fire 2024, 7, 230. [Google Scholar] [CrossRef]
- Villagra, P.; Paula, S. Wildfire Management in Chile: Increasing Risks Call for More Resilient Communities. Environ. Sci. Policy Sustain. Dev. 2021, 63, 4–14. [Google Scholar] [CrossRef]
- Hora, B.; Almonacid, F.; González-Reyes, A. Unraveling the Differences in Landcover Patterns in High Mountains and Low Mountain Environments within the Valdivian Temperate Rainforest Biome in Chile. Land 2022, 11, 2264. [Google Scholar] [CrossRef]
- Gonzalez-Reyes, A.; Jacques-Coper, M.; Bravo-Lechuga, C.; Garreaud, R.; Rojas, M. Evolution of Heatwaves in Chile Since 1980. Weather. Clim. Extrem. 2023, 41, 100588. [Google Scholar] [CrossRef]
- Williams, C.J. Climate Change in Chile: An Analysis of State-of-the-Art Observations, Satellite-Derived Estimates and Climate Model Simulations. J. Earth Sci. Clim. Change 2017, 8, 400. [Google Scholar] [CrossRef]
- Carrasco-Escaff, T.; Garreaud, R.; Bozkurt, D.; Jacques-Coper, M.; Pauchard, A. The Key Role of Extreme Weather and Climate Change in the Occurrence of Exceptional Fire Seasons in South-Central Chile. Weather Clim. Extrem. 2024, 45, 100716. [Google Scholar] [CrossRef]
- CONAF & IDE MINAGRI Incendios Forestales. Localización de Incendios Forestales a Nivel de Puntos (CONAF). Available online: https://ide.minagri.gob.cl/geoweb/2019/11/21/desastres/ (accessed on 12 November 2024).
- Wildfire Exchange The 2022–2023 Fire Season Has Been One of the Most Devastating in Chilean History, Affecting More than 458.000 Hectares. Available online: https://wildfirex.com.au/chile-wildfire-season-2023/ (accessed on 12 November 2024).
- Coper, M.J. Análisis (CR)2|Meteorología Extrema: Uno de los Factores tras los Incendios de Febrero 2023 en el Centro-sur de Chile; Centro de Ciencia del Clima y la Resiliencia-CR2: Santiago, Chile, 2023. [Google Scholar]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping Regional Patterns of Large Forest Fires in Wildland–Urban Interface Areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef]
- Sarricolea Espinoza, P.; Serrano Notivoli, R.; Fuentealba, M.; Hernández Mora, M.; de la Barrera, F.; Smith Guerra, P.; Meseguer Ruiz, Ó. Recent Wildfires in Central Chile: Detecting Links between Burned Areas and Population Exposure in the Wildland Urban Interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef]
- Marchant, C.; Riesco, M.; Monje-Hernández, Y. Crecimiento y fragmentación del periurbano valdiviano. Efectos del urbanismo neoliberal en una ciudad intermedia del sur de Chile. Rev. EURE-Rev. Estud. Urbano Reg. 2023, 49, 1–25. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire Risk Associated with Different Vegetation Types within and Outside Wildland-Urban Interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The Spatial Domain of Wildfire Risk and Response in the Wildland Urban Interface in Sydney, Australia. Nat. Hazards Earth Syst. Sci. 2013, 13, 3385–3393. [Google Scholar] [CrossRef]
- Oliveira, S.; Gonçalves, A.; Benali, A.; Sá, A.; Zêzere, J.L.; Pereira, J.M. Assessing Risk and Prioritizing Safety Interventions in Human Settlements Affected by Large Wildfires. Forests 2020, 11, 859. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C. Resilience to Wildfires: Comparative Insights of Barriers and Facilitators for Spatial Planning in Victoria and Chile. Cities 2024, 154, 105389. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; Ruane, S.; March, A. Integrating Wildfire Risk Management and Spatial Planning–A Historical Review of Two Australian Planning Systems. Int. J. Disaster Risk Reduct. 2021, 53, 101984. [Google Scholar] [CrossRef]
- Moritz, M.A.; Hazard, R.; Johnston, K.; Mayes, M.; Mowery, M.; Oran, K.; Parkinson, A.-M.; Schmidt, D.A.; Wesolowski, G. Beyond a Focus on Fuel Reduction in the WUI: The Need for Regional Wildfire Mitigation to Address Multiple Risks. Front. For. Glob. Change 2022, 5, 848254. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Gayó, E.M.; Henríquez, N.C.; Henríquez, B.J.; Pauchard, A. Exploring the Multifunctional Landscapes Model in Areas Dominated by Non-Native Tree Plantations. Trees For. People 2024, 17, 100617. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Massada, A.B.; Brennan, T.J.; Radeloff, V.C. Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE 2012, 7, e33954. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, P.; León, J.; González-Mathiesen, C.; Román, R.; Penas, M.; Ogueda, A. Modelling the Vulnerability of Urban Settings to Wildland–Urban Interface Fires in Chile. Nat. Hazards Earth Syst. Sci. 2024, 24, 1521–1537. [Google Scholar] [CrossRef]
- Mancilla-Ruiz, D.; de la Barrera, F.; González, S.; Huaico, A. The Effects of a Megafire on Ecosystem Services and the Pace of Landscape Recovery. Land 2021, 10, 1388. [Google Scholar] [CrossRef]
- Pozo, R.A.; Galleguillos, M.; González, M.E.; Vásquez, F.; Arriagada, R. Assessing the Socio-Economic and Land-Cover Drivers of Wildfire Activity and Its Spatiotemporal Distribution in South-Central Chile. Sci. Total Environ. 2022, 810, 152002. [Google Scholar] [CrossRef]
- Bajocco, S.; Ferrara, C.; Guglietta, D.; Ricotta, C. Fifteen Years of Changes in Fire Ignition Frequency in Sardinia (Italy): A Rich-Get-Richer Process. Ecol. Indic. 2019, 104, 543–548. [Google Scholar] [CrossRef]
- Castro-Díez, P.; Alonso, Á.; Saldaña-López, A.; Granda, E. Effects of Widespread Non-Native Trees on Regulating Ecosystem Services. Sci. Total Environ. 2021, 778, 146141. [Google Scholar] [CrossRef]
- Armenteras, D.; De La Barrera, F. Landscape Management Is Urgently Needed to Address the Rise of Megafires in South America. Commun. Earth Environ. 2023, 4, 305. [Google Scholar] [CrossRef]
- Paolucci, R.; Yilmaz, M.T. Simplified Theoretical Approaches to Earthquake Fault Rupture–Shallow Foundation Interaction. Bull. Earthq. Eng. 2008, 6, 629–644. [Google Scholar] [CrossRef]
- Park, K.; Won, J. Analysis on Distribution Characteristics of Building Use with Risk Zone Classification Based on Urban Flood Risk Assessment. Int. J. Disaster Risk Reduct. 2019, 38, 101192. [Google Scholar] [CrossRef]
- MapBiomas Chile Project-Collection 2022 of the Annual Series of Land Cover and Land Use Maps of Chile, Consulted on [08th of January 2025]. Available online: https://storage.googleapis.com/mapbiomas-public/initiatives/chile/coverage/chile_coverage_2022.tif (accessed on 12 November 2024).
- Reporte F2 Incendios Biobío 2023. Available online: https://minvu.maps.arcgis.com/apps/webappviewer/index.html?id=b39290102ab34e1e9fbb70b7ae7e5b40 (accessed on 12 November 2024).
- Geodatos Abiertos. Available online: https://www.ine.gob.cl/herramientas/portal-de-mapas/geodatos-abiertos (accessed on 12 November 2024).
- Guerrero, F.; Carmona, C.; Hernández, C.; Toledo, M.; Arriagada, A.; Espinoza, L.; Bergmann, J.; Taborga, L.; Yañez, K.; Carrasco, Y.; et al. Drivers of Flammability of Eucalyptus Globulus Labill Leaves: Terpenes, Essential Oils, and Moisture Content. Forests 2022, 13, 908. [Google Scholar] [CrossRef]
- Salas, C.; Donoso, P.J.; Vargas, R.; Arriagada, C.A.; Pedraza, R.; Soto, D.P. The Forest Sector in Chile: An Overview and Current Challenges. J. For. 2016, 114, 562–571. [Google Scholar] [CrossRef]
- Lohr, S.L. Sampling: Design and Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; ISBN 0-429-29889-7. [Google Scholar]
- Mancini, L.D.; Elia, M.; Barbati, A.; Salvati, L.; Corona, P.; Lafortezza, R.; Sanesi, G. Are Wildfires Knocking on the Built-Up Areas Door? Forests 2018, 9, 234. [Google Scholar] [CrossRef]
- Ruxton, G.D. The Unequal Variance T-Test Is an Underused Alternative to Student’s t-Test and the Mann–Whitney U Test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Derrick, B.; White, P. Why Welch’s Test Is Type I Error Robust. Quant. Methods Psychol. 2016, 12, 30–38. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; March, A. Establishing Design Principles for Wildfire Resilient Urban Planning. Plan. Pract. Res. 2018, 33, 97–119. [Google Scholar] [CrossRef]
- Gonzalez-Mathiesen, C.; March, A. Developing Guidelines for Increasing the Resilience of Informal Settlements Exposed to Wildfire Risk Using a Risk-Based Planning Approach. In Understanding Disaster Risk; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–178. ISBN 978-0-12-819047-0. [Google Scholar]
- Corporación Nacional Forestal (CONAF). Cómo Reducir el Riesgo de Afectación por Incendios Forestales en Viviendas Rurales; Corporación Nacional Forestal (CONAF): Santiago, Chile, 2023. [Google Scholar]
- Gonzalez-Mathiesen, C.; March, A. Long-Established Rules and Emergent Challenges: Spatial Planning and Wildfires in Chile. Int. Plan. Stud. 2023, 28, 37–53. [Google Scholar] [CrossRef]
- Ren, P.; Jia, Q.; Xu, Q.; Li, Y.; Bi, F.; Xu, J.; Gao, S. Oil Spill Drift Prediction Enhanced by Correcting Numerically Forecasted Sea Surface Dynamic Fields With Adversarial Temporal Convolutional Networks. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4701018. [Google Scholar] [CrossRef]
Affected Municipality | Affected Rural Houses Qualified for Reconstruction Subsidy (MINVU, 2023) | Number of Rural Houses Within the Wildfire Polygon | Rural Houses Outside the Wildfire Polygon | Total Rural Houses (INE, 2016) | Share of Affected Rural Houses Qualified for Subsidy (%) | Total Population of the Municipality | Total Area of the Municipality (km2) | Total Burned Area Within the Municipality (km2) | Burned Area of the Municipal Land (%) |
---|---|---|---|---|---|---|---|---|---|
Nacimiento | 135 | 611 | 1392 | 2003 | 6.7 | 28,392 | 935 | 392 | 41.98 |
Santa Juana | 377 | 1758 | 1002 | 2760 | 13.7 | 13,749 | 731 | 448 | 61.35 |
Tomé | 352 | 968 | 2624 | 3592 | 10.2 | 54,976 | 494 | 206 | 41.88 |
Buffer | Land Cover | Commune | t-Value | p-Value | Significance | AH_mean | RH_mean | AH_std | RH_std | AH_size | RH_size |
---|---|---|---|---|---|---|---|---|---|---|---|
30 m buffer | Forest plantation | Nacimiento | 4.58 | 0.00 | *** | 51.00 | 32.14 | 43.9 | 40.7 | 135 | 611 |
Santa Juana | 7.61 | 0.00 | *** | 53.41 | 35.06 | 42.8 | 41.0 | 377 | 1758 | ||
Tomé | 9.52 | 0.00 | *** | 73.28 | 50.04 | 37.5 | 43.5 | 352 | 968 | ||
Forest | Nacimiento | −0.51 | 0.61 | ns | 6.79 | 7.75 | 19.5 | 21.4 | 135 | 611 | |
Santa Juana | −1.87 | 0.06 | * | 4.54 | 6.34 | 16.1 | 20.5 | 377 | 1758 | ||
Tomé | 0.48 | 0.63 | ns | 6.16 | 5.59 | 19.5 | 18.1 | 352 | 968 | ||
MAP | Nacimiento | −3.51 | 0.00 | *** | 17.74 | 28.84 | 32.0 | 38.7 | 135 | 611 | |
Santa Juana | −4.37 | 0.00 | *** | 20.12 | 29.04 | 35.2 | 39.3 | 377 | 1758 | ||
Tomé | −3.73 | 0.00 | *** | 6.18 | 11.23 | 20.0 | 26.0 | 352 | 968 | ||
Shrubland | Nacimiento | −1.57 | 0.12 | ns | 23.10 | 28.91 | 38.5 | 40.4 | 135 | 611 | |
Santa Juana | −3.85 | 0.00 | *** | 17.75 | 25.21 | 33.3 | 37.7 | 377 | 1758 | ||
Tomé | −7.41 | 0.00 | *** | 12.58 | 27.48 | 29.3 | 39.5 | 352 | 968 | ||
100 m buffer | Forest plantation | Nacimiento | 4.08 | 0.00 | *** | 55.01 | 42.82 | 31.6 | 30.8 | 135 | 611 |
Santa Juana | 8.82 | 0.00 | *** | 59.54 | 44.17 | 30.6 | 31.4 | 377 | 1758 | ||
Tomé | 10.05 | 0.00 | *** | 75.78 | 58.58 | 26.3 | 30.7 | 352 | 968 | ||
Forest | Nacimiento | 0.04 | 0.97 | ns | 8.68 | 8.63 | 14.5 | 15.2 | 135 | 611 | |
Santa Juana | −1.99 | 0.05 | ** | 5.97 | 7.36 | 11.7 | 14.9 | 377 | 1758 | ||
Tomé | 0.10 | 0.92 | ns | 8.31 | 8.22 | 15.3 | 14.2 | 352 | 968 | ||
MAP | Nacimiento | −3.78 | 0.00 | *** | 16.74 | 25.34 | 22.9 | 28.1 | 135 | 611 | |
Santa Juana | −6.52 | 0.00 | *** | 18.19 | 27.10 | 23.1 | 28.2 | 377 | 1758 | ||
Tomé | −5.77 | 0.00 | *** | 5.07 | 10.04 | 12.4 | 17.2 | 352 | 968 | ||
Shrubland | Nacimiento | −1.24 | 0.22 | ns | 17.99 | 21.02 | 25.7 | 25.3 | 135 | 611 | |
Santa Juana | −3.27 | 0.00 | *** | 13.96 | 17.86 | 20.6 | 22.8 | 377 | 1758 | ||
Tomé | −7.27 | 0.00 | *** | 9.45 | 18.61 | 18.4 | 24.6 | 352 | 968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hora, B.; González-Mathiesen, C.; Aravena-Solís, N.; Tapia, T. Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023. Sustainability 2025, 17, 4416. https://doi.org/10.3390/su17104416
Hora B, González-Mathiesen C, Aravena-Solís N, Tapia T. Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023. Sustainability. 2025; 17(10):4416. https://doi.org/10.3390/su17104416
Chicago/Turabian StyleHora, Benedikt, Constanza González-Mathiesen, Natalia Aravena-Solís, and Tomás Tapia. 2025. "Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023" Sustainability 17, no. 10: 4416. https://doi.org/10.3390/su17104416
APA StyleHora, B., González-Mathiesen, C., Aravena-Solís, N., & Tapia, T. (2025). Land Cover and Wildfire Risk: A Multi-Buffer Spatial Analysis of the Relationship Between Housing Destruction and Land Cover in Chile’s Bío-Bío Region in 2023. Sustainability, 17(10), 4416. https://doi.org/10.3390/su17104416