Digital Technology and Agricultural Production Agglomeration: Mechanisms, Spatial Spillovers, and Heterogeneous Effects in China
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Impact of Digital Technology on Agricultural Production Aggregation
2.2. Mechanism Effects of Land Transfer and Human Capital
- (1)
- Mechanism of land transfer
- (2)
- Mechanism of human capital
2.3. Spatial Spillover Effects
3. Materials and Methods
3.1. Variables Description
- (1)
- Dependent variable: Agricultural production agglomeration
- (2)
- Core explanatory variable: Digital technology
- (3)
- Control variables
- (1)
- Fiscal Support for Agriculture (Fin): This variable is measured by the per capita fiscal expenditure on agriculture and forestry in rural areas. The government reduces production costs through investments in rural infrastructure and various agricultural subsidies, effectively preventing agricultural natural disasters and motivating farmers’ production efforts. This, in turn, enables the realization of large-scale and concentrated agricultural production.
- (2)
- Transportation infrastructure (Tra): This variable is measured by the ratio of the mileage of graded roads to the regional area. Transportation infrastructure has always been a vital part of the formation of agricultural production clusters. The improvement of rural transportation infrastructure not only facilitates the circulation of agricultural products, allowing them to enter broader markets, meet consumer demand, and expand sales reach, but also helps various agricultural operators obtain more market information. In addition, it attracts external capital and technology into rural areas, enhancing the agricultural production efficiency and contributing to the concentration level of crop production.
- (3)
- Agricultural mechanization (Mec): This variable is measured by the total agricultural power per capita. The continuous rise in the level of mechanization in rural areas can drive innovations in farming methods, alleviate labor shortages in rural areas, and improve the agricultural production efficiency, thereby promoting the formation and development of concentrated crop production.
- (4)
- Urban industrial structure (Str): This variable is determined by the proportion of the output value of the secondary and tertiary industries to the total output value in a region. The continuous improvement of the urban industrial structure plays an important role in rural development. On one hand, it promotes non-agricultural employment for the rural population in the region, facilitating the scale cultivation of crops. On the other hand, it can provide crucial elements such as technology and capital to support agricultural development, benefitting the agricultural production concentration through spillover effects.
- (5)
- Crop disaster rate (Cdr): This variable is expressed as the ratio of the area affected by crop disasters to the total sown area. The rate of land disasters refers to the proportion of land affected by natural disasters within a certain timeframe compared to the total land area. The extent of the land disaster directly impacts the stability and profitability of agricultural production. A higher land disaster rate can lead to a decrease in crop yields and quality, thereby affecting the agricultural output and quality. Additionally, land disasters can compromise the stability and sustainability of agricultural production, constraining long-term agricultural development.
- (4)
- Mechanism variables
3.2. Data Description and Descriptive Statistics Analysis
4. Model Setting
4.1. Benchmark Regression Model
4.2. Mechanism Testing Model
4.3. Spatial Econometric Model
5. Results and Discussion
5.1. Benchmark Regression Analysis
Benchmark Regression Results Analysis
5.2. Mechanism Regression Analysis
5.3. Spatial Effect Analysis
5.3.1. Spatial Autocorrelation Test
5.3.2. Spatial Effect Result Analysis
5.4. Robustness Test
- (1)
- Replacement of explanatory and dependent variables
- (2)
- Truncation of samples
- (3)
- Controlling for fixed effects
5.5. Heterogeneity Analysis
5.6. Discussion
6. Conclusions, Policy Implications, and Limitations
6.1. Conclusions
6.2. Policy Implications
6.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; Food & Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Zhang, Q.-C.; Kang, S.-G.; Li, M.-Y.; Zhang, M.-Y.; Xu, W.-M.; Xiang, P.; Ma, L.Q. Heavy metal (loid) s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. Sci. Total Environ. 2023, 858, 159819. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yi, F.; Yu, X. Rising cost of labor and transformations in grain production in China. China Agric. Econ. Rev. 2020, 12, 158–172. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; Van De Ven, G.; Schut, A.G.; Van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Sun, T.-T.; Su, C.-W.; Mirza, N.; Umar, M. How does trade policy uncertainty affect agriculture commodity prices? Pac. Basin Financ. J. 2021, 66, 101514. [Google Scholar] [CrossRef]
- Warsame, A.A.; Sheik-Ali, I.A.; Jama, O.M.; Hassan, A.A.; Barre, G.M. Assessing the effects of climate change and political instability on sorghum production: Empirical evidence from Somalia. J. Clean. Prod. 2022, 360, 131893. [Google Scholar] [CrossRef]
- Siegmann, K.A.; Ivošević, P.; Visser, O. Working like Machines: Technological Upgrading and Labour in the Dutch Agri-food Chain. Work. Employ Soc. 2025, 39, 202–225. [Google Scholar] [CrossRef]
- Gim, T.-H.T.; Lee, J.; Choi, J.-S. Exploring Objective and Subjective Correlates with the Vitality of Agro-Industrial Complex Companies in Korea A structural equation model of psychometric survey data. Int. Rev. Spat. Plan. Sustain. Dev. 2023, 11, 126–149. [Google Scholar]
- Satyasai, K.; Singh, A. The food processing industry in India: Regional spread, linkages and space for farmer producer organisations. In Agro and Food Processing Industry in India: Inter-Sectoral Linkages, Employment, Productivity and Competitiveness; Springer Nature: Singapore, 2021; pp. 81–106. [Google Scholar]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Hu, M.; Bai, Y. How does agricultural production agglomeration affect green total factor productivity?: Empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 67865–67879. [Google Scholar] [CrossRef]
- Kinnunen, P.; Guillaume, J.H.; Taka, M.; D’odorico, P.; Siebert, S.; Puma, M.J.; Jalava, M.; Kummu, M. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 2020, 1, 229–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, X. The changing role of agriculture with economic structural change–the case of China. China Econ. Rev. 2020, 62, 101504. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Y.; Zhang, Y.; Chen, M.; Fennell, S.; Luan, B.; Wang, F.; Meng, D.; Liu, Y.; Jiao, L. Spatial-temporal dynamics of grain yield and the potential driving factors at the county level in China. J. Clean. Prod. 2020, 255, 120312. [Google Scholar] [CrossRef]
- Wang, H.; He, J.; Aziz, N.; Wang, Y. Spatial distribution and driving forces of the vegetable industry in China. Land 2022, 11, 981. [Google Scholar] [CrossRef]
- Ye, R.; Qi, Y.; Zhu, W. Impact of Agricultural Industrial Agglomeration on Agricultural Environmental Efficiency in China: A Spatial Econometric Analysis. Sustainability 2023, 15, 10799. [Google Scholar] [CrossRef]
- Li, E.; Coates, K.; Li, X.; Ye, X.; Leipnik, M. Analyzing agricultural agglomeration in China. Sustainability 2017, 9, 313. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Zhou, J.; Gao, Y.; Cui, X. Evolving patterns of agricultural production space in China: A network-based approach. Geogr. Sustain. 2024, 5, 121–134. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, D.; Yin, M. Spatiotemporal patterns and driving factors of non-grain cultivated land in China’s three main functional grain areas. Sustainability 2023, 15, 13720. [Google Scholar] [CrossRef]
- Ding, Y. The impact of agricultural industrial agglomeration on farmers’ income: An influence mechanism test based on a spatial panel model. PLoS ONE 2023, 18, e0291188. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Lu, H.; Kang, X.; Liu, B. The effect of industrial agglomeration on agricultural green production efficiency: Evidence from China. Sustainability 2023, 15, 12215. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Wang, Z. Agricultural production agglomeration and total factor carbon productivity: Based on NDDF–MML index analysis. China Agric. Econ. Rev. 2022, 14, 709–740. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, Y.; Yu, Q. Spatial spillover effects of agricultural agglomeration on agricultural non-point source pollution in the Yangtze River Basin. Sustainability 2022, 14, 16390. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Tang, H. Influence paths and spillover effects of agricultural agglomeration on agricultural green development. Sustainability 2022, 14, 6185. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability driven by agriculture through digital transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Gourshettiwar, P.; Reddy, K.; Raymond, D. IoT agriculture system based on LoRaWAN. AIP Conf. Proc. 2024, 3188, 080012. [Google Scholar]
- Tandon, B.; Utkarsh, K.; Alam, S.; Singh, S.K.; Negi, S. Smart agriculture system using IOT. AIP Conf. Proc. 2024, 2978, 060015. [Google Scholar]
- Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
- Sumel, A.; Amisha, R.; Sabahat, J.; Lavanya, L.; Shilpa Amit, G.; Sneha, D.; Shubneesh, K. Artificial Intelligence Integration with Nanotechnology: A New Frontier for Sustainable and Precision Agriculture. Curr. Nanosci. 2025, 21, 242–273. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2020, 52, 101967. [Google Scholar] [CrossRef]
- Jońca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sówka, I. Drone-assisted monitoring of atmospheric pollution—A comprehensive review. Sustainability 2022, 14, 11516. [Google Scholar] [CrossRef]
- Rahmah, M.M.; Ahmed, A.A.; Belrzaeg, M. Drone-Based Precision Agriculture Enhancing Crop Monitoring and Management. Open Eur. J. Appl. Sci. 2025, 36–50. [Google Scholar]
- Bocean, C.G. A cross-sectional analysis of the relationship between digital technology use and agricultural productivity in EU countries. Agriculture 2024, 14, 519. [Google Scholar] [CrossRef]
- Chunfang, Y.; Xing, J.; Changming, C.; Shiou, L.; Obuobi, B.; Yifeng, Z. Digital economy empowers sustainable agriculture: Implications for farmers’ adoption of ecological agricultural technologies. Ecol. Indic. 2024, 159, 111723. [Google Scholar]
- Abiri, R.; Rizan, N.; Balasundram, S.; Shahbazi, A.; Abdul-Hamid, H. Application of digital technologies for ensuring agricultural productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef]
- Balyan, S.; Jangir, H.; Tripathi, S.N.; Tripathi, A.; Jhang, T.; Pandey, P. Seeding a sustainable future: Navigating the digital horizon of smart agriculture. Sustainability 2024, 16, 475. [Google Scholar] [CrossRef]
- Benyam, A.A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Yan, M.; Cao, X. Digital economy development, rural land certification, and rural industrial integration. Sustainability 2024, 16, 4640. [Google Scholar] [CrossRef]
- Liang, J.; Goetz, S.J. Technology intensity and agglomeration economies. Res. Policy 2018, 47, 1990–1995. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Q.; Zhou, H. Digital rural construction and farmers’ income growth: Theoretical mechanism and micro experience based on data from China. Sustainability 2022, 14, 11679. [Google Scholar] [CrossRef]
- Deng, H.; Duan, S.X.; Wibowo, S. Digital technology driven knowledge sharing for job performance. J. Knowl. Manag. 2023, 27, 404–425. [Google Scholar] [CrossRef]
- Li, E.; Xu, Y.; Ren, S.; Lee, J. Spin-offs, innovation spillover and the formation of agricultural clusters: The case of the vegetable cluster in Shouguang city, Shandong province, China. Land 2022, 11, 279. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, C.; Wang, J. How can the digital economy promote the integration of rural industries—Taking China as an example. Agriculture 2023, 13, 2023. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Lu, Y.; Liu, J.; Rehman, A.; Yasmeen, R. The impact of climate change and production technology heterogeneity on China’s agricultural total factor productivity and production efficiency. Sci. Total Environ. 2024, 907, 168027. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.-L. Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ. Politics 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, D. Can agricultural digital transformation help farmers increase income? An empirical study based on thousands of farmers in Hubei Province. Environ. Dev. Sustain. 2024, 26, 14405–14431. [Google Scholar] [CrossRef]
- Van Campenhout, B.; Spielman, D.J.; Lecoutere, E. Information and communication technologies to provide agricultural advice to smallholder farmers: Experimental evidence from Uganda. Am. J. Agric. Econ. 2021, 103, 317–337. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Zhou, M. Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD). China Agric. Econ. Rev. 2021, 13, 475–494. [Google Scholar] [CrossRef]
- Wang, X.; He, G. Digital financial inclusion and farmers’ vulnerability to poverty: Evidence from rural China. Sustainability 2020, 12, 1668. [Google Scholar] [CrossRef]
- Suali, A.S.; Srai, J.S.; Tsolakis, N. The role of digital platforms in e-commerce food supply chain resilience under exogenous disruptions. Supply Chain Manag. Int. J. 2024, 29, 573–601. [Google Scholar] [CrossRef]
- Mapiye, O.; Makombe, G.; Molotsi, A.; Dzama, K.; Mapiye, C. Information and communication technologies (ICTs): The potential for enhancing the dissemination of agricultural information and services to smallholder farmers in sub-Saharan Africa. Inf. Dev. 2023, 39, 638–658. [Google Scholar] [CrossRef]
- Xie, L.; Luo, B.; Zhong, W. How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China. Land 2021, 10, 245. [Google Scholar] [CrossRef]
- Leng, X.; Zhang, Y.; Cheng, R. Digital technology, labor allocation, and nutrition intake: Evidence from China. Technol. Forecast. Soc. Change 2024, 201, 123228. [Google Scholar] [CrossRef]
- Li, D.; Kojima, D.; Wu, L.; Ando, M. The impact of digital ability on employment adequacy in rural China. Appl. Econ. 2024, 56, 7139–7154. [Google Scholar] [CrossRef]
- Mushi, G.E.; Di Marzo Serugendo, G.; Burgi, P.-Y. Digital technology and services for sustainable agriculture in Tanzania: A literature review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.; Zhang, Z.; Wang, J. Farm size and agricultural technology progress: Evidence from China. J. Rural Stud. 2022, 93, 417–429. [Google Scholar] [CrossRef]
- Gabriel, A.; Gandorfer, M. Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precis. Agric. 2023, 24, 68–91. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Lashkari, D.; Bauer, A.; Boussard, J. Information technology and returns to scale. Am. Econ. Rev. 2024, 114, 1769–1815. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Q.; Jin, C.; Ren, J.; Fu, Y.; Yue, X. Whether the digital economy will successfully encourage the integration of urban and rural development: A case study in China. Chin. J. Popul. Resour. Environ. 2023, 21, 13–25. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Xiong, L.; Wang, F. The spatial spillover effect and impact paths of agricultural industry agglomeration on agricultural non-point source pollution: A case study in Yangtze River Delta, China. J. Clean. Prod. 2023, 401, 136600. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Luh, Y.-H.; Hsieh, M.-F. Economic effects of sustainable agri-food production in Taiwan: Does spatial agglomeration make a difference? Br. Food J. 2023, 125, 4249–4267. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Ramsey, T.S.; Hewings, G.J. Will researching digital technology really empower green development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, T.; Zhang, B. Research on the impact of digital agriculture development on agricultural green total factor productivity. Land 2023, 12, 195. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and productivity growth in manufacturing industry: Internal mechanism and China experiences. China Ind. Econ. 2019, 8, 1019581. [Google Scholar]
- Tao, Z.; Zhang, Z.; Shangkun, L. Digital economy, entrepreneurship, and high-quality economic development: Empirical evidence from urban China. Front. Econ. China 2022, 17, 393–426. [Google Scholar]
- Dayıoğlu, M.A.; Turker, U. Digital transformation for sustainable future-agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Du, X.; Wang, X.; Hatzenbuehler, P. Digital technology in agriculture: A review of issues, applications and methodologies. China Agric. Econ. Rev. 2023, 15, 95–108. [Google Scholar] [CrossRef]
- Akaev, A.; Rudskoy, A.; Devezas, T. Technological substitution of jobs in the digital economy and shift in labor demand towards advanced qualifications. In The Economics of Digital Transformation: Approaching Non-stable and Uncertain Digitalized Production Systems; Springer International Publishing: New York City, NY, USA, 2021; pp. 85–103. [Google Scholar]
- Kalfas, D.; Kalogiannidis, S.; Papaevangelou, O.; Melfou, K.; Chatzitheodoridis, F. Integration of technology in agricultural practices towards agricultural sustainability: A case study of Greece. Sustainability 2024, 16, 2664. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, J.; Qiu, S. Digital agriculture and urbanization: Mechanism and empirical research. Technol. Forecast. Soc. Change 2022, 180, 121724. [Google Scholar] [CrossRef]
- Meng, J.; Zhao, B.; Song, Y.; Lin, X. Research on the Spatial Dynamic Evolution of Digital Agriculture—Evidence from China. Sustainability 2024, 16, 735. [Google Scholar] [CrossRef]
Dimensions | Components | Indicators | Attribute |
---|---|---|---|
Rural Mobile Phone Penetration Rate | Per 100 Rural Households, the Average Number of Mobile Phones Owned | + | |
Rural Digital Infrastructure | The Quantity of Stations for Agricultural Meteorological Observation | Number of Agricultural Meteorological Observation Stations | + |
Density of Rural Delivery Routes | Density of Rural Delivery Routes | + | |
Rural Computer Penetration Rate | The Average Number of Computers Owned by 100 Rural Households at Year-End | + | |
Rural Broadband Access Density | Users of Rural Broadband (10,000 households)/Rural Population | + | |
Length of Optical Cable Lines | Length of Optical Cable Lines | + | |
Industry Support | Scale of Information Transmission, Software, and IT Services | Legal Entities’ Share of Information Transmission, Software, and IT Services (%) | + |
Scale of E-commerce Enterprises | The Percentage of Businesses Involved in E-Commerce | + | |
Urban Employment in Information Transmission, Software, and IT Services | Ratio of Urban Employment in Software, IT Services, and Information Transmission (10,000 people) | + | |
Number of Websites for Every 100 Businesses | The proportion of businesses per 100 that have websites | + | |
Development Capability | Scale of E-commerce Development | E-commerce Sales (billion RMB) | + |
Scale of Telecommunications Industry | Total Telecommunications Business (billion RMB) | + | |
Scale of Software Industry | Revenue from Software Businesses (10,000 RMB) | + | |
Development of Digital Inclusive Finance | Index of Digital Inclusive Finance | + |
Variables | N | Mean | Sd | Min | Max | Unit of Measurement |
---|---|---|---|---|---|---|
Agricultural agglomeration (Agg) | 319 | 0.202 | 0.197 | 0.008 | 0.540 | Unitless index (×100) |
Digital technology (Dig) | 319 | 0.193 | 0.116 | 0.0384 | 0.761 | Unitless composite index |
Fiscal support for agriculture (Fin) | 319 | 0.389 | 0.276 | 0.0998 | 1.823 | 10,000 RMB per rural resident |
Transportation infrastructure (Tra) | 319 | 0.868 | 0.469 | 0.0716 | 2.085 | km/km2 (road density) |
Agricultural mechanization (Mec) | 319 | 1.883 | 0.992 | 0.440 | 6.448 | kW per rural laborer |
Urban industrial structure (Str) | 319 | 0.900 | 0.051 | 0.747 | 0.997 | Ratio (secondary + tertiary sector output/GDP) |
Crop disaster rate (Cdr) | 319 | 0.143 | 0.112 | 0.00592 | 0.695 | Ratio (affected area/sown area) |
Land transfer (Lt) | 319 | 0.226 | 0.254 | 0.0166 | 2.244 | Ratio (transferred area/cultivable land) |
Rural human capital (Rhc) | 319 | 0.819 | 0.308 | 0.163 | 1.847 | 10,000 RMB per rural laborer |
Variables | Test Method | t-Statistic | p-Value | Conclusion |
---|---|---|---|---|
Agg | LLC | −6.411 | 0.000 *** | Stationary |
Dig | LLC | −5.013 | 0.000 *** | Stationary |
Fin | LLC | −2.129 | 0.016 ** | Stationary |
Tra | LLC | −8.292 | 0.000 *** | Stationary |
Mec | LLC | −13.829 | 0.000 *** | Stationary |
Str | LLC | −14.0829 | 0.000 *** | Stationary |
Cdr | LLC | −13.881 | 0.000 *** | Stationary |
Lt | LLC | −3.583 | 0.000 *** | Stationary |
Rhc | LLC | −2.7166 | 0.003 *** | Stationary |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) |
---|---|---|---|---|---|---|
Agg | Agg | Agg | Agg | Agg | Agg | |
Dig | 0.308 * (1.85) | 0.379 *** (2.90) | 0.386 *** (3.28) | 0.278 ** (2.49) | 0.276 ** (2.49) | 0.273 ** (2.45) |
Fin | 0.198 (1.59) | 0.241 * (1.95) | 0.257 ** (2.27) | 0.252 ** (2.18) | 0.249 ** (2.17) | |
Tra | 0.146 (1.59) | 0.144 (1.64) | 0.148 (1.69) | 0.149 * (1.71) | ||
Mec | −0.031 ** (−2.29) | −0.032 ** (−2.38) | −0.031 ** (−2.31) | |||
Str | −0.324 (−0.37) | −0.303 (−0.35) | ||||
Cdr | −0.039 (−1.34) | |||||
_cons | 0.284 *** (12.18) | 0.229 *** (5.91) | 0.109 (1.23) | 0.168 * (2.04) | 0.456 (0.56) | 0.443 (0.55) |
N | 319 | 319 | 319 | 319 | 319 | 319 |
R2 | 0.586 | 0.632 | 0.665 | 0.684 | 0.695 | 0.688 |
T | Yes | Yes | Yes | Yes | Yes | Yes |
Variables | Model (1) | Model (2) | Model (3) |
---|---|---|---|
Agg | Lt | Rhc | |
Dig | 0.273 ** | 1.614 * | 0.561 ** |
(2.45) | (2.03) | (2.11) | |
Control variables | Yes | Yes | Yes |
Yes | Yes | Yes | |
Yes | Yes | Yes | |
N | 319 | 319 | 319 |
R2 | 0.688 | 0.623 | 0.642 |
Year | Digital Technology | Agricultural Production Agglomeration | ||
---|---|---|---|---|
Moran’I Value | Z Value | Moran’I Value | Z Value | |
2012 | 0.320 *** | 2.875 | 0.336 *** | 2.960 |
2013 | 0.298 *** | 2.716 | 0.312 *** | 2.783 |
2014 | 0.277 ** | 2.567 | 0.287 *** | 2.608 |
2015 | 0.238 ** | 2.270 | 0.244 *** | 2.281 |
2016 | 0.212 ** | 2.111 | 0.218 ** | 2.127 |
2017 | 0.187 * | 1.918 | 0.191 ** | 1.919 |
2018 | 0.212 ** | 2.085 | 0.201 ** | 1.957 |
2019 | 0.222 ** | 2.172 | 0.229 ** | 2.185 |
2020 | 0.239 ** | 2.291 | 0.226 ** | 2.141 |
2021 | 0.273 ** | 2.557 | 0.242 ** | 2.250 |
2022 | 0.355 *** | 3.176 | 0.261 ** | 2.367 |
Model Test | Specific Type | Spatial Weight Matrix |
---|---|---|
LM Test | LM-lag | 16.197 *** |
LM-err | 5.283 ** | |
SDM Test | SAR&SDM | 91.80 *** |
SEM&SDM | 91.70 *** | |
Hausman Test | SDM | 45.75 *** |
Fixed Effects Type Test | Ind&Both | 15.48 |
Time&Both | 633.55 *** |
Variables | Model (1) | Model (2) | Model (3) | Model (4) |
---|---|---|---|---|
SDM | Direct Effects | Indirect Effects | Total Effect | |
Agg | Agg | Agg | Agg | |
Dig | 1.007 *** | 1.014 *** | 0.587 *** | 1.601 *** |
(12.95) | (12.23) | (4.18) | (10.51) | |
Control variables | Yes | Yes | Yes | Yes |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
N | 319 | 319 | 319 | 319 |
R2 | 0.759 | 0.759 | 0.759 | 0.759 |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) |
---|---|---|---|---|---|
2SLS | Replace Explanatory Variables | Replace the Dependent Variable | Tail Reduction Processing | Control Fixed Effects | |
Dig | 1.026 *** | 1.647 * | 0.310 ** | 1.424 *** | |
(3.43) | (1.65) | (2.28) | (4.99) | ||
Dig-new | 0.292 *** | ||||
(3.24) | |||||
Control variables | Yes | Yes | Yes | Yes | Yes |
Yes | Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | Yes | |
First-stage F Value | 135.10 | ||||
Kleibergen-Paap rk Wald F | 130.66 | ||||
Yes | |||||
N | 319 | 319 | 319 | 319 | 319 |
R2 | 0.794 | 0.696 | 0.559 | 0.690 | 0.648 |
Variables | East | Central | West | Northeast |
---|---|---|---|---|
Agg | Agg | Agg | Agg | |
Dig | 1.077 * | 0.367 ** | 0.907 | 0.664 * |
(0.96) | (5.68) | (7.85) | (2.91) | |
Control variables | Yes | Yes | Yes | Yes |
μi | Yes | Yes | Yes | Yes |
Yes | Yes | Yes | Yes | |
N | 99 | 66 | 121 | 33 |
R2 | 0.671 | 0.643 | 0.714 | 0.776 |
Variables | Non-Grain-Producing Areas | Grain-Producing Areas | Grain Crops | Economic Crops |
---|---|---|---|---|
Agg | Agg | Agg | Agg | |
Dig | 0.285 ** | 0.090 * | 0.315 ** | 0.350 *** |
(2.24) | (−0.59) | (2.46) | (2.79) | |
Control variables | Yes | Yes | Yes | Yes |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
N | 176 | 143 | 319 | 319 |
R2 | 0.656 | 0.628 | 0.742 | 0.738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Wei, W.; Ge, W.; Liu, S.; Chou, Y. Digital Technology and Agricultural Production Agglomeration: Mechanisms, Spatial Spillovers, and Heterogeneous Effects in China. Sustainability 2025, 17, 4387. https://doi.org/10.3390/su17104387
Han J, Wei W, Ge W, Liu S, Chou Y. Digital Technology and Agricultural Production Agglomeration: Mechanisms, Spatial Spillovers, and Heterogeneous Effects in China. Sustainability. 2025; 17(10):4387. https://doi.org/10.3390/su17104387
Chicago/Turabian StyleHan, Jiabin, Wenbin Wei, Wenting Ge, Shuyun Liu, and Yixiu Chou. 2025. "Digital Technology and Agricultural Production Agglomeration: Mechanisms, Spatial Spillovers, and Heterogeneous Effects in China" Sustainability 17, no. 10: 4387. https://doi.org/10.3390/su17104387
APA StyleHan, J., Wei, W., Ge, W., Liu, S., & Chou, Y. (2025). Digital Technology and Agricultural Production Agglomeration: Mechanisms, Spatial Spillovers, and Heterogeneous Effects in China. Sustainability, 17(10), 4387. https://doi.org/10.3390/su17104387