Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera
Abstract
:1. Introduction
1.1. Historical Background of Matera
1.2. Objectives
- Identification of temporal patterns: a temporal clustering analysis is used to identify periods with similar temperature and humidity characteristics. This objective seeks to understand the seasonal and diurnal variations of the UHI in Matera and their impact on both architectural heritage and habitability [9].
- Scenario simulation: use the random forest regression model to simulate different scenarios, such as changes in vegetation NDVI (Normalized Difference Vegetation Index) or building materials (solar absorption coefficients), and predict their impact on the UHI. This simulation will assess how different interventions, such as green roofs or reflective materials, could mitigate the effects of the UHI in a sensitive urban and heritage context [8,10].
- Regulatory impact analysis: assess how regulatory changes, such as building codes and green roof mandates, could affect environmental indices and urban temperatures. This analysis will make it possible to anticipate the impact of these policies on the conservation of Matera’s historical heritage [11].
- Identification of dominant factors: spectral indices derived from remote sensing data are essential for analyzing and predicting UHI intensity, as they provide critical insights into land surface characteristics that influence temperature variations. The Normalized Difference Built-up Index (NDBI) identifies impervious surfaces, which contribute to heat accumulation due to their low albedo and high thermal storage capacity. Similarly, NDVI identifies green cover, which counteracts UHI through evapotranspiration and shading. Furthermore, the Normalized Difference Soil Index (NDSI) quantifies soil exposure and moisture content, both of which significantly affect surface temperature dynamics [12,13].
2. Materials and Methods
2.1. Literature Review
2.2. Empirical Data Gathering and Analysis
- Data were obtained from four sources (see Figure 4):
- Topographic surveys: detailed 3D laser scanning models of the urban canyon were obtained [9].
- Satellite Image Analysis: the spatial distribution of the UHI effect in Matera was analyzed using satellite imagery, focusing on Sentinel-2 data for its high spatial and spectral resolution [9]. The spectral analysis examined key environmental factors, including vegetation (NDVI), built-up areas (NDBI), and soil exposure (NDSI), highlighting their roles in heat retention and urban microclimate regulation [16].
- Meteorological data integration: real-time indoor and outdoor temperature and relative humidity data were collected to understand local climatic conditions [17].
- Analysis of the thermal properties of calcarenite: this study assesses the solar absorption rate of calcarenite and its impact on UHI dynamics in Matera [18]. Experimental analyses at ESPOL measured its thermal behavior, integrating data into a random forest regression model to identify key UHI factors and explore mitigation strategies that preserve architectural heritage.
2.3. Conceptual Breakdown of Random Forest Regression
- ŷ is the final predicted value.
- T is the total number of trees in the Random Forest.
- ŷt(x) is the prediction of the t-th tree for the input x.
- a.
- Indoor Temperature Analysis: Feature Importances:
- External Temperature: 63.8%; External Humidity: 35.9%; External Pressure: 0.24%
- b.
- External Temperature Analysis: Feature Importance:
- NDSI: 38.9%; NDBI: 32.7%; NDVI: 25.4%; Sample699: 1.5%; Sample700: 1.4%.
- c.
- Partial Dependence Plots:
3. Results
3.1. Review of Methodologies Used in Previous UHI Studies to Inform the Design of Our Research Framework
3.2. Analysis of Data Collected at Matera
3.2.1. Temporal Clustering
3.2.2. Scenario Simulation
- Satellite Imagery Analysis.
- Thermal properties of calcarenite.
- Topographic Survey Analysis.
3.2.3. Regulatory Impact Analysis
3.2.4. Dominant Factors Analysis
4. Discussion
4.1. Temporal Clustering and Seasonal Patterns
4.2. Impact of Vegetation and Building Materials
4.3. Regulatory Impact and Urban Planning
4.4. Dominant Factors Influencing UHI
- Increasing NDVI and decreasing NDBI: Temperature = 23.55 °C
- Increasing both NDVI and NDBI: Temperature = 23.65 °C
- Decreasing both NDVI and NDBI: Temperature = 23.42 °C
- Decreasing NDVI and increasing NDBI: Temperature = 23.26 °C
5. Conclusions and Recommendations
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, M.; Zhong, S.; Mei, X.; He, J. Spatiotemporal Patterns in the Urban Heat Island Effect of Several Contemporary and Historical Chinese ‘Stove Cities’. Sustainability 2024, 16, 3091. [Google Scholar] [CrossRef]
- Porcari, V.; Guida, A. Modernity and tradition in the Sassi of Matera (Italy). Smart community and underground (hypogeum) city. J. Archit. Conserv. 2022, 28, 1–18. [Google Scholar] [CrossRef]
- García, M.C.M.; Pardo, J.A.S. The study of the urban heat island in the Mediterranean: A literature review. Depósito Leg. B 2016, 21, 742–798. [Google Scholar]
- Conte, A. La Citta’ Scavata; Gangemi Editore: Rome, Italy, 2014; Available online: https://www.gangemieditore.it (accessed on 10 February 2025).
- Varriale, R. Re-Inventing Underground Space in Matera. Heritage 2019, 2, 1070–1084. [Google Scholar] [CrossRef]
- Salvati, A.; Roura, H.C.; Cecere, C. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef]
- Jato-Espino, D. Spatiotemporal statistical analysis of the Urban Heat Island effect in a Mediterranean region. Sustain. Cities Soc. 2019, 46, 101427. [Google Scholar] [CrossRef]
- Selicati, V.; Cardinale, N.; Dassisti, M. Evaluation of the sustainability of energy retrofit interventions on the historical heritage: A case study in the city of Matera, Italy. Int. J. Heat Technol. 2020, 38, 17–27. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Y.; Chakraborty, T.C.; Du, M.; Hu, T.; Zhang, L.; Liu, Y.; Yao, R.; Yang, J.; Chen, S.; et al. A global urban heat island intensity dataset: Generation, comparison, and analysis. Remote Sens. Environ. 2024, 312, 114343. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, I.I.I.H.; Taylor, R.A. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J.M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. J. Environ. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef]
- Hu, M.; Ghorbany, S.; Yao, S.; Wang, C. Micro-Urban Heatmapping: A Multi-Modal and Multi-Temporal Data Collection Framework. Buildings 2024, 14, 2751. [Google Scholar] [CrossRef]
- Bourikas, L.; James, P.A.; Bahaj, A.S.; Jentsch, M.F.; Shen, T.; Chow, D.H.; Darkwa, J. Transforming typical hourly simulation weather data files to represent urban locations by using a 3D urban unit representation with micro-climate simulations. Futur. Cities Environ. 2016, 2, 7. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Amodio, A.M.; Prosser, G.; Sileo, M.; Rizzo, G. Evaluation of soft limestone degradation in the Sassi UNESCO site (Matera, Southern Italy): Loss of material measurement and classification. J. Cult. Herit. 2020, 42, 191–201. [Google Scholar] [CrossRef]
- Joshi, M.Y.; Aliaga, D.G.; Teller, J. Predicting Urban Heat Island Mitigation with Random Forest Regression in Belgian Cities BT—Intelligence for Future Cities; Goodspeed, R., Sengupta, R., Kyttä, M., Pettit, C., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 305–323. [Google Scholar]
- Gartland, L. Heat Islands: Understanding and Mitigating Heat in Urban Areas; Earthscan: London, UK, 2011. [Google Scholar]
- Cardinale, N.; Rospi, G.; Stefanizzi, P.; Augenti, V. Thermal properties of the vernacular buildings envelopes: The case of the ‘Sassi di Matera’ and ‘Trulli di Alberobello’. Int. J. Energy Environ. 2011, 2, 2076–2909. [Google Scholar]
- Salman, A.M.; Saleem, Y.M. The effect of Urban Heat Island mitigation strategies on outdoor human thermal comfort in the city of Baghdad. Front. Archit. Res. 2021, 10, 838–856. [Google Scholar] [CrossRef]
- Chartered Institution of Building Services Engineers (CIBSE). The Limits of Thermal Comfort: Avoiding Overheating in European Buildings. CIBSE Technical Memorandum 52 (TM52:2013); CIBSE: London, UK, 2013. [Google Scholar]
- Shi, H.; Xian, G.; Auch, R.; Gallo, K.; Zhou, Q. Urban heat island and its regional impacts using remotely sensed thermal data—A review of recent developments and methodology. Land 2021, 10, 867. [Google Scholar] [CrossRef]
- Xiao, R.B.; Ouyang, Z.Y.; Li, W.F.; Zhang, Z.M.; Gregory, T.J.; Wang, X.K.; Miao, H. A review of the eco-environmental consequences of urban heat islands. Acta Ecol. Sin. 2005, 25, 2055–2060. [Google Scholar]
- González, A.; Donnelly, A.; Jones, M.; Chrysoulakis, N.; Lopes, M. A decision-support system for sustainable urban metabolism in Europe. Environ. Impact Assess. Rev. 2013, 38, 109–119. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Martilli, A.; Krayenhoff, E.S.; Nazarian, N. Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Clim. 2020, 31, 100541. [Google Scholar] [CrossRef]
- Vaca, L.G.; Vallejo-coral, E.C.; Martíninez-Gomez, J.; Orozco, M. Análisis de Confort Térmico de Voto Medio Pronosticado Aplicando Simulaciones Energéticas con Materiales de Cambio de Fase para Climas Muy Cálidos-Húmedos en Vivienda Social en Ecuador. Sustainability 2021, 31, 1257. [Google Scholar]
- Menacho, E.E.; Teruya, S.N. Análisis de la relación de la isla de calor urbano con factores demográficos, espaciales y ambientales de Lima metropolitana usando sensores remotos. An. Científicos 2019, 80, 60. [Google Scholar] [CrossRef]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef]
- Martinelli, A.; Carlucci, F.; Fiorito, F. On the Role of the Building Envelope on the Urban Heat Island Mitigation and Building Energy Performance in Mediterranean Cities: A Case Study in Southern Italy. Climate 2024, 12, 113. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Wai, K.M.; Yuan, C.; Lai, A.; Yu, P.K.N. Relationship between pedestrian-level outdoor thermal comfort and building morphology in a high-density city. Sci. Total Environ. 2020, 708, 134516. [Google Scholar] [CrossRef]
- Arriaga, M.F.; Martínez-torres, K.E. Vegetation as a mitigation strategy on Mediterranean context. In Proceedings of the WILL CITIES The Future of Sustainable Buildings and Urbanism, Santiago, Chile, 22–25 November 2022; pp. 188–193. [Google Scholar]
- Esfehankalateh, A.T.; Ngarambe, J.; Yun, G.Y. Influence of tree canopy coverage and leaf area density on urban heat island mitigation. Sustainability 2021, 13, 7496. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, Z.; Liu, H.; Zhang, J. Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ. Pollut. 2012, 170, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Martinelli, L.; Ketterer, C. Relevance of Thermal Indices for the Assessment of the Urban Heat Island; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Santamouris, M. Urban climate change: Reasons, Magnitude, Impact, and Mitigation. In Urban Climate Change and Heat Islands; Paolini, R., Santamouris, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 1; pp. 1–27. [Google Scholar] [CrossRef]
- Murphy, K.R. Performance evaluation will not die, but it should. Hum. Resour. Manag. J. 2020, 30, 13–31. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Akbari, H.; Rose, L.S. Urban Surfaces and Heat Island Mitigation Potentials. J. Hum. Environ. Syst. 2008, 11, 85–101. [Google Scholar] [CrossRef]
- Cuerdo-Vilches, T.; Díaz, J.; López-Bueno, J.A.; Luna, M.Y.; Navas, M.A.; Mirón, I.J.; Linares, C. Impact of urban heat islands on morbidity and mortality in heat waves: Observational time series analysis of Spain’s five cities. Sci. Total Environ. 2023, 890, 164412. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Çalşkan, O. Design thinking in urbanism: Learning from the designers. Urban Des. Int. 2012, 17, 272–296. [Google Scholar] [CrossRef]
- Moughtin, C. Urban Design: Street and Square, 3rd ed.; Routledge: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Pontius, J.; McIntosh, A. Urban Heat Islands BT—Environmental Problem Solving in an Age of Climate Change: Volume One: Basic Tools and Techniques; Pontius, J., McIntosh, A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 119–133. [Google Scholar] [CrossRef]
- Gorse, C.; Parker, J.; Thomas, F.; Fletcher, M.; Ferrier, G.; Ryan, N. The Planning and Design of Buildings: Urban Heat Islands—Mitigation BT—Industry 4.0 and Engineering for a Sustainable Future; Dastbaz, M., Cochrane, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 211–225. [Google Scholar] [CrossRef]
- Chanpichaigosol, N.; Chaichana, C.; Rinchumphu, D. Urban heat island classification through alternative normalized difference vegetation index. Glob. J. Environ. Sci. Manag. 2025, 11, 57–76. [Google Scholar] [CrossRef]
- Su, S.; Tian, J.; Dong, X.; Tian, Q.; Wang, N.; Xi, Y. An Impervious Surface Spectral Index on Multispectral Imagery Using Visible and Near-Infrared Bands. Remote Sens. 2022, 14, 3391. [Google Scholar] [CrossRef]
- Ghanbari, R.; Heidarimozaffar, M.; Soltani, A.; Arefi, H. Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. Int. J. Environ. Sci. Technol. 2023, 20, 2883–2902. [Google Scholar] [CrossRef]
- Lialios-Bouwman, V.; Jakubiec, J.A. Urban Heat Islands in Future Climate Scenarios. Build. Simul. Conf. Proc. 2022, 17, 957–964. [Google Scholar] [CrossRef]
External_Temperature | External_Humidity | Cluster |
---|---|---|
20 | 0.7 | 0 |
23.5 | 0.575 | 1 |
22 | 0.68 | 2 |
26 | 0.42 | 3 |
Sample699 | Sample700 |
---|---|
ASTM E 891: 67.70 | ASTM E 891: 67.89 |
ASTM E 892: 65.35 | ASTM E 892: 65.41 |
ASTM G (173) | ASTM g 173 (Direct Circumsolar): 66.22 |
ASTM G (173) (Hemispherical Tilt @ 37 degrees): 64.90 | ASTM g 173 Hemispherical Tilt@ 37 degrees): 64.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perlaza, J.; Porcari, V.D.; Fattore, C. Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera. Sustainability 2025, 17, 4374. https://doi.org/10.3390/su17104374
Perlaza J, Porcari VD, Fattore C. Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera. Sustainability. 2025; 17(10):4374. https://doi.org/10.3390/su17104374
Chicago/Turabian StylePerlaza, Juana, Vito D. Porcari, and Carmen Fattore. 2025. "Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera" Sustainability 17, no. 10: 4374. https://doi.org/10.3390/su17104374
APA StylePerlaza, J., Porcari, V. D., & Fattore, C. (2025). Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera. Sustainability, 17(10), 4374. https://doi.org/10.3390/su17104374