Risk Spillover in the Carbon-Stock System and Sustainability Transition: Empirical Evidence from China’s ETS Pilots and A-Share Emission-Regulated Firms
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Methodology
3.2. Data
4. Empirical Results
4.1. Total Spillover Analysis
4.2. Analysis of Net Directional Spillovers
4.3. Analysis of Net Pairwise Spillovers
4.4. Robustness Tests
5. Heterogeneity Analysis
5.1. The Impact of A-Share Listed Emission-Regulated Firms Belonging to Different ETS Pilots on Risk Spillover
5.2. The Impact of Polluting Behavior of A-Share Listed Emission-Regulated Firms on Risk Spillover
5.3. The Impact of ESG Ratings of A-Share Listed Emission-Regulated Firms on Risk Spillover
6. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cui, J.; Zhang, J.; Zheng, Y. Carbon Pricing Induces Innovation: Evidence from China’s Regional Carbon Market Pilots. In Proceedings of the 130th Annual Meeting of the American-Economic-Association (AEA), Philadelphia, PA, USA, 5–7 January 2018; pp. 453–457. [Google Scholar]
- Liu, X.; Zhou, X.; Zhu, B.; Wang, P. Measuring the efficiency of China’s carbon market: A comparison between efficient and fractal market hypotheses. J. Clean. Prod. 2020, 271, 122885. [Google Scholar] [CrossRef]
- Munnings, C.; Morgenstern, R.D.; Wang, Z.; Liu, X. Assessing the design of three carbon trading pilot programs in China. Energy Policy 2016, 96, 688–699. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Y. Carbon finance and carbon market in China: Progress and challenges. J. Clean. Prod. 2019, 214, 536–549. [Google Scholar] [CrossRef]
- Wu, Q. Power play in carbon trading market: How status of executives with R&D background incentives companies’ low-carbon innovation. Energy Policy 2024, 188, 114049. [Google Scholar] [CrossRef]
- Li, X.; Shu, Y.; Jin, X. Environmental regulation, carbon emissions and green total factor productivity: A case study of China. Environ. Dev. Sustain. 2022, 24, 2577–2597. [Google Scholar] [CrossRef]
- Ge, W.; Xu, Y.; Razzaq, A.; Liu, G.; Su, X.; Yang, X.; Ran, Q. What drives the green transformation of enterprises? A case of carbon emissions trading pilot policy in China. Environ. Sci. Pollut. Res. 2023, 30, 56743–56758. [Google Scholar] [CrossRef]
- Feng, Z.-H.; Zou, L.-L.; Wei, Y.-M. Carbon price volatility: Evidence from EU ETS. Appl. Energy 2011, 88, 590–598. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Xu, Y. Carbon price volatility: The case of China. PLoS ONE 2018, 13, e0205317. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Li, Y.; Huang, C.-Y.; Peculea, A.D. Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method. Energy Econ. 2023, 119, 106542. [Google Scholar] [CrossRef]
- Qiu, L.; Chu, L.; Zhou, R.; Xu, H.; Yuan, S. How do carbon, stock, and renewable energy markets interact: Evidence from Europe. J. Clean. Prod. 2023, 407, 137106. [Google Scholar] [CrossRef]
- Ma, J.; Hu, Q.; Shen, W.; Wei, X. Does the Low-Carbon City Pilot Policy Promote Green Technology Innovation? Based on Green Patent Data of Chinese A-Share Listed Companies. Int. J. Environ. Res. Public Health 2021, 18, 3695. [Google Scholar] [CrossRef] [PubMed]
- Asni, N.; Agustia, D. The mediating role of financial performance in the relationship between green innovation and firm value: Evidence from ASEAN countries. Eur. J. Innov. Manag. 2022, 25, 1328–1347. [Google Scholar] [CrossRef]
- Wu, R.; Liu, B.-Y. Do climate policy uncertainty and investor sentiment drive the dynamic spillovers among green finance markets? J. Environ. Manag. 2023, 347, 119008. [Google Scholar] [CrossRef]
- Tian, B.; Yu, J.; Tian, Z. The impact of market-based environmental regulation on corporate ESG performance: A quasi-natural experiment based on China’s carbon emission trading scheme. Heliyon 2024, 10, e26687. [Google Scholar] [CrossRef]
- Forsberg, L.; Chysels, E. Why do absolute returns predict volatility so well? J. Financ. Econom. 2007, 5, 31–67. [Google Scholar] [CrossRef]
- Sun, X.; Fang, W.; Gao, X.; An, H.; Liu, S.; Wu, T. Complex causalities between the carbon market and the stock markets for energy intensive industries in China. Int. Rev. Econ. Financ. 2022, 78, 404–417. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z. The dynamic spillover between carbon and energy markets: New evidence. Energy 2018, 149, 24–33. [Google Scholar] [CrossRef]
- Ye, S.; Dai, P.-F.; Hoai Trong, N.; Ngoc Quang Anh, H. Is the cross-correlation of EU carbon market price with policy uncertainty really being? A multiscale multifractal perspective. J. Environ. Manag. 2021, 298, 113490. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Gabauer, D. Refined Measures of Dynamic Connectedness Based on Time-Varying Parameter Vector Autoregressions. J. Risk Financ. Manag. 2020, 13, 84. [Google Scholar] [CrossRef]
- Tan, X.; Sirichand, K.; Vivian, A.; Wang, X. How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics. Energy Econ. 2020, 90, 104870. [Google Scholar] [CrossRef]
- Tian, Y.; Akimov, A.; Roca, E.; Wong, V. Does the carbon market help or hurt the stock price of electricity companies? Further evidence from the European context. J. Clean. Prod. 2016, 112, 1619–1626. [Google Scholar] [CrossRef]
- Nugraha, N.M.; Riyadhi, M.R. The effect of cash flows, company size, and profit on stock prices in SOE companies listed on Bei for the 2013–2017 period. Int. J. Innov. Creat. Change 2019, 6, 130–141. [Google Scholar]
- Liu, M.; Shan, Y.; Li, Y. Study on the effect of carbon trading regulation on green innovation and heterogeneity analysis from China. Energy Policy 2022, 171, 113290. [Google Scholar] [CrossRef]
- Dong, F.; Dai, Y.J.; Zhang, S.N.; Zhang, X.Y.; Long, R.Y. Can a carbon emission trading scheme generate the Porter effect? Evidence from pilot areas in China. Sci. Total Environ. 2019, 653, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Kossoy, A.; Ambrosi, P. State and Trends of the Carbon Market 2010; World Bank Group: Washington, DC, USA, 2013. [Google Scholar]
- Lv, M.C.; Bai, M.Y. Evaluation of China’s carbon emission trading policy from corporate innovation. Financ. Res. Lett. 2021, 39, 101565. [Google Scholar] [CrossRef]
- Xiao, Z.; Ma, S.; Sun, H.; Ren, J.; Feng, C.; Cui, S. Time-varying spillovers among pilot carbon emission trading markets in China. Environ. Sci. Pollut. Res. 2022, 29, 57421–57436. [Google Scholar] [CrossRef]
- Bekaert, G.; Harvey, C.R. Market Integration and Contagion; National Bureau of Economic Research: Cambridge, MA, USA, 2003. [Google Scholar]
- Jimenez-Rodriguez, R. What happens to the relationship between EU allowances prices and stock market indices in Europe? Energy Econ. 2019, 81, 13–24. [Google Scholar] [CrossRef]
- Oberndorfer, U. EU Emission Allowances and the stock market: Evidence from the electricity industry. Ecol. Econ. 2009, 68, 1116–1126. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.; Qin, Q.; Lin, X. Spillover effects and nonlinear correlations between carbon emissions and stock markets: An empirical analysis of China’s carbon-intensive industries. Energy Econ. 2022, 111, 106071. [Google Scholar] [CrossRef]
- Zhu, H.; Tang, Y.; Peng, C.; Yu, K. The heterogeneous response of the stock market to emission allowance price: Evidence from quantile regression. Carbon Manag. 2018, 9, 277–289. [Google Scholar] [CrossRef]
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ. 2012, 34, 215–226. [Google Scholar] [CrossRef]
- Ibikunle, G.; Gregoriou, A.; Hoepner, A.G.F.; Rhodes, M. Liquidity and market efficiency in the world’s largest carbon market. Br. Account. Rev. 2016, 48, 431–447. [Google Scholar] [CrossRef]
- Yang, L. Idiosyncratic information spillover and connectedness network between the electricity and carbon markets in Europe. J. Commod. Mark. 2022, 25, 100185. [Google Scholar] [CrossRef]
- Chun, D.; Cho, H.; Kim, J. The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system. Energy Econ. 2022, 114, 106257. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Milcheva, S.; Shan, Y.; Guan, D.; Wang, S. Regional development and carbon emissions in China. Energy Econ. 2019, 81, 25–36. [Google Scholar] [CrossRef]
- Liao, Z.; Yao, Q. Flexibility is needed in China’s national carbon market. Nat. Clim. Change 2022, 12, 106–107. [Google Scholar] [CrossRef]
- Wen, F.; Zhao, L.; He, S.; Yang, G. Asymmetric relationship between carbon emission trading market and stock market: Evidences from China. Energy Econ. 2020, 91, 104850. [Google Scholar] [CrossRef]
- Zhang, J.; Hassan, K.; Wu, Z.; Gasbarro, D. Does corporate social responsibility affect risk spillovers between the carbon emissions trading market and the stock market? J. Clean. Prod. 2022, 362, 132330. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, Y.; Ma, X.; Zhou, Y. Risk spillover between carbon markets and stock markets from a progressive perspective: Measurements, spillover networks, and driving factors. Energy Econ. 2024, 129, 107228. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Zhang, T. Research on the dynamic linkage among the carbon emission trading, energy and capital markets. J. Clean. Prod. 2020, 272, 122717. [Google Scholar] [CrossRef]
- Wu, R.; Qin, Z.; Liu, B.-Y. A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China. Energy 2022, 254, 124176. [Google Scholar] [CrossRef]
- Wen, F.; Wu, N.; Gong, X. China’s carbon emissions trading and stock returns. Energy Econ. 2020, 86, 104627. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, X.; Liu, X.; Wang, H.; He, K.; Wang, P. Exploring the risk spillover effects among China’s pilot carbon markets: A regular vine copula-CoES approach. J. Clean. Prod. 2020, 242, 118455. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; He, Y.; Dong, J. Spill-over effect and efficiency of seven pilot carbon emissions trading exchanges in China. Sci. Total Environ. 2022, 838, 156020. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Chevallier, J.; Wojewodzki, M. The Efficiency of China’s Carbon Trading Schemes: A Tale of Seven Pilot Markets. Commodities 2024, 3, 355–375. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Feng, C. Are there spillovers among China’s pilots for carbon emission allowances trading? Energy Econ. 2021, 103, 105574. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A.; Noman, A. The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the US economic policy uncertainty. Resour. Policy 2021, 74, 102252. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; An, H.; Aloui, C. Testing the directional predictability between carbon trading and sectoral stocks in China: New insights using cross-quantilogram and rolling window causality approaches. Technol. Forecast. Soc. Change 2022, 182, 121846. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Ren, F.; Yang, M.-Y.; Lu, F.-Z.; Li, S.-P. Dynamic lead–lag relationship between Chinese carbon emission trading and stock markets under exogenous shocks. Int. Rev. Econ. Financ. 2023, 85, 295–305. [Google Scholar] [CrossRef]
- Chatziantoniou, I.; Gabauer, D.; Gupta, R. Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach. Resour. Policy 2023, 84, 103729. [Google Scholar] [CrossRef]
- Stiassny, A. A spectral decomposition for structural VAR models. Empir. Econ. 1996, 21, 535–555. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Barunik, J.; Krehlik, T. Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk. J. Financ. Econom. 2018, 16, 271–296. [Google Scholar] [CrossRef]
- Wu, R.; Qin, Z. Assessing market efficiency and liquidity: Evidence from China’s emissions trading scheme pilots. Sci. Total Environ. 2021, 769, 144707. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? Rev. Financ. Stud. 2009, 22, 1915–1953. [Google Scholar] [CrossRef]
- Zheng, Z.; Qiao, Z.; Takaishi, T.; Stanley, H.E.; Li, B. Realized Volatility and Absolute Return Volatility: A Comparison Indicating Market Risk. PLoS ONE 2014, 9, e102940. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Koop, G.; Korobilis, D. A new index of financial conditions. Eur. Econ. Rev. 2014, 71, 101–116. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, L.; Wei, Y.; Shi, Z.; Luo, Z. Time-frequency dynamics, co-movement and causality among returns of global carbon emissions trading schemes (ETSs): A tale of four markets. J. Clean. Prod. 2022, 363, 132564. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Guo, F. Does carbon emissions trading promote green technology innovation in China? Appl. Energy 2022, 315, 119012. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Hao, X.; Zhang, X. The ESG rating, spillover of ESG ratings, and stock return: Evidence from Chinese listed firms. Pac. Basin Financ. J. 2023, 80, 102091. [Google Scholar] [CrossRef]
- Li, J.; Lian, G.; Xu, A. How do ESG affect the spillover of green innovation among peer firms? Mechanism discussion and performance study. J. Bus. Res. 2023, 158, 113648. [Google Scholar] [CrossRef]
- Lu, J.; Li, H. The impact of ESG ratings on low carbon investment: Evidence from renewable energy companies. Renew. Energy 2024, 223, 119984. [Google Scholar] [CrossRef]
- Tarmuji, I.; Maelah, R.; Tarmuji, N.H. The impact of environmental, social and governance practices (ESG) on economic performance: Evidence from ESG score. Int. J. Trade Econ. Financ. 2016, 7, 67–74. [Google Scholar] [CrossRef]
Primary Market | Secondary Market | |||
---|---|---|---|---|
Trading Volume (10,000 tons) | Trading Amount (100 million yuan) | Trading Volume (10,000 tons) | Trading Amount (100 million yuan) | |
HB | 1469.32 | 4.31 | 37,039.24 | 91.44 |
GD | 2271.83 | 9.91 | 19,581.29 | 48.61 |
SZ | 654.84 | 3.32 | 11,271.28 | 24.19 |
BJ | 246.11 | 2.7 | 5062.47 | 13.52 |
SH | 78.08 | 0.32 | 4933.90 | 8.78 |
TJ | 664.64 | 1.48 | 2979.91 | 7.60 |
FJ | 10.00 | --- | 3032.82 | 7.00 |
CQ | 1159.27 | 3.36 | 4425.22 | 6.16 |
SC | 0.00 | 0.00 | 0.00 | 0.00 |
Variable | Definition | Construction Method | Data Source |
---|---|---|---|
HB | Hubei carbon trading pilot carbon allowance | Daily closing price (or average transaction price if missing) | WIND Database |
GD | Guangdong carbon trading pilot carbon allowance | Daily closing price | WIND Database |
SZ | Shenzhen carbon trading pilot carbon allowance | Daily closing price | WIND Database |
BJ | Shanghai carbon trading pilot carbon allowance | Daily closing price | WIND Database |
SH | Beijing carbon trading pilot carbon allowance | Average transaction price (due to lack of closing price data) | WIND Database |
StockAll | Composite index of all A-share emission-regulated firms | Equal-weighted average of daily closing prices (DeMiguel et al., 2009) [59] | CSMAR Database (stock prices) |
StockHB | Stocks of emission-regulated firms in Hubei carbon trading pilot | Average daily closing price of firms registered in Hubei | CSMAR Database |
StockGD | Stocks of emission-regulated firms in Guangdong carbon trading pilot | Average daily closing price of firms registered in Guangdong | CSMAR Database |
StockSZ | Stocks of emission-regulated firms in Shenzhen carbon trading pilot | Average daily closing price of firms registered in Shenzhen | CSMAR Database |
StockBJ | Stocks of emission-regulated firms in Beijing carbon trading pilot | Average daily closing price of firms registered in Beijing | CSMAR Database |
StockSH | Stocks of emission-regulated firms in Shanghai carbon trading pilot | Average daily closing price of firms registered in Shanghai | CSMAR Database |
StockP | Polluting stocks (high environmental expense/tax firms) | Firms with significant pollution behavior based on environmental expense data | CSMAR (environmental tax data) |
StockC | Clean stocks (low environmental expense/tax firms) | Firms with minimal pollution behavior | CSMAR (environmental tax data) |
StockLESG | Low-ESG-rated emission-regulated firms | Firms with ESG scores below annual industry median | WIND (ESG ratings) |
StockHESG | High-ESG-rated emission-regulated firms | Firms with ESG scores equal to or above annual industry median | WIND (ESG ratings) |
Obs = 2108 | Mean | Max | Min | Std. Dev. | Skew | Kurt | J-B | ADF | PP |
---|---|---|---|---|---|---|---|---|---|
Panel A: Volatility (%) | |||||||||
HB | 1.736 | 19.721 | 0 | 2.261 | 2.249 | 6.086 | 5040.955 *** | −9.234 *** | −1433.019 *** |
GD | 2.43 | 23.985 | 0 | 3.024 | 1.544 | 1.979 | 1184.195 *** | −8.926 *** | −1853.324 *** |
SZ | 14.787 | 247.948 | 0 | 29.965 | 4.432 | 22.276 | 50,591.883 *** | −7.542 *** | −1707.008 *** |
BJ | 3.379 | 46.962 | 0 | 5.913 | 2.149 | 4.319 | 3269.003 *** | −9.786 *** | −1682.987 *** |
SH | 2.139 | 92.846 | 0 | 4.73 | 7.648 | 112.937 | 1,143,053.971 *** | −10.632 *** | −2145.079 *** |
StockAll | 1.26 | 9.174 | 0 | 1.269 | 2.327 | 7.528 | 6896.557 *** | −6.939 *** | −2707.331 *** |
StockHB | 1.341 | 9.666 | 0 | 1.271 | 2.117 | 6.626 | 5443.775 *** | −7.8 *** | −2621.265 *** |
StockGD | 1.543 | 10.573 | 0 | 1.76 | 2.426 | 7.405 | 6899.96 *** | −6.982 *** | −2256.69 *** |
StockSZ | 1.396 | 9.216 | 0 | 1.341 | 1.986 | 5.545 | 4095.28 *** | −7.002 *** | −2716.859 *** |
StockBJ | 1.407 | 9.462 | 0 | 1.357 | 1.897 | 4.583 | 3115.845 *** | −7.602 *** | −2529.304 *** |
StockSH | 1.228 | 10.46 | 0.001 | 1.431 | 3.089 | 12.517 | 17,151.352 *** | −6.567 *** | −2068.422 *** |
StockP | 1.297 | 10.532 | 0.002 | 1.301 | 2.326 | 7.957 | 7478.623 *** | −7.222 *** | −2610.125 *** |
StockC | 1.287 | 9.193 | 0 | 1.285 | 2.251 | 7.044 | 6152 *** | −6.854 *** | −2686.743 *** |
StockLESG | 1.281 | 9.674 | 0.002 | 1.299 | 2.215 | 6.671 | 5645.462 *** | −7.002 *** | −2644.37 *** |
StockHESG | 1.298 | 9.69 | 0.001 | 1.304 | 2.344 | 7.811 | 7306.54 *** | −6.869 *** | −2708.379 *** |
Panel B: Volatility based on Box–Cox transformation (%) | |||||||||
HB | −0.127 | 3.004 | −3.874 | 1.332 | −0.448 | −0.087 | 71.182 *** | −8.458 *** | −1705.061 *** |
GD | 0.272 | 3.137 | −4.42 | 1.278 | −0.472 | 0.123 | 79.758 *** | −9.092 *** | −2044.018 *** |
SZ | 1.584 | 4.627 | −4.671 | 1.278 | −0.411 | 0.516 | 83.177 *** | −6.519 *** | −1725.428 *** |
BJ | 0.426 | 3.339 | −5.376 | 1.243 | −0.325 | 1.528 | 243.454 *** | −8.82 *** | −1780.585 *** |
SH | 0.261 | 4.087 | −4.484 | 1.125 | −0.435 | 2.286 | 527.37 *** | −9.684 *** | −2087.715 *** |
StockAll | −0.263 | 2.245 | −5.999 | 1.141 | −0.935 | 1.749 | 577.55 *** | −8.041 *** | −2622.364 *** |
StockHB | −0.157 | 2.412 | −5.777 | 1.107 | −0.843 | 1.265 | 391.378 *** | −8.761 *** | −2498.889 *** |
StockGD | −0.062 | 2.451 | −6.187 | 1.161 | −0.707 | 1.235 | 310.658 *** | −8.012 *** | −2296.988 *** |
StockSZ | −0.158 | 2.305 | −6.168 | 1.166 | −0.943 | 1.496 | 510.834 *** | −8.002 *** | −2444.155 *** |
StockBJ | −0.142 | 2.339 | −6.127 | 1.146 | −0.92 | 1.754 | 569.718 *** | −8.116 *** | −2396.558 *** |
StockSH | −0.325 | 2.491 | −5.843 | 1.159 | −0.655 | 1.147 | 267.365 *** | −7.516 *** | −2398.263 *** |
StockP | −0.238 | 2.514 | −5.261 | 1.172 | −0.869 | 1.286 | 411.927 *** | −8.393 *** | −2466.856 *** |
StockC | −0.242 | 2.279 | −6.364 | 1.148 | −0.922 | 1.639 | 536.407 *** | −7.957 *** | −2552.916 *** |
StockLESG | −0.251 | 2.362 | −5.588 | 1.142 | −0.757 | 1.026 | 294.768 *** | −8.261 *** | −2541.728 *** |
StockHESG | −0.235 | 2.35 | −6.242 | 1.157 | −0.952 | 1.852 | 621.529 *** | −7.959 *** | −2545.835 *** |
HB | GD | SZ | BJ | SH | StockAll | FROM | |
---|---|---|---|---|---|---|---|
HB | 85.85(51.67)[34.18] | 3.20(1.23)[1.97] | 3.99(1.35)[2.65] | 2.52(1.37)[1.15] | 2.34(1.25)[1.09] | 2.11(1.23)[0.87] | 14.15(6.42)[7.73] |
GD | 3.28(1.08)[2.20] | 84.36(46.44)[37.92] | 3.05(1.16)[1.89] | 3.19(1.21)[1.97] | 2.82(1.42)[1.40] | 3.30(1.41)[1.89] | 15.64(6.29)[9.35] |
SZ | 2.24(0.93)[1.31] | 3.40(0.89)[2.51] | 84.50(44.30)[40.20] | 3.22(1.05)[2.17] | 2.63(0.95)[1.68] | 4.02(1.06)[2.96] | 15.50(4.88)[10.63] |
BJ | 2.23(1.12)[1.11] | 3.12(1.39)[1.73] | 2.51(1.17)[1.34] | 85.71(52.07)[33.64] | 3.03(1.37)[1.66] | 3.39(1.23)[2.16] | 14.29(6.28)[8.00] |
SH | 2.18(1.33)[0.85] | 3.31(1.43)[1.88] | 2.82(1.12)[1.70] | 4.13(2.03)[2.10] | 84.76(54.55)[30.20] | 2.80(1.38)[1.42] | 15.24(7.29)[7.95] |
StockAll | 2.10(1.32)[0.79] | 3.21(1.56)[1.65] | 2.63(1.68)[0.95] | 2.82(2.07)[0.75] | 2.19(1.39)[0.80] | 87.05(63.07)[23.98] | 12.95(8.01)[4.94] |
TO | 12.03(5.78)[6.25] | 16.24(6.49)[9.75] | 15.01(6.48)[8.53] | 15.87(7.73)[8.15] | 13.01(6.37)[6.64] | 15.61(6.32)[9.30] | TSI |
NET | −2.12(−0.64)[−1.48] | 0.60(0.20)[0.40] | −0.49(1.60)[−2.09] | 1.58(1.44)[0.14] | −2.23(−0.91)[−1.32] | 2.66(−1.69)[4.35] | 14.63(6.53)[8.10] |
HB | GD | SZ | BJ | SH | StockAll | |
---|---|---|---|---|---|---|
HB | 0.00(0.00)[0.00] | −0.08(0.15)[−0.23] | 1.75(0.42)[1.34] | 0.29(0.25)[0.04] | 0.16(−0.08)[0.24] | 0.01(−0.09)[0.08] |
GD | 0.08(−0.15)[0.23] | 0.00(0.00)[0.00] | −0.35(0.27)[−0.62] | 0.07(−0.18)[0.24] | −0.49(−0.01)[−0.48] | 0.09(−0.15)[0.24] |
SZ | −1.75(−0.42)[−1.34] | 0.35(−0.27)[0.62] | 0.00(0.00)[0.00] | 0.71(−0.12)[0.83] | −0.19(−0.17)[−0.02] | 1.39(−0.62)[2.01] |
BJ | −0.29(−0.25)[−0.04] | −0.07(0.18)[−0.24] | −0.71(0.12)[−0.83] | 0.00(0.00)[0.00] | −1.10(−0.66)[−0.44] | 0.57(−0.84)[1.41] |
SH | −0.16(0.08)[−0.24] | 0.49(0.01)[0.48] | 0.19(0.17)[0.02] | 1.10(0.66)[0.44] | 0.00(0.00)[0.00] | 0.61(−0.01)[0.62] |
StockAll | −0.01(0.09)[−0.08] | −0.09(0.15)[−0.24] | −1.39(0.62)[−2.01] | −0.57(0.84)[−1.41] | −0.61(0.01)[−0.62] | 0.00(0.00)[0.00] |
Forecast Horizon = 50 Days | Forecast Horizon = 75 Days | Forecast Horizon = 100 Days | Forecast Horizon = 125 Days | Forecast Horizon = 150 Days | ||
---|---|---|---|---|---|---|
P = 3 | Net risk spillover of StockAll | 2.29(−1.18)[3.46] | 2.29(−1.22)[3.51] | 2.29(−1.20)[3.49] | 2.29(−1.23)[3.51] | 2.29(−1.21)[3.50] |
TSI | 11.24(4.70)[6.54] | 11.24(4.50)[6.74] | 11.24(4.59)[6.65] | 11.24(4.49)[6.75] | 11.24(4.55)[6.69] | |
P = 4 | Net risk spillover of StockAll | 2.65(−1.37)[4.02] | 2.65(−1.38)[4.04] | 2.65(−1.38)[4.03] | 2.65(−1.38)[4.04] | 2.65(−1.38)[4.03] |
TSI | 13.06(5.69)[7.37] | 13.06(5.49)[7.57] | 13.06(5.58)[7.48] | 13.06(5.48)[7.58] | 13.06(5.54)[7.52] | |
P = 6 | Net risk spillover of StockAll | 3.60(−2.08)[5.68] | 3.62(−2.12)[5.75] | 3.63(−2.11)[5.74] | 3.63(−2.13)[5.76] | 3.63(−2.12)[5.75] |
TSI | 16.20(7.75)[8.45] | 16.24(7.53)[8.71] | 16.24(7.63)[8.62] | 16.24(7.52)[8.72] | 16.24(7.59)[8.66] | |
P = 7 | Net risk spillover of StockAll | 3.90(−2.45)[6.35] | 3.93(−2.51)[6.44] | 3.94(−2.50)[6.43] | 3.94(−2.52)[6.45] | 3.94(−2.50)[6.44] |
TSI | 17.67(8.86)[8.81] | 17.75(8.60)[9.15] | 17.77(8.71)[9.06] | 17.77(8.59)[9.18] | 17.78(8.67)[9.11] |
HB | GD | SZ | BJ | SH | StockAll | FROM | |
---|---|---|---|---|---|---|---|
HB | 85.72(51.46)[34.26] | 3.21(1.21)[2.00] | 3.95(1.34)[2.61] | 2.63(1.42)[1.21] | 2.34(1.27)[1.07] | 2.14(1.29)[0.86] | 14.28(6.53)[7.75] |
GD | 3.24(1.07)[2.17] | 84.28(46.29)[37.99] | 3.01(1.13)[1.88] | 3.20(1.16)[2.04] | 2.84(1.44)[1.40] | 3.42(1.43)[1.99] | 15.72(6.24)[9.49] |
SZ | 2.19(0.90)[1.29] | 3.42(0.89)[2.53] | 84.36(43.72)[40.64] | 3.24(1.02)[2.22] | 2.68(1.00)[1.69] | 4.11(1.07)[3.04] | 15.64(4.88)[10.76] |
BJ | 2.29(1.15)[1.14] | 3.16(1.36)[1.79] | 2.56(1.17)[1.39] | 85.44(51.61)[33.83] | 3.13(1.39)[1.74] | 3.42(1.24)[2.19] | 14.56(6.31)[8.25] |
SH | 2.21(1.34)[0.88] | 3.34(1.45)[1.89] | 2.77(1.15)[1.61] | 4.21(2.05)[2.16] | 84.63(53.85)[30.78] | 2.84(1.37)[1.47] | 15.37(7.36)[8.01] |
StockAll | 2.16(1.35)[0.81] | 3.23(1.59)[1.64] | 2.72(1.76)[0.96] | 2.75(1.98)[0.77] | 2.17(1.37)[0.80] | 86.96(62.85)[24.11] | 13.04(8.06)[4.98] |
TO | 12.09(5.79)[6.29] | 16.37(6.52)[9.86] | 15.01(6.56)[8.46] | 16.03(7.63)[8.40] | 13.17(6.47)[6.70] | 15.94(6.40)[9.54] | TCI |
NET | −2.19(−0.73)[−1.46] | 0.65(0.28)[0.37] | −0.63(1.68)[−2.31] | 1.47(1.32)[0.15] | −2.20(−0.88)[−1.32] | 2.90(−1.66)[4.56] | 14.77(6.56)[8.21] |
StockHB | StockGD | StockSZ | StockBJ | StockSH | |
---|---|---|---|---|---|
HB | 0.44(0.11)[0.34] | 0.30(0.09)[0.19] | 0.55(0.15)[0.40] | 1.00(0.14)[0.85] | 0.57(0.01)[0.55] |
GD | 0.36(−0.02)[0.37] | 0.17(0.21)[−0.05] | 1.17(0.27)[0.90] | 0.88(0.16)[0.72] | 0.84(0.10)[0.74] |
SZ | 0.22(−0.36)[0.59] | 0.33(−0.13)[0.46] | 0.66(−0.05)[0.72] | 0.60(−0.38)[0.97] | 1.33(0.06)[1.27] |
BJ | −0.05(−0.36)[0.31] | 0.63(−0.08)[0.70] | 0.28(−0.36)[0.65] | 0.45(−0.33)[0.78] | 0.15(−0.36)[0.51] |
SH | 0.35(0.25)[0.09] | 0.25(0.22)[0.04] | 1.07(0.52)[0.55] | 0.68(0.50)[0.18] | 0.08(0.19)[−0.12] |
Total | 1.32(−0.38)[1.70] | 1.68(0.31)[1.34] | 3.73(0.53)[3.22] | 3.61(0.09)[3.50] | 2.97(0.00)[2.95] |
StockP | StockC | |
---|---|---|
HB | 0.33(0.17)[0.17] | 0.17(−0.13)[0.30] |
GD | 0.12(0.11)[0.01] | 0.37(0.07)[0.30] |
SZ | 0.88(−0.30)[1.17] | 1.47(−0.14)[1.61] |
BJ | 0.16(−0.39)[0.55] | 0.57(−0.33)[0.90] |
SH | 0.41(0.25)[0.17] | 0.96(0.38)[0.58] |
Total | 1.90(−0.16)[2.07] | 3.54(−0.15)[3.69] |
StockLESG | StockHESG | |
---|---|---|
HB | 0.26(0.10)[0.15] | 0.12(−0.16)[0.27] |
GD | 0.09(0.12)[−0.02] | 0.08(−0.03)[0.11] |
SZ | 0.95(0.10)[0.85] | 1.24(−0.14)[1.38] |
BJ | 0.46(−0.28)[0.73] | 0.82(−0.25)[1.07] |
SH | 1.07(0.29)[0.78] | 0.83(0.35)[0.49] |
Total | 2.83(0.33)[2.49] | 3.09(−0.23)[3.32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zeng, Y.; Wu, Z. Risk Spillover in the Carbon-Stock System and Sustainability Transition: Empirical Evidence from China’s ETS Pilots and A-Share Emission-Regulated Firms. Sustainability 2025, 17, 4274. https://doi.org/10.3390/su17104274
Wang Y, Zeng Y, Wu Z. Risk Spillover in the Carbon-Stock System and Sustainability Transition: Empirical Evidence from China’s ETS Pilots and A-Share Emission-Regulated Firms. Sustainability. 2025; 17(10):4274. https://doi.org/10.3390/su17104274
Chicago/Turabian StyleWang, Yifan, Yufeiyang Zeng, and Zongfa Wu. 2025. "Risk Spillover in the Carbon-Stock System and Sustainability Transition: Empirical Evidence from China’s ETS Pilots and A-Share Emission-Regulated Firms" Sustainability 17, no. 10: 4274. https://doi.org/10.3390/su17104274
APA StyleWang, Y., Zeng, Y., & Wu, Z. (2025). Risk Spillover in the Carbon-Stock System and Sustainability Transition: Empirical Evidence from China’s ETS Pilots and A-Share Emission-Regulated Firms. Sustainability, 17(10), 4274. https://doi.org/10.3390/su17104274