Progress and Trends in Research on Soil Nitrogen Leaching: A Bibliometric Analysis from 2003 to 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Knowledge Extraction and Analysis
3. Results and Discussion
3.1. Trends in Issuance and Basic Characteristics of Publications
3.1.1. Analysis of Output Trends
3.1.2. Analysis of the Basic Characteristics of Publications
3.2. Countries of Publications
3.2.1. Analysis of the Number of Publications by Countries
3.2.2. Analysis of Cooperation of Countries
3.3. Authors of Publications
3.3.1. Analysis of the Number of Publications by Authors
3.3.2. Analysis of Cooperation of Authors
3.4. Institutions of Publications
3.4.1. Analysis of the Number of Publications by Institutions
3.4.2. Analysis of Cooperation of Institutions
3.5. Analysis of Highly Cited Articles
Title | Citations | Corresponding Author | Country | Source | Year |
---|---|---|---|---|---|
Reducing environmental risk by improving N management in intensive Chinese agricultural systems [94] | 2075 | Ju XT | China | Proceedings of The National Academy of Sciences of the United States of America | 2009 |
Water pulses and biogeochemical cycles in arid and semiarid ecosystems [97] | 1067 | A. T. Austin | Argentina | Oecologia | 2004 |
Long-term effects of organic amendments on soil fertility. A review [98] | 1032 | Montemurro F | Italy | Agronomy for Sustainable Development | 2010 |
Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils [99] | 896 | Borken Werner | Germany | Global Change Biology | 2009 |
Nitrogen losses from the soil/plant system: a review [100] | 886 | Cameron K. C. | New Zealand | Annals of Applied Biology | 2013 |
3.6. Research Keywords
3.6.1. Keyword Co-Occurrence Analysis
3.6.2. Keyword Burst Analysis
3.7. Prospects for Future Research
- (1)
- Increase considerations of management measures and further refinement of agricultural models. With the increasing focus on greenhouse gases, crop yields, soil microbes, and other components, the impact of management practices on other environmental characteristics and crop characteristics should be fully considered along with the reduction of soil nitrogen leaching. By refining existing or developing new agricultural models that incorporate more environmental and crop characteristics into the simulation, thus facilitating the selection of best management practices. This will improve the science and availability of management practices and promote more systematic and comprehensive development of sustainable agriculture.
- (2)
- Deepening the research content of soil microorganisms in the field of soil nitrogen leaching. It has been shown that microbial-driven elemental cycling has a relatively intuitive impact on the soil environment, nitrogen leaching and crop yield [23]. Therefore, in-depth study of soil microbial community structure, functional genes in the field of soil nitrogen leaching has great prospects for development. Using correlation analysis and modeling analysis to combine soil microorganisms with crop yield and nitrogen leaching, exploring the mechanisms by which soil microorganisms affect crop yield and nitrogen leaching will be beneficial in enhancing the promotion of sustainable agriculture at the intersection of other disciplines.
- (3)
- Construct a complete nitrogen leaching evaluation system. As research on soil nitrogen leaching matures, a complete system is needed to evaluate it in terms of quantification and management. Integrated use of hierarchical analysis, peer review and other methods to evaluate the accuracy of quantification of soil nitrogen leaching, the effectiveness of management practices and the reasonableness of model parameters. The construction of a complete soil nitrogen leaching evaluation system will help to promote the integrated development of sustainable agriculture in monitoring, early warning and decision-making.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraiser, T.; Gras, D.E.; Gutierrez, A.G.; Gonzalez, B.; Gutierrez, R.A. A Holistic View of Nitrogen Acquisition in Plants. J. Exp. Bot. 2011, 62, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef]
- Liang, H.; Gao, S.; Qi, Z.; Hu, K.; Xu, J. Leaching Loss of Dissolved Organic Nitrogen from Cropland Ecosystems. Environ. Rev. 2021, 29, 23–30. [Google Scholar] [CrossRef]
- Libutti, A.; Monteleone, M. Soil vs. Groundwater: The Quality Dilemma. Managing Nitrogen Leaching and Salinity Control under Irrigated Agriculture in Mediterranean Conditions. Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S. Nitrate N Loss by Leaching and Surface Runoff in Agricultural Land: A Global Issue (a Review). In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 156, pp. 159–217. ISBN 978-0-12-817598-9. [Google Scholar]
- Eder, A.; Blöschl, G.; Feichtinger, F.; Herndl, M.; Klammler, G.; Hösch, J.; Erhart, E.; Strauss, P. Indirect Nitrogen Losses of Managed Soils Contributing to Greenhouse Emissions of Agricultural Areas in Austria: Results from Lysimeter Studies. Nutr. Cycl. Agroecosyst. 2015, 101, 351–364. [Google Scholar] [CrossRef]
- Silva, R.G.; Cameron, K.C.; Di, H.J.; Jorgensen, E.E. A Lysimeter Study to Investigate the Effect of Dairy Effluent and Urea on Cattle Urine n Losses, Plant Uptake and Soil Retention. Water Air Soil Pollut. 2005, 164, 57–78. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, B.; Yang, L.; Yin, S.; Zhu, Z. Nitrogen Runoff and Leaching Losses During Rice-Wheat Rotations in Taihu Lake Region, China. Pedosphere 2007, 17, 445–456. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.C.Q. Simulating Soil C Dynamics with EPIC: Model Description and Testing against Long-Term Data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Hou, L.; Liu, X.; Luo, J.; Zhao, Y.; Zhang, X.; Lei, Q.; Liu, H.; Zou, P.; Liu, Z. Nitrogen Rate Is More Important than Irrigation Rate in Mitigating Nitrogen Leaching in Flood-Irrigated Maize: A 6-Year Lysimeter Experiment. Geoderma 2024, 447, 116940. [Google Scholar] [CrossRef]
- Svoboda, N.; Taube, F.; Wienforth, B.; Kluß, C.; Kage, H.; Herrmann, A. Nitrogen Leaching Losses after Biogas Residue Application to Maize. Soil Tillage Res. 2013, 130, 69–80. [Google Scholar] [CrossRef]
- Murphy, D.J.; Dillon, P.; O’ Donovan, M.; Shalloo, L.; Ruelle, E. Nitrate Leaching on Irish Grassland Dairy Farms: A Review. Eur. J. Agron. 2024, 153, 127042. [Google Scholar] [CrossRef]
- Addiscott, T.M. Measuring and Modelling Nitrogen Leaching: Parallel Problems. Plant Soil 1996, 181, 1–6. [Google Scholar] [CrossRef]
- Sabey, B.R.; Frederick, L.R.; Bartholomew, W.V. The Formation of Nitrate from Ammonium Nitrogen in Soils: IV. Use of the Delay and Maximum Rate Phases for Making Quantitative Predictions. Soil Sci. Soc. Am. J. 1969, 33, 276–278. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Qiu, J.; Li, C.; Gao, M.; Gao, C. Calibration of DNDC Model for Nitrate Leaching from an Intensively Cultivated Region of Northern China. Geoderma 2014, 223–225, 108–118. [Google Scholar] [CrossRef]
- Manevski, K.; Børgesen, C.D.; Andersen, M.N.; Kristensen, I.S. Reduced Nitrogen Leaching by Intercropping Maize with Red Fescue on Sandy Soils in North Europe: A Combined Field and Modeling Study. Plant Soil 2015, 388, 67–85. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for Reducing Nitrate Leaching in Orchards: A Review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Liang, X.; Wang, J.; Qiu, X.; Wang, C. Replacing Chemical Fertilizers with Biogas Slurry Is an Environment Friendly Strategy to Reduce the Risk of Soil Nitrogen Leaching: Evidence from the HYDRUS Model Simulation. Agric. Ecosyst. Environ. 2024, 369, 109043. [Google Scholar] [CrossRef]
- Yu, Y.; Jiao, Y.; Yang, W.; Song, C.; Zhang, J.; Liu, Y. Mechanisms Underlying Nitrous Oxide Emissions and Nitrogen Leaching from Potato Fields under Drip Irrigation and Furrow Irrigation. Agric. Water Manag. 2022, 260, 107270. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef]
- Pan, Z.; He, P.; Fan, D.; Jiang, R.; Song, D.; Song, L.; Zhou, W.; He, W. Global Impact of Enhanced-Efficiency Fertilizers on Vegetable Productivity and Reactive Nitrogen Losses. Sci. Total Environ. 2024, 926, 172016. [Google Scholar] [CrossRef] [PubMed]
- Kaviraj, M.; Kumar, U.; Chatterjee, S.; Parija, S.; Padbhushan, R.; Nayak, A.K.; Gupta, V.V.S.R. Dissimilatory Nitrate Reduction to Ammonium (DNRA): A Unique Biogeochemical Cycle to Improve Nitrogen (N) Use Efficiency and Reduce N-Loss in Rice Paddy. Rhizosphere 2024, 30, 100875. [Google Scholar] [CrossRef]
- Lyu, H.; Li, Y.; Wang, Y.; Wang, P.; Shang, Y.; Yang, X.; Wang, F.; Yu, A. Drive Soil Nitrogen Transformation and Improve Crop Nitrogen Absorption and Utilization—A Review of Green Manure Applications. Front. Plant Sci. 2024, 14, 1305600. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, H.; Wang, L.; Tang, H.; Li, C.; Van Ranst, E. GIS-Model Based Estimation of Nitrogen Leaching from Croplands of China. Nutr. Cycl. Agroecosyst. 2011, 90, 243–252. [Google Scholar] [CrossRef]
- Rath, S.; Zamora-Re, M.; Graham, W.; Dukes, M.; Kaplan, D. Quantifying Nitrate Leaching to Groundwater from a Corn-Peanut Rotation under a Variety of Irrigation and Nutrient Management Practices in the Suwannee River Basin, Florida. Agric. Water Manag. 2021, 246, 106634. [Google Scholar] [CrossRef]
- Michalczyk, A.; Kersebaum, K.C.; Roelcke, M.; Hartmann, T.; Yue, S.; Chen, X.; Zhang, F. Model-Based Optimisation of Nitrogen and Water Management for Wheat–Maize Systems in the North China Plain. Nutr. Cycl. Agroecosyst. 2014, 98, 203–222. [Google Scholar] [CrossRef]
- Ice, G. History of Innovative Best Management Practice Development and Its Role in Addressing Water Quality Limited Waterbodies. J. Environ. Eng. 2004, 130, 684–689. [Google Scholar] [CrossRef]
- Meng, F.; Hu, K.; Feng, P.; Feng, G.; Gao, Q. Simulating the Effects of Different Textural Soils and N Management on Maize Yield, N Fates, and Water and N Use Efficiencies in Northeast China. Plants 2022, 11, 3338. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Das, S.R.; Mohanty, S.; Muduli, B.C.; Bhatia, A.; Nayak, B.K.; Rees, R.M.; Drewer, J.; Nayak, A.K.; Adhya, T.K.; et al. Reducing the Environmental Impact of Rice Production in Subtropical India by Minimising Reactive Nitrogen Loss. J. Environ. Manag. 2024, 354, 120261. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lei, T.; Guo, X.; Bi, Y.; Gao, X. Bibliometric Analysis of Root Research under Drip Irrigation Based on Web of Science. Sustainability 2024, 16, 8850. [Google Scholar] [CrossRef]
- Ahmed, F.; Zapata, O.; Poelzer, G. Sustainability in the Arctic: A Bibliometric Analysis. Discov. Sustain. 2024, 5, 121. [Google Scholar] [CrossRef]
- Zhiqiang, P.; Shuchang, L.; Xi, W.; Kun, H.; Zongjie, Y.; Yu, Z.; Dafeng, W.; Xiawen, L. Study on Greenhouse Soil Nitrogen Absorption and Soil Layer Transport of Different Summer Catch Crops with Different Planting Density in North China. E3S Web Conf. 2020, 143, 02023. [Google Scholar] [CrossRef]
- Wu, S.; Wen, S.; An, K.; Xiong, L.; Zeng, H.; Niu, Y.; Yin, T. Bibliometric Analysis of Global Research Trends between Gut Microbiota and Pancreatic Cancer: From 2004 to 2023. Front. Microbiol. 2023, 14, 1281451. [Google Scholar] [CrossRef] [PubMed]
- Araujo, E.C.G.; Silva, T.C.; Da Cunha Neto, E.M.; Favarin, J.A.S.; Da Silva Gomes, J.K.; Das Chagas, K.P.T.; Fiorelli, E.C.; Sonsin, A.F.; Maia, E. Bioeconomy in the Amazon: Lessons and Gaps from Thirty Years of Non-Timber Forest Products Research. J. Environ. Manag. 2024, 370, 122420. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen Balance and Groundwater Nitrate Contamination: Comparison among Three Intensive Cropping Systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [PubMed]
- De Vries, F.T.; Hoffland, E.; Van Eekeren, N.; Brussaard, L.; Bloem, J. Fungal/Bacterial Ratios in Grasslands with Contrasting Nitrogen Management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef]
- Li, X.; Wu, K.; Liang, Y. A Review of Agricultural Land Functions: Analysis and Visualization Based on Bibliometrics. Land 2023, 12, 561. [Google Scholar] [CrossRef]
- Niu, S.; Classen, A.T.; Dukes, J.S.; Kardol, P.; Liu, L.; Luo, Y.; Rustad, L.; Sun, J.; Tang, J.; Templer, P.H.; et al. Global Patterns and Substrate-based Mechanisms of the Terrestrial Nitrogen Cycle. Ecol. Lett. 2016, 19, 697–709. [Google Scholar] [CrossRef]
- Simons, M.; Saha, R.; Guillard, L.; Clement, G.; Armengaud, P.; Canas, R.; Maranas, C.D.; Lea, P.J.; Hirel, B. Nitrogen-Use Efficiency in Maize (Zea mays L.): From “omics” Studies to Metabolic Modelling. J. Exp. Bot. 2014, 65, 5657–5671. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liang, Y.; Chen, Z.; Zou, C.; Shi, Z. Black Carbon in Climate Studies: A Bibliometric Analysis of Research Trends and Topics. Sustainability 2024, 16, 8945. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Glyphosate: How Do Ongoing Controversies, Market Characteristics, and Funding Influence the Global Research Landscape? Sci. Total Environ. 2021, 765, 144271. [Google Scholar] [CrossRef]
- Shi, X.; Cai, L.; Jia, J. The Evolution of International Scientific Collaboration in Fuel Cells during 1998–2017: A Social Network Perspective. Sustainability 2018, 10, 4790. [Google Scholar] [CrossRef]
- Chen, W.; Bai, Y.; Li, B.; Feng, C.; Zhou, M. Analysis of Water Environment Quality Changes and Influencing Factors during the “Thirteenth Five-Year Plan” Period in Heilongjiang Province. Water 2022, 14, 2367. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Shi, W.; Deng, C.; Chen, C.; Feng, S. Global Evaluation of Carbon Neutrality and Peak Carbon Dioxide Emissions: Current Challenges and Future Outlook. Environ. Sci. Pollut. Res. 2022, 30, 81725–81744. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Shi, G.; Qiu, H. General Review of Intelligent Agriculture Development in China. China Agric. Econ. Rev. 2019, 11, 39–51. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Li, J.; Gao, M.; Zhang, J.; Zhang, J.; Qiu, J.; Deng, J.; Li, C.; Frolking, S. The Development of China-DNDC and Review of Its Applications for Sustaining Chinese Agriculture. Ecol. Model. 2017, 348, 1–13. [Google Scholar] [CrossRef]
- Tahamtan, I.; Safipour Afshar, A.; Ahamdzadeh, K. Factors Affecting Number of Citations: A Comprehensive Review of the Literature. Scientometrics 2016, 107, 1195–1225. [Google Scholar] [CrossRef]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. The Impact of the Nitrates Directive on Nitrogen Emissions from Agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef]
- Jin, X.; Bai, Z.; Ma, L. Regional Nitrogen and Phosphorus Leaching Mitigation Strategies Based on Nutrient Losses Vulnerable Zones in China. Chin. J. Eco-Agric. 2021, 29, 217–229. [Google Scholar] [CrossRef]
- Ren, L.; Ma, J.; Zhang, R. Estimating Nitrate Leaching with a Transfer Function Model Incorporating Net Mineralization and Uptake of Nitrogen. J. Environ. Qual. 2003, 32, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Krevh, V.; Filipović, L.; Petošić, D.; Mustać, I.; Bogunović, I.; Butorac, J.; Kisić, I.; Defterdarović, J.; Nakić, Z.; Kovač, Z.; et al. Long-Term Analysis of Soil Water Regime and Nitrate Dynamics at Agricultural Experimental Site: Field-Scale Monitoring and Numerical Modeling Using HYDRUS-1D. Agric. Water Manag. 2023, 275, 108039. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.D.; Chen, Q.; Liang, B.; Li, B. Modeling Dissolved Organic Nitrogen Dynamics under Different N Management Practices for Intensive Greenhouse Production Using an Improved WHCNS_veg Model. Geoderma 2019, 337, 1039–1050. [Google Scholar] [CrossRef]
- Shi, X.; Batchelor, W.D.; Liang, H.; Li, S.; Li, B.; Hu, K. Determining Optimal Water and Nitrogen Management under Different Initial Soil Mineral Nitrogen Levels in Northwest China Based on a Model Approach. Agric. Water Manag. 2020, 234, 106110. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, T.; Lu, D.; Zhang, P.; Li, J.; Li, F.; Zhang, Z.; Chen, P.; Jiang, L.; Dai, C.; et al. Effects of Different Irrigation Management and Nitrogen Rate on Sorghum (Sorghum bicolor L.) Growth, Yield and Soil Nitrogen Accumulation with Drip Irrigation. Agronomy 2024, 14, 215. [Google Scholar] [CrossRef]
- Groenendijk, P.; Heinen, M.; Klammler, G.; Fank, J.; Kupfersberger, H.; Pisinaras, V.; Gemitzi, A.; Peña-Haro, S.; García-Prats, A.; Pulido-Velazquez, M.; et al. Performance Assessment of Nitrate Leaching Models for Highly Vulnerable Soils Used in Low-Input Farming Based on Lysimeter Data. Sci. Total Environ. 2014, 499, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, S.; Wang, J.; Di, H.J.; Han, L.; Li, P.; Shen, J.; Han, B.; Zhang, L. The Effects and Mechanisms of Deep Straw Incorporation and Denitrifying Bacterial Agents on Mitigating Nitrate Leaching and N2O Emissions in Four Soil Types in the North China Plain. Agric. Ecosyst. Environ. 2024, 366, 108958. [Google Scholar] [CrossRef]
- Hu, K.; Li, Y.; Chen, W.; Chen, D.; Wei, Y.; Edis, R.; Li, B.; Huang, Y.; Zhang, Y. Modeling Nitrate Leaching and Optimizing Water and Nitrogen Management under Irrigated Maize in Desert Oases in Northwestern China. J. Environ. Qual. 2010, 39, 667–677. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Z.; Chen, Y.; Qi, J.; Feng, P.; Liu, D.L.; Shi, J.; Meng, L.; Chen, Y. The Response of Non-Point Source Pollution to Climate Change in an Orchard-Dominant Coastal Watershed. Environ. Res. 2024, 259, 119515. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, K.; Fan, Z.; Wei, Y.; Lin, S.; Wang, J. Simulating the Fate of Nitrogen and Optimizing Water and Nitrogen Management of Greenhouse Tomato in North China Using the EU-Rotate_N Model. Agric. Water Manag. 2013, 128, 72–84. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A Strategic and Tactical Management Approach to Select Optimal N Fertilizer Rates for Wheat in a Spatially Variable Field. Eur. J. Agron. 2011, 35, 215–222. [Google Scholar] [CrossRef]
- Bowles, T.M.; Jackson, L.E.; Cavagnaro, T.R. Mycorrhizal Fungi Enhance Plant Nutrient Acquisition and Modulate Nitrogen Loss with Variable Water Regimes. Glob. Change Biol. 2018, 24, e171–e182. [Google Scholar] [CrossRef] [PubMed]
- Che, R.; Wang, Y.; Li, K.; Xu, Z.; Hu, J.; Wang, F.; Rui, Y.; Li, L.; Pang, Z.; Cui, X. Degraded Patch Formation Significantly Changed Microbial Community Composition in Alpine Meadow Soils. Soil Tillage Res. 2019, 195, 104426. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Troccoli, A.; Chen, D.; Ritchie, J.T. Long-Term Wheat Response to Nitrogen in a Rainfed Mediterranean Environment: Field Data and Simulation Analysis. Eur. J. Agron. 2010, 33, 132–138. [Google Scholar] [CrossRef]
- He, W.; Yang, J.Y.; Qian, B.; Drury, C.F.; Hoogenboom, G.; He, P.; Lapen, D.; Zhou, W. Climate Change Impacts on Crop Yield, Soil Water Balance and Nitrate Leaching in the Semiarid and Humid Regions of Canada. PLoS ONE 2018, 13, e0207370. [Google Scholar] [CrossRef]
- Pan, Z.; Fan, D.; Jiang, R.; Abbasi, N.; Song, D.; Zou, G.; Wei, D.; He, P.; He, W. Improving Potato Productivity and Mitigating Nitrogen Losses Using Enhanced-Efficiency Fertilizers: A Global Meta-Analysis. Agric. Ecosyst. Environ. 2023, 348, 108416. [Google Scholar] [CrossRef]
- Zhang, J.; He, W.; Smith, W.N.; Grant, B.B.; Ding, W.; Jiang, R.; Zou, G.; Chen, Y.; He, P. Exploring Management Strategies to Improve Yield and Mitigate Nitrate Leaching in a Typical Radish Field in Northern China. J. Environ. Manag. 2021, 290, 112640. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yang, J.Y.; Zhou, W.; Drury, C.F.; Yang, X.M.; Reynolds, W.D.; Wang, H.; He, P.; Li, Z.T. Sensitivity Analysis of Crop Yields, Soil Water Contents and Nitrogen Leaching to Precipitation, Management Practices and Soil Hydraulic Properties in Semi-Arid and Humid Regions of Canada Using the DSSAT Model. Nutr. Cycl. Agroecosyst. 2016, 106, 201–215. [Google Scholar] [CrossRef]
- Yang, J.Y.; Drury, C.F.; Jiang, R.; Yang, X.M.; Worth, D.E.; Bittman, S.; Grant, B.B.; Smith, W.N.; Reid, K. Simulating Nitrogen Balance in Canadian Agricultural Soils from 1981 to 2016. J. Environ. Manag. 2023, 341, 118015. [Google Scholar] [CrossRef] [PubMed]
- Ertz, M.; Leblanc-Proulx, S. Sustainability in the Collaborative Economy: A Bibliometric Analysis Reveals Emerging Interest. J. Clean. Prod. 2018, 196, 1073–1085. [Google Scholar] [CrossRef]
- Price, D.J.D.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963. [Google Scholar]
- Zhou, M.; Zhu, B.; Butterbach-Bahl, K.; Wang, T.; Bergmann, J.; Brüggemann, N.; Wang, Z.; Li, T.; Kuang, F. Nitrate Leaching, Direct and Indirect Nitrous Oxide Fluxes from Sloping Cropland in the Purple Soil Area, Southwestern China. Environ. Pollut. 2012, 162, 361–368. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Butterbach-Bahl, K.; Zheng, X.; Wang, T.; Wang, Y. Nitrous Oxide Emissions and Nitrate Leaching from a Rain-Fed Wheat-Maize Rotation in the Sichuan Basin, China. Plant Soil 2013, 362, 149–159. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Bergmann, J.; Wang, Y.; Butterbach-Bahl, K. N2O and CH4 Emissions, and NO3− Leaching on a Crop-Yield Basis from a Subtropical Rain-Fed Wheat–Maize Rotation in Response to Different Types of Nitrogen Fertilizer. Ecosystems 2014, 17, 286–301. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Dannenmann, M.; Wang, Y.; Butterbach-Bahl, K. Sustaining Crop Productivity While Reducing Environmental Nitrogen Losses in the Subtropical Wheat-Maize Cropping Systems: A Comprehensive Case Study of Nitrogen Cycling and Balance. Agric. Ecosyst. Environ. 2016, 231, 1–14. [Google Scholar] [CrossRef]
- Liang, H.; Lv, H.; Batchelor, W.D.; Lian, X.; Wang, Z.; Lin, S.; Hu, K. Simulating Nitrate and DON Leaching to Optimize Water and N Management Practices for Greenhouse Vegetable Production Systems. Agric. Water Manag. 2020, 241, 106377. [Google Scholar] [CrossRef]
- Wang, S.; Feng, P.; Batchelor, W.D.; Hu, K.; Li, J. Organic Farming Decreases Nitrate Leaching but Increases Dissolved Organic Nitrogen Leaching in Greenhouse Vegetable Production Systems. Plant Soil 2024, 498, 111–124. [Google Scholar] [CrossRef]
- Vogeler, I.; Hansen, E.M.; Thomsen, I.K.; Østergaard, H.S. Legumes in Catch Crop Mixtures: Effects on Nitrogen Retention and Availability, and Leaching Losses. J. Environ. Manag. 2019, 239, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Thomsen, I.K.; Eriksen, J.; Vogeler, I.; Mäenpää, M.; Hansen, E.M. Delaying Sowing of Cover Crops Decreases the Ability to Reduce Nitrate Leaching. Agric. Ecosyst. Environ. 2023, 355, 108598. [Google Scholar] [CrossRef]
- Vogeler, I.; Jensen, J.L.; Thomsen, I.K.; Labouriau, R.; Hansen, E.M. Fertiliser N Rates Interact with Sowing Time and Catch Crops in Cereals and Affect Yield and Nitrate Leaching. Eur. J. Agron. 2021, 124, 126244. [Google Scholar] [CrossRef]
- Vogeler, I.; Hansen, E.M.; Nielsen, S.; Labouriau, R.; Cichota, R.; Olesen, J.E.; Thomsen, I.K. Nitrate Leaching from Suction Cup Data: Influence of Method of Drainage Calculation and Concentration Interpolation. J Env Qual. 2020, 49, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Hu, C.; Clough, T.J.; Luo, J.; Oenema, O.; Zhou, S. Irrigation of DOC-Rich Liquid Promotes Potential Denitrification Rate and Decreases N2O/(N2O+N2) Product Ratio in a 0–2 m Soil Profile. Soil Biol. Biochem. 2017, 106, 1–8. [Google Scholar] [CrossRef]
- Song, W.; Hu, C.; Luo, Y.; Clough, T.J.; Wrage-Mönnig, N.; Ge, T.; Luo, J.; Zhou, S.; Qin, S. Nitrate as an Alternative Electron Acceptor Destabilizes the Mineral Associated Organic Carbon in Moisturized Deep Soil Depths. Front. Microbiol. 2023, 14, 1120466. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, F.; Zhang, Y.; Qin, S.; Wei, S.; Wang, S.; Hu, C.; Liu, B. Organic Carbon Availability Limiting Microbial Denitrification in the Deep Vadose Zone. Environ. Microbiol. 2018, 20, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, B.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Moir, J.L. The Effect of Four Different Pasture Species Compositions on Nitrate Leaching Losses under High N Loading. Soil Use Manag. 2014, 30, 58–68. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Moir, J.L.; Cameron, K.C.; Di, H.J.; Edwards, G.R. Influence of Plant Growth and Root Architecture of Italian Ryegrass (Lolium multiflorum) and Tall Fescue (Festuca arundinacea) on N Recovery during Winter. Grass Forage Sci. 2015, 70, 600–610. [Google Scholar] [CrossRef]
- Svoboda, N.; Taube, F.; Kluß, C.; Wienforth, B.; Kage, H.; Ohl, S.; Hartung, E.; Herrmann, A. Crop Production for Biogas and Water Protection—A Trade-Off? Agric. Ecosyst. Environ. 2013, 177, 36–47. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Hong, S. Global Biodiversity Research during 1900–2009: A Bibliometric Analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How Inhibiting Nitrification Affects Nitrogen Cycle and Reduces Environmental Impacts of Anthropogenic Nitrogen Input. Glob. Change Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Lu, J.; Bai, Z.; Velthof, G.L.; Wu, Z.; Chadwick, D.; Ma, L. Accumulation and Leaching of Nitrate in Soils in Wheat-Maize Production in China. Agric. Water Manag. 2019, 212, 407–415. [Google Scholar] [CrossRef]
- Tang, Q.; Ti, C.; Xia, L.; Xia, Y.; Wei, Z.; Yan, X. Ecosystem Services of Partial Organic Substitution for Chemical Fertilizer in a Peri-Urban Zone in China. J. Clean. Prod. 2019, 224, 779–788. [Google Scholar] [CrossRef]
- Lai, X.; Liu, Y.; Zhou, Z.; Zhu, Q.; Liao, K. Investigating the Spatio-temporal Variations of Nitrate Leaching on a Tea Garden Hillslope by Combining HYDRUS-3D and DNDC Models. J. Plant Nutr. Soil Sci. 2020, 183, 46–57. [Google Scholar] [CrossRef]
- Xin, Y.; Tao, F. Developing Climate-Smart Agricultural Systems in the North China Plain. Agric. Ecosyst. Environ. 2020, 291, 106791. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Zhao, M.; Yin, B.; Zhu, Z. The Assessment of Nitrate Leaching in a Rice–Wheat Rotation System Using an Improved Agronomic Practice Aimed to Increase Rice Crop Yields. Agric. Ecosyst. Environ. 2017, 241, 100–109. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z.; et al. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, C.; Wang, X.; Li, J. Study of Nitrate Leaching and Nitrogen Fate under Intensive Vegetable Production Pattern in Northern China. Comptes Rendus. Biol. 2009, 332, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Huo, Z.; Zheng, Y.; Dai, X.; Feng, S.; Mao, X. Quantifying Long-Term Responses of Crop Yield and Nitrate Leaching in an Intensive Farmland Using Agro-Eco-Environmental Model. Sci. Total Environ. 2018, 613–614, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Austin, A.T.; Yahdjian, L.; Stark, J.M.; Belnap, J.; Porporato, A.; Norton, U.; Ravetta, D.A.; Schaeffer, S.M. Water Pulses and Biogeochemical Cycles in Arid and Semiarid Ecosystems. Oecologia 2004, 141, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of Drying and Wetting Effects on C and N Mineralization and Fluxes in Soils. Glob. Change Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Cui, M.; Wu, C.; Jiang, X.; Liu, Z.; Xue, S. Bibliometric Analysis of Research on Soil Arsenic during 2005–2016. J. Cent. South Univ. 2019, 26, 479–488. [Google Scholar] [CrossRef]
- Dupas, R.; Delmas, M.; Dorioz, J.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. Assessing the Impact of Agricultural Pressures on N and P Loads and Eutrophication Risk. Ecol. Indic. 2015, 48, 396–407. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of Biochar on Leaching of Organic Carbon, Nitrogen, and Phosphorus from Compost in Bioretention Systems. Sci. Total Environ. 2015, 521–522, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ajdary, K.; Singh, D.K.; Singh, A.K.; Khanna, M. Modelling of Nitrogen Leaching from Experimental Onion Field under Drip Fertigation. Agric. Water Manag. 2007, 89, 15–28. [Google Scholar] [CrossRef]
- Jia, L.; Xin, J.; Wu, H.; Gong, S.; Wu, H.; Zhang, Z. Enhancing Nitrate Attenuation in Groundwater via Selectively Applying Surface Agricultural Practices: A Novel and Sustainable Strategy for Non-Point Source Pollution Mitigation. Water Res. 2023, 239, 120052. [Google Scholar] [CrossRef]
- Danni, S.O.; Bouchaou, L.; Elmouden, A.; Brahim, Y.A.; N’da, B. Assessment of Water Quality and Nitrate Source in the Massa Catchment (Morocco) Using δ 15N and δ 18O Tracers. Appl. Radiat. Isot. 2019, 154, 108859. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global Trends in Nitrate Leaching Research in the 1960–2017 Period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Li, X.; Shi, H.; Hu, Q.; Zhang, Y.; Sun, Y.; Song, F. Simulation of Maize Crop Growth Using an Improved Crop Model Considering the Disintegrated Area of Biodegradable Film. Field Crops Res. 2021, 272, 108270. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, B.; Khu, S. Simulation Platform of Human-Environment Systems for Water Environment Carrying Capacity Research. J. Clean. Prod. 2020, 250, 119577. [Google Scholar] [CrossRef]
- Behnke, G.D.; David, M.B.; Voigt, T.B. Greenhouse Gas Emissions, Nitrate Leaching, and Biomass Yields from Production of Miscanthus × Giganteus in Illinois, USA. Bioenerg. Res. 2012, 5, 801–813. [Google Scholar] [CrossRef]
- Rubin, R.L.; Anderson, T.R.; Ballantine, K.A. Biochar Simultaneously Reduces Nutrient Leaching and Greenhouse Gas Emissions in Restored Wetland Soils. Wetlands 2020, 40, 1981–1991. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, S.; Wan, L.; Qasim, W.; Hu, J.; Xue, T.; Lv, H.; Butterbach-Bahl, K. Anaerobic Soil Disinfestation with Incorporation of Straw and Manure Significantly Increases Greenhouse Gases Emission and Reduces Nitrate Leaching While Increasing Leaching of Dissolved Organic N. Sci. Total Environ. 2021, 785, 147307. [Google Scholar] [CrossRef]
- Alva, A.K.; Paramasivam, S.; Graham, W.D.; Wheaton, T.A. Best Nitrogen and Irrigation Management Practices for Citrus Production in Sandy Soils. Water Air Soil Pollut. 2003, 143, 139–154. [Google Scholar] [CrossRef]
- Nendel, C. Evaluation of Best Management Practices for N Fertilisation in Regional Field Vegetable Production with a Small-Scale Simulation Model. Eur. J. Agron. 2009, 30, 110–118. [Google Scholar] [CrossRef]
- Song, K.; Pan, Y.-T.; Zhang, J.; Song, P.; He, J.; Wang, D.; Yang, R. Metal–Organic Frameworks–Based Flame-Retardant System for Epoxy Resin: A Review and Prospect. Chem. Eng. J. 2023, 468, 143653. [Google Scholar] [CrossRef]
- Jiménez-de-Santiago, D.E.; Lidón, A.; Bosch-Serra, À.D. Soil Water Dynamics in a Rainfed Mediterranean Agricultural System. Water 2019, 11, 799. [Google Scholar] [CrossRef]
- Hu, C.; Wang, X.; Li, J.; Luo, L.; Liu, F.; Wu, W.; Xu, Y.; Li, H.; Tan, B.; Zhang, G. Trends in the Research on Soil Nitrogen Leaching from Farmland: A Bibliometric Analysis (2014–2023). Clim. Smart Agric. 2024, 1, 100026. [Google Scholar] [CrossRef]
Source Title | Number of Papers | Percentage (%) | 5-Year Impact Factor |
---|---|---|---|
Agriculture Ecosystems Environment | 176 | 6.4 | 6.4 |
Agricultural Water Management | 137 | 5.0 | 6.3 |
Science of The Total Environment | 104 | 3.8 | 8.6 |
Nutrient Cycling in Agroecosystems | 90 | 3.3 | 3.5 |
Journal of Environmental Quality | 81 | 2.9 | 2.7 |
European Journal of Agronomy | 64 | 2.3 | 5.1 |
Plant and Soil | 52 | 1.9 | 4.6 |
Soil Use and Management | 52 | 1.9 | 3.9 |
Agronomy-Basel | 49 | 1.8 | 3.7 |
Communications in Soil Science and Plant Analysis | 42 | 1.5 | 1.9 |
Country | Publications | Percentage (%) | Citations | Average Number of Citations |
---|---|---|---|---|
USA | 629 | 22.7 | 24,949 | 39.7 |
China | 537 | 19.4 | 21,347 | 39.8 |
Germany | 289 | 10.4 | 11,535 | 39.9 |
New Zealand | 207 | 7.5 | 7098 | 34.3 |
Denmark | 151 | 5.5 | 6663 | 44.1 |
Australia | 143 | 5.2 | 6214 | 43.5 |
Canada | 138 | 5.0 | 3244 | 23.5 |
Spain | 133 | 4.8 | 6285 | 47.3 |
England | 131 | 4.7 | 6268 | 47.8 |
France | 127 | 4.6 | 6671 | 52.5 |
Author | Publications | Earliest Posting Time | Citations | Average Number of Citations |
---|---|---|---|---|
Di, Hong Jie | 48 | 2004 | 2743 | 57.1 |
Olesen, Jørgen E | 38 | 2003 | 2132 | 56.1 |
Cameron, Keith C | 33 | 2004 | 2308 | 69.9 |
Vogeler, Iris | 25 | 2006 | 418 | 16.7 |
Butterbach-Bahl, Klaus | 22 | 2005 | 1208 | 54.9 |
Hansen, Elly Møller | 20 | 2006 | 641 | 32.1 |
Hu, Kelin | 19 | 2008 | 693 | 36.5 |
Malcolm, Brendon | 17 | 2014 | 234 | 13.8 |
Edwards, Grant R | 17 | 2014 | 382 | 22.5 |
Thomsen, Ingrid Kaag | 16 | 2003 | 388 | 24.3 |
Institutions | Country | Publications | Citations | Average Number of Citations |
---|---|---|---|---|
Chinese acad sci | China | 164 | 8510 | 51.9 |
China agr univ | China | 92 | 6486 | 70.5 |
Aarhus univ | Denmark | 92 | 2819 | 30.6 |
Usda ars | USA | 84 | 3654 | 43.5 |
Lincoln univ | USA | 83 | 3893 | 46.9 |
Univ Florida | USA | 75 | 2372 | 31.6 |
Swedish univ agr sci | Sweden | 60 | 2513 | 41.9 |
Univ Chinese acad sci | China | 58 | 2188 | 37.7 |
Chinese acad agr sci | China | 58 | 1839 | 31.7 |
Inra | France | 55 | 3495 | 63.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Sun, J.; Liu, C.; Shi, H.; Fei, Y.; Wang, C.; Zhang, G.; Wang, H. Progress and Trends in Research on Soil Nitrogen Leaching: A Bibliometric Analysis from 2003 to 2023. Sustainability 2025, 17, 339. https://doi.org/10.3390/su17010339
Liu G, Sun J, Liu C, Shi H, Fei Y, Wang C, Zhang G, Wang H. Progress and Trends in Research on Soil Nitrogen Leaching: A Bibliometric Analysis from 2003 to 2023. Sustainability. 2025; 17(1):339. https://doi.org/10.3390/su17010339
Chicago/Turabian StyleLiu, Getong, Jiajun Sun, Chenfeng Liu, Huading Shi, Yang Fei, Chen Wang, Guilong Zhang, and Hongjie Wang. 2025. "Progress and Trends in Research on Soil Nitrogen Leaching: A Bibliometric Analysis from 2003 to 2023" Sustainability 17, no. 1: 339. https://doi.org/10.3390/su17010339
APA StyleLiu, G., Sun, J., Liu, C., Shi, H., Fei, Y., Wang, C., Zhang, G., & Wang, H. (2025). Progress and Trends in Research on Soil Nitrogen Leaching: A Bibliometric Analysis from 2003 to 2023. Sustainability, 17(1), 339. https://doi.org/10.3390/su17010339