Evaluation of the Degree of Synergy in High-Quality Development Among Inter-Provincial Adjacent Districts and Planning Recommendations: The Case Study of Anhui Province and Its Surrounding Provinces
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Construction of Comprehensive Evaluation Index System
2.3. Measurement Methods and Data Processing Indicators
- u1 represents the comprehensive index of the economic development subsystem;
- u2 represents the comprehensive index of the science and technology innovation subsystem;
- u3 represents the comprehensive score of the social services subsystem;
- u4 represents the comprehensive score of the ecological construction subsystem.
2.4. Data Source
3. Results and Analysis
3.1. Comprehensive Evaluation Results Analysis
3.1.1. Comprehensive Analysis of High-Quality Development
3.1.2. Analysis of the Subsystem of High-Quality Economic Development
3.1.3. Analysis of the Subsystem of Scientific and Technological Innovation
3.1.4. Analysis of the Social Service Subsystem
3.1.5. Ecological Construction Subsystem Analysis
3.2. Coupling Coordination Degree Analysis
4. Discussion and Suggestions
4.1. Discussion and Suggestions for the Northeast Group
4.2. Discussions and Suggestions for the Southeast Group
4.3. Discussions and Suggestions for the Southwest Group
4.4. Discussion and Suggestions for the Northwest Group
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.Y.; Kong, H.; Zhang, S. Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia? Renew. Energy 2021, 169, 23–33. [Google Scholar] [CrossRef]
- Karamesouti, M.; Panagos, P.; Kosmas, C. Model-based spatio-temporal analysis of land desertification risk in Greece. Catena 2018, 167, 266–275. [Google Scholar] [CrossRef]
- Schellnhuber, H.J.; Rahmstorf, S.; Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 2016, 6, 649–653. [Google Scholar] [CrossRef]
- Li, J.F.; Gu, A.L.; Ma, Z.Y.; Zhang, C.L.; Sun, Z.Q. Economic development, energy demand, and carbon emission prospects of China’s provinces during the 14th Five-Year Plan period: Application of CMRCGE model. Adv. Clim. Change Res. 2019, 10, 165–173. [Google Scholar] [CrossRef]
- Brundtland, G.H.; Khalid, M.; Agnelli, S.; Al-Athel, S.A.; Casanova, P.G.; Chidzero, B.T.G.; Padika, L.M.; Hauff, V.; Lang, I.; Ma, S.; et al. Our Common Future: The World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Barbier, E. How is the global green new deal going? Nature 2010, 464, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Mundaca, L.; Neij, L.; Markandya, A.; Hennicke, P.; Yan, J. Towards a Green Energy Economy? Ass essing policy choices, strategies and transitional p athways. Appl. Energy 2016, 179, 1283–1292. [Google Scholar] [CrossRef]
- Van Krevel, C. Does natural capital depletion hamper sustainable development? Panel data evidence. Resour. Policy 2021, 72, 102087. [Google Scholar] [CrossRef]
- Van Meeteren, M. About being in the middle: Conceptions, models and theories of centrality in urban studies. In Handbook of Cities and Networks; Edward Elgar Publishing: Cheltenham, UK, 2021; pp. 252–271. [Google Scholar]
- Copus, A.K. From core-periphery to polycentric development: Concepts of spatial and aspatial peripherality. Eur. Plan. Stud. 2001, 9, 539–552. [Google Scholar] [CrossRef]
- Chen, Y.P.; Nie, H.T.; Chen, J.J.; Peng, L.H. Regional industrial synergy: Potential and path crossing the “environmental mountain”. Sci. Total Environ. 2021, 765, 142714. [Google Scholar] [CrossRef]
- Xue, W.X.; Liu, Y.R. Measurement of synergy degree between environmental protection and industrial development in the yellow river basin and analysis of its temporal and spatial characteristics. Sustainability 2023, 15, 3386. [Google Scholar] [CrossRef]
- Baráková, B. Regional Economic Growth. In Proceedings of the 10th International Conference Liberec Economic Forum 2011, Liberec, Czech Republic, 19–20 September 2011; pp. 34–42. [Google Scholar]
- Pearce, D.; Atkinson, G. The concept of sustainable development: An evaluation of its usefulness ten years after Brundtland. Rev. Suisse Econ. Polit. Stat. 1998, 134, 251–270. [Google Scholar] [CrossRef]
- Stonehouse, G.; Snowdon, B. Competitive advantage revisited: Michael Porter on strategy and competitiveness. J. Manag. Inq. 2007, 16, 256–273. [Google Scholar] [CrossRef]
- Fujita, M.; Thisse, J.F. New economic geography: An appraisal on the occasion of Paul Krugman’s 2008 Nobel Prize in Economic Sciences. Reg. Sci. Urban Econ. 2009, 39, 109–119. [Google Scholar] [CrossRef]
- Barrett, J.R. Sustainability and the Ecological Footprint: Comparing Human Demand with Nature’s Supply; Liverpool John Moores University: Liverpool, UK, 2000. [Google Scholar]
- Mital’, O.; Ručinská, S.; Lukačínová, M.; Fečko, M. Building Collaboration for a Smart and Green Regional Ecosystem: Insights from the Slovak Republic. In International Conference on Computational Science and Its Applications; Springer Nature: Cham, Switzerland, 2023; pp. 598–612. [Google Scholar]
- D’Adamo, I.; Gastaldi, M.; Imbriani, C.; Morone, P. Assessing regional performance for the Sustainable Development Goals in Italy. Sci. Rep. 2021, 11, 24117. [Google Scholar] [CrossRef]
- Fang, C.Y. The regularity and key directions for the high-quality development of China’s new urbanization. Geogr. Res. 2019, 38, 13. [Google Scholar]
- Ma, R.; Luo, H.; Wang, H. Study of Evaluating High-quality Economic Development in Chinese Regions. China Soft Sci. 2019, 7, 60–67. [Google Scholar]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Li, L.; Zhang, G. Assessment and Spatial Analysis on the Development Quality of Beijing-Tianjin-Hebei Urban Agglomeration. Areal Res. Dev. 2017, 36, 39–43+56. [Google Scholar]
- Liu, J.; Liu, Y. Provincial Differences and Its Affection Factors in the Quality of China’s Urbanization. Mod. Urban Res. 2012, 27, 49–55. [Google Scholar]
- Yang, H.; Yuan, K.; Liu, X. From Romanticism to Ecologism: Narrative Comparison between Lu Xun’s and Chi Zijian’s Local Novels. J. Wuhan Univ. Technol. (Soc. Sci. Ed.) 2015, 28, 1107–1111+1233. [Google Scholar]
- Zhao, J.J.; Liu, Y.; Zhu, Y.K.; Qin, S.L.; Wang, Y.H.; Miao, C.H. The spatiotemporal pattern and influence factors of the coupling between new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar]
- Bumsoo, L. “Edge” or “Edgeless” cities? Urban spatial structure in U.S. metropolitan areas, 1980 to 2000. J. Reg. Sci. 2007, 47, 479–515. [Google Scholar]
- Markus, P. Construction of new territorial scales: A framework and case study of the EUREGIO cross-border region. Reg. Stud. 2007, 41, 253–266. [Google Scholar]
- Tarmo, P. Reorganizing cross-border governance capacity: The case of the Helsinki-Tallinn EUREGIO. Eur. Urban Reg. Stud. 2008, 15, 211–227. [Google Scholar]
- Corey, M.J. Cross-border regions and territorial restructuring in central Europe: Room for more trans-boundary space. Eur. Urban Reg. Stud. 2009, 16, 177–191. [Google Scholar]
- Newman, P. Changing patterns of regional governance in the EU. Urban Stud. 2000, 37, 895–909. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, F.; Qin, X.; Zhang, P. Analysis and Planning Responses for Coordinated Development in Inter-Provincial Contiguous Areas: A Case Study of the Ning-Chu Contiguous Core Region. J. Nat. Resour. 2022, 37, 1609–1625. [Google Scholar]
- Liu, Y.; Cheng, E.; Li, M.; Wang, X.C. Evaluation of urban development quality of the coastal cities around the Bohai Rim. J. Phys. Conf. Ser. 2018, 1053, 012098. [Google Scholar] [CrossRef]
- Wan, J.; Li, Y.; Ma, C.; Jiang, T.; Su, Y.; Zhang, L.; Song, X.; Sun, H.; Wang, Z.; Zhao, Y.; et al. Measurement of coupling coordination degree and spatio-temporal characteristics of the social economy and ecological environment in the Chengdu–Chongqing urban agglomeration under high-quality development. Int. J. Environ. Res. Public Health 2021, 18, 11629. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gao, P.C.; Song, C.Q.; Wang, Y.H. Exploration of the Connotation and Evaluation System for High-Quality Development in Regions: A Case Study of the Qinghai-Tibet Plateau County Unit. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 328–336. [Google Scholar]
- Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z.Z. Evaluation and prediction of the level of high-quality development: A case study of the Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Liu, T.; Dong, Y.R.; Cao, X.Y.; Zhang, T.; Zhang, Y.; Zhang, L.J. Research on the coordinated development of resources, environment, and economy in the Yellow River Basin. IOP Conf. Ser. Earth Environ. Sci. 2021, 766, 012078. [Google Scholar] [CrossRef]
- Wang, J.Y. Research on the Evaluation of Regional Coordinated Development in China. Macroecon. Manag. 2019, 41–49. [Google Scholar]
- Liao, C.B. Quantitative Evaluation and Classification System for the Coordinated Development of Environment and Economy: A Case Study of the Pearl River Delta Urban Agglomeration. Trop. Geogr. 1999, 19, 76–82. [Google Scholar]
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X.M. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef] [PubMed]
Province | City |
---|---|
Anhui | Fuyang, Bozhou, Huaibei, Suzhou, Bengbu, Chuzhou, Ma’anshan, Xuancheng, Huangshan, Chizhou, Anqing, Luan |
Jiangsu | Xuzhou, Suqian, Huai’an, Nanjing, Changzhou, Wuxi |
Zhejiang | Huzhou, Hangzhou, Quzhou |
Jiangxi | Shangrao, Jiujiang |
Hubei | Huanggang |
Henan | Zhumadian, Zhoukou, Shangqiu |
Shandong | Heze |
System | Primary Index | Secondary Index | Unit | Type |
---|---|---|---|---|
Economic development | Socio-economic base | GDP per capita | CNY/Million | + |
Tertiary sector output as a percentage of GDP | % | + | ||
Economic development | GDP growth rate | % | + | |
Total exports and imports | Billions | + | ||
Economic efficiency | Labor productivity | % | + | |
Technological innovation | Investment of research funds | Share of investment in scientific research funds | % | + |
Full-time equivalent of R&D personnel | Person/year | + | ||
Scientific and technological effectiveness | Number of patents granted | Item | + | |
Social security | Public service | Number of beds in health facilities per 10,000 population | Unit | + |
Investment in education as a share of GDP | % | + | ||
Road space per capita | m2 | + | ||
Quality of life | Ratio of income of urban and rural residents | — | + | |
Urban registered unemployment rate | % | − | ||
Income from the tourism economy | Billions | + | ||
Ecological construction | Ecological foundation | Forest cover | % | + |
Area covered by greening in built-up areas | m2 | + | ||
Ecological pressure | Proportion of days with good air quality | % | + | |
Industrial wastewater discharge intensity | 10 kilotons | − | ||
Ecological protection | Share of investment in environmental protection | % | + | |
Area of planted forests | m2 | + |
Corridor | [0.0–0.2) | [0.2–0.4) | [0.4–0.6) | [0.6–0.8) | [0.8–1.0) |
---|---|---|---|---|---|
Degree of coupling coordination | severe disorder | on the verge of a disorder | junior coordination | Intermediate Synergy | Advanced Synergy |
The colors of five types of intervals | |||||
Category | Dysfunctional decline class | Transitional development class | Harmonized development category |
Province | City | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Anhui | Fuyang | 12.13 | 13.07 | 13.95 | 13.68 | 14.12 |
Bozhou | 11.48 | 13.23 | 13.53 | 12.37 | 12.77 | |
Huaibei | 8.77 | 11.06 | 12.13 | 13.34 | 14.23 | |
Suzhou | 12.89 | 13.24 | 13.78 | 16.79 | 18.22 | |
Bengbu | 15.70 | 16.40 | 17.69 | 13.38 | 14.57 | |
Chuzhou | 15.11 | 19.82 | 25.55 | 25.66 | 26.36 | |
Ma’anshan | 13.37 | 15.18 | 16.09 | 17.25 | 17.92 | |
Xuancheng | 15.54 | 16.61 | 17.51 | 17.71 | 19.19 | |
Huangshan | 17.07 | 16.08 | 16.99 | 16.68 | 17.43 | |
Chizhou | 13.41 | 14.42 | 15.72 | 15.68 | 16.93 | |
Anqing | 16.98 | 17.75 | 16.68 | 16.50 | 15.64 | |
Luan | 15.79 | 16.55 | 15.93 | 16.45 | 16.07 | |
Average value | 14.02 | 15.28 | 16.29 | 16.29 | 16.96 | |
Henan | Zhumadian | 9.59 | 11.98 | 13.94 | 13.73 | 13.18 |
Zhoukou | 7.33 | 7.99 | 8.97 | 9.68 | 9.43 | |
Shangqiu | 8.86 | 9.19 | 10.46 | 9.88 | 9.21 | |
Average value | 8.59 | 9.72 | 11.12 | 11.10 | 10.60 | |
Shandong | Heze | 18.70 | 17.47 | 20.99 | 21.11 | 21.78 |
Jiangsu | Xuzhou | 17.20 | 19.53 | 20.15 | 23.47 | 24.96 |
Suqian | 13.15 | 14.14 | 14.42 | 16.54 | 16.60 | |
Huai’an | 15.09 | 16.08 | 16.54 | 16.78 | 17.96 | |
Nanjing | 45.63 | 49.99 | 54.25 | 57.41 | 61.62 | |
Changzhou | 25.34 | 26.85 | 28.87 | 35.61 | 35.66 | |
Wuxi | 47.55 | 50.91 | 52.94 | 52.20 | 60.44 | |
Average value | 27.33 | 29.58 | 31.20 | 33.67 | 36.21 | |
Zhejiang | Huzhou | 19.04 | 22.07 | 23.42 | 23.72 | 22.31 |
Hangzhou | 50.10 | 53.91 | 58.95 | 65.48 | 67.77 | |
Quzhou | 22.20 | 23.11 | 24.81 | 24.37 | 26.02 | |
Average value | 30.45 | 33.03 | 35.72 | 37.85 | 38.70 | |
Jiangxi | Shangrao | 26.96 | 25.75 | 25.19 | 25.67 | 24.74 |
Jiujiang | 21.08 | 23.09 | 22.96 | 21.77 | 20.88 | |
Average value | 24.02 | 24.42 | 24.08 | 23.72 | 22.81 | |
Hubei | Huanggang | 15.48 | 18.88 | 16.20 | 15.25 | 19.24 |
Adjacent area | Average value | 18.98 | 20.51 | 21.74 | 22.43 | 23.40 |
Province | City | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Anhui | Fuyang | 3.40 | 4.08 | 6.05 | 4.83 | 6.83 |
Bozhou | 4.39 | 5.13 | 7.04 | 5.93 | 8.09 | |
Huaibei | 5.69 | 5.88 | 6.96 | 8.80 | 10.63 | |
Suzhou | 4.82 | 5.35 | 6.44 | 16.24 | 19.21 | |
Bengbu | 19.78 | 18.98 | 22.38 | 9.39 | 9.72 | |
Chuzhou | 8.89 | 10.05 | 35.71 | 34.28 | 39.55 | |
Ma’anshan | 13.14 | 14.75 | 16.70 | 16.78 | 20.39 | |
Xuancheng | 6.78 | 7.73 | 8.54 | 8.89 | 12.11 | |
Huangshan | 8.53 | 9.53 | 10.73 | 10.01 | 12.87 | |
Chizhou | 5.70 | 6.36 | 8.05 | 9.34 | 12.71 | |
Anqing | 5.78 | 6.00 | 7.63 | 7.59 | 8.60 | |
Luan | 5.50 | 6.30 | 7.59 | 7.56 | 9.69 | |
Average value | 7.70 | 8.35 | 11.99 | 11.64 | 14.20 | |
Henan | Zhumadian | 4.83 | 5.67 | 6.10 | 5.45 | 7.12 |
Zhoukou | 3.88 | 5.48 | 6.02 | 4.57 | 6.34 | |
Shangqiu | 4.69 | 5.90 | 6.19 | 4.31 | 5.60 | |
Average value | 4.47 | 5.68 | 6.10 | 4.78 | 6.35 | |
Shandong | Heze | 21.55 | 24.94 | 29.16 | 27.54 | 32.43 |
Jiangsu | Xuzhou | 14.55 | 16.04 | 18.05 | 18.26 | 22.74 |
Suqian | 8.50 | 9.31 | 10.73 | 11.15 | 14.58 | |
Huai’an | 12.61 | 13.34 | 13.89 | 13.86 | 17.87 | |
Nanjing | 49.61 | 53.29 | 56.68 | 59.13 | 71.69 | |
Changzhou | 27.44 | 29.33 | 29.82 | 46.90 | 38.77 | |
Wuxi | 57.81 | 64.76 | 65.24 | 62.75 | 75.03 | |
Average value | 28.42 | 31.01 | 32.40 | 35.34 | 40.11 | |
Zhejiang | Huzhou | 17.17 | 14.41 | 15.18 | 14.45 | 17.77 |
Hangzhou | 52.53 | 55.10 | 56.71 | 58.51 | 74.25 | |
Quzhou | 25.85 | 25.92 | 26.61 | 26.58 | 35.19 | |
Average value | 31.85 | 31.81 | 32.83 | 33.18 | 42.40 | |
Jiangxi | Shangrao | 24.45 | 18.94 | 16.57 | 17.93 | 19.90 |
Jiujiang | 14.43 | 11.64 | 12.27 | 12.47 | 13.11 | |
Average value | 19.44 | 15.29 | 14.42 | 15.2 | 16.505 | |
Hubei | Huanggang | 9.08 | 5.75 | 6.08 | 5.39 | 8.41 |
Adjacent area | Average value | 15.76 | 16.43 | 18.54 | 18.89 | 22.54 |
Province | City | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Anhui | Fuyang | 2.57 | 4.84 | 4.67 | 6.27 | 7.19 |
Bozhou | 1.06 | 1.97 | 2.05 | 3.58 | 3.38 | |
Huaibei | 4.72 | 5.21 | 6.64 | 8.29 | 9.72 | |
Suzhou | 0.54 | 0.59 | 0.94 | 2.05 | 3.17 | |
Bengbu | 6.60 | 9.18 | 7.80 | 9.24 | 8.74 | |
Chuzhou | 7.62 | 10.52 | 9.32 | 10.69 | 14.06 | |
Ma’anshan | 13.20 | 13.07 | 15.00 | 17.05 | 16.22 | |
Xuancheng | 6.60 | 7.84 | 8.29 | 10.26 | 12.26 | |
Huangshan | 5.79 | 2.44 | 3.51 | 4.54 | 4.07 | |
Chizhou | 2.89 | 3.48 | 4.12 | 5.36 | 6.46 | |
Anqing | 6.80 | 6.17 | 4.96 | 5.17 | 4.12 | |
Luan | 5.51 | 4.52 | 4.16 | 3.58 | 2.32 | |
Average value | 5.33 | 5.82 | 5.96 | 7.17 | 7.64 | |
Henan | Zhumadian | 1.23 | 1.17 | 2.11 | 4.29 | 5.56 |
Zhoukou | 1.07 | 1.26 | 1.52 | 2.12 | 2.12 | |
Shangqiu | 2.94 | 3.98 | 4.07 | 4.73 | 5.69 | |
Average value | 1.75 | 2.14 | 2.57 | 3.71 | 4.46 | |
Shandong | Heze | 6.09 | 3.07 | 2.40 | 3.41 | 4.65 |
Jiangsu | Xuzhou | 12.56 | 12.06 | 11.99 | 16.66 | 21.66 |
Suqian | 7.19 | 8.80 | 9.25 | 11.31 | 12.38 | |
Huai’an | 10.62 | 12.27 | 12.30 | 13.33 | 14.44 | |
Nanjing | 48.46 | 52.24 | 59.97 | 72.58 | 71.33 | |
Changzhou | 29.67 | 33.00 | 35.20 | 43.09 | 50.32 | |
Wuxi | 39.41 | 39.80 | 44.90 | 52.47 | 65.47 | |
Average value | 24.65 | 26.36 | 28.94 | 34.91 | 39.27 | |
Zhejiang | Huzhou | 18.09 | 22.25 | 23.28 | 25.30 | 25.95 |
Hangzhou | 57.18 | 63.84 | 71.93 | 89.77 | 96.43 | |
Quzhou | 7.05 | 7.71 | 8.54 | 10.36 | 11.89 | |
Average value | 27.44 | 31.27 | 34.58 | 41.81 | 44.76 | |
Jiangxi | Shangrao | 3.96 | 4.25 | 5.18 | 8.11 | 8.40 |
Jiujiang | 10.98 | 11.05 | 8.59 | 6.27 | 3.58 | |
Average value | 7.47 | 7.65 | 6.89 | 7.19 | 5.99 | |
Hubei | Huanggang | 4.76 | 3.58 | 2.98 | 2.66 | 2.83 |
Adjacent area | Average value | 11.08 | 11.33 | 11.96 | 14.29 | 15.65 |
Province | City | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Anhui | Fuyang | 38.89 | 38.00 | 37.69 | 35.54 | 34.32 |
Bozhou | 39.34 | 41.10 | 39.63 | 39.85 | 38.05 | |
Huaibei | 15.80 | 28.99 | 29.50 | 28.54 | 28.72 | |
Suzhou | 37.18 | 38.47 | 37.95 | 36.04 | 36.26 | |
Bengbu | 26.94 | 27.15 | 28.32 | 21.93 | 22.49 | |
Chuzhou | 38.26 | 39.70 | 34.37 | 32.62 | 32.41 | |
Ma’anshan | 20.76 | 21.81 | 22.44 | 20.83 | 21.57 | |
Xuancheng | 33.45 | 33.84 | 34.46 | 30.45 | 30.98 | |
Huangshan | 23.28 | 25.28 | 26.19 | 22.80 | 23.50 | |
Chizhou | 29.30 | 31.19 | 34.57 | 29.90 | 30.42 | |
Anqing | 39.38 | 43.10 | 38.70 | 39.74 | 36.04 | |
Luan | 38.16 | 43.36 | 40.61 | 41.75 | 39.13 | |
Average value | 31.73 | 34.33 | 33.70 | 31.67 | 31.16 | |
Henan | Zhumadian | 28.09 | 36.23 | 38.39 | 33.12 | 28.87 |
Zhoukou | 30.00 | 27.82 | 27.23 | 28.51 | 27.76 | |
Shangqiu | 28.50 | 26.88 | 28.26 | 23.82 | 23.28 | |
Average value | 28.86 | 30.31 | 31.29 | 28.48 | 26.64 | |
Shandong | Heze | 26.96 | 26.55 | 27.34 | 28.40 | 25.55 |
Jiangsu | Xuzhou | 27.84 | 28.95 | 29.46 | 22.86 | 24.45 |
Suqian | 21.87 | 22.25 | 21.73 | 21.37 | 19.29 | |
Huai’an | 23.72 | 21.79 | 24.08 | 20.90 | 18.52 | |
Nanjing | 50.70 | 54.93 | 59.03 | 47.35 | 52.40 | |
Changzhou | 29.51 | 29.25 | 30.69 | 27.57 | 29.32 | |
Wuxi | 32.21 | 35.13 | 36.93 | 24.94 | 30.22 | |
Average value | 30.98 | 32.05 | 33.65 | 27.50 | 29.03 | |
Zhejiang | Huzhou | 25.01 | 28.23 | 31.36 | 28.74 | 19.42 |
Hangzhou | 51.34 | 58.57 | 63.81 | 54.86 | 33.74 | |
Quzhou | 33.49 | 35.30 | 37.31 | 32.69 | 28.16 | |
Average value | 36.61 | 40.70 | 44.16 | 38.76 | 27.11 | |
Jiangxi | Shangrao | 59.16 | 59.94 | 60.39 | 55.25 | 51.40 |
Jiujiang | 30.35 | 50.09 | 55.04 | 50.96 | 47.45 | |
Average value | 44.76 | 55.02 | 57.72 | 53.11 | 49.43 | |
Hubei | Huanggang | 32.85 | 37.61 | 34.69 | 37.23 | 39.38 |
Adjacent area | Average value | 33.06 | 36.37 | 37.16 | 34.60 | 32.69 |
Province | City | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Anhui | Fuyang | 16.20 | 17.09 | 18.58 | 18.42 | 17.64 |
Bozhou | 14.10 | 17.78 | 17.62 | 12.77 | 13.19 | |
Huaibei | 12.29 | 12.51 | 13.49 | 14.82 | 14.54 | |
Suzhou | 20.61 | 20.54 | 21.31 | 21.83 | 22.67 | |
Bengbu | 14.44 | 15.08 | 16.98 | 17.11 | 21.37 | |
Chuzhou | 16.42 | 28.68 | 26.67 | 28.17 | 21.71 | |
Ma’anshan | 9.58 | 14.07 | 12.96 | 15.90 | 14.97 | |
Xuancheng | 24.06 | 25.47 | 27.11 | 27.71 | 27.31 | |
Huangshan | 34.50 | 32.15 | 32.58 | 33.04 | 32.87 | |
Chizhou | 23.62 | 24.94 | 25.34 | 25.19 | 24.73 | |
Anqing | 26.85 | 27.99 | 26.08 | 24.63 | 23.62 | |
Luan | 24.82 | 24.84 | 23.11 | 25.01 | 24.18 | |
Average value | 17.72 | 19.69 | 19.89 | 19.97 | 19.55 | |
Henan | Zhumadian | 12.87 | 16.21 | 20.79 | 21.44 | 18.70 |
Zhoukou | 4.64 | 6.43 | 9.49 | 12.30 | 9.93 | |
Shangqiu | 8.34 | 8.08 | 11.55 | 13.27 | 8.71 | |
Average value | 8.62 | 10.24 | 13.94 | 15.67 | 12.45 | |
Shandong | Heze | 24.16 | 19.42 | 28.13 | 28.65 | 26.22 |
Jiangsu | Xuzhou | 18.82 | 25.73 | 25.66 | 36.55 | 31.09 |
Suqian | 19.40 | 20.27 | 19.62 | 25.03 | 21.65 | |
Huai’an | 17.51 | 19.76 | 19.53 | 21.18 | 21.45 | |
Nanjing | 35.50 | 41.29 | 42.93 | 45.41 | 45.95 | |
Changzhou | 16.15 | 16.38 | 20.18 | 20.26 | 20.56 | |
Wuxi | 53.88 | 56.75 | 57.38 | 56.19 | 56.83 | |
Average value | 26.88 | 30.03 | 30.88 | 34.10 | 32.92 | |
Zhejiang | Huzhou | 22.90 | 26.55 | 27.84 | 29.12 | 24.99 |
Hangzhou | 39.37 | 39.55 | 44.95 | 53.50 | 50.21 | |
Quzhou | 27.74 | 29.28 | 32.79 | 31.94 | 29.83 | |
Average value | 30.00 | 31.79 | 35.19 | 38.19 | 35.01 | |
Jiangxi | Shangrao | 35.42 | 36.06 | 35.30 | 35.49 | 31.85 |
Jiujiang | 33.49 | 32.56 | 31.16 | 31.32 | 32.19 | |
Average value | 34.46 | 34.31 | 33.23 | 33.41 | 32.02 | |
Hubei | Huanggang | 23.67 | 38.27 | 30.34 | 26.44 | 36.53 |
Adjacent area | Average value | 23.73 | 26.38 | 27.41 | 28.07 | 27.91 |
Year/D Value | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|
Fuyang | 0.2935 | 0.3262 | 0.3444 | 0.3445 | 0.3624 |
Bozhou | 0.2670 | 0.3045 | 0.3165 | 0.3193 | 0.3290 |
Huaibei | 0.2915 | 0.3204 | 0.3413 | 0.3641 | 0.3796 |
Suzhou | 0.2585 | 0.2658 | 0.2892 | 0.3567 | 0.3868 |
Bengbu | 0.3875 | 0.4043 | 0.4126 | 0.3665 | 0.3770 |
Chuzhou | 0.3790 | 0.4316 | 0.4848 | 0.4908 | 0.5001 |
Ma’anshan | 0.3692 | 0.3949 | 0.4053 | 0.4189 | 0.4252 |
Xuancheng | 0.3712 | 0.3888 | 0.4005 | 0.4081 | 0.4339 |
Huangshan | 0.3757 | 0.3424 | 0.3659 | 0.3688 | 0.3766 |
Chizhou | 0.3215 | 0.3384 | 0.3613 | 0.3733 | 0.3970 |
Anqing | 0.3779 | 0.3813 | 0.3739 | 0.3742 | 0.3630 |
Luan | 0.3608 | 0.3638 | 0.3622 | 0.3601 | 0.3475 |
Average value | 0.3511 | 0.3669 | 0.3846 | 0.3893 | 0.4004 |
Zhumadian | 0.2609 | 0.2811 | 0.3173 | 0.3369 | 0.3477 |
Zhoukou | 0.2214 | 0.2435 | 0.2641 | 0.2763 | 0.2793 |
Shangqiu | 0.2751 | 0.2907 | 0.3086 | 0.2993 | 0.2994 |
Average value | 0.2577 | 0.2800 | 0.3016 | 0.3071 | 0.3138 |
Heze | 0.4135 | 0.3754 | 0.3903 | 0.4078 | 0.4222 |
Xuzhou | 0.4194 | 0.4414 | 0.4485 | 0.4739 | 0.4974 |
Suqian | 0.3562 | 0.3724 | 0.3787 | 0.4014 | 0.4071 |
Huai’an | 0.3919 | 0.4037 | 0.4103 | 0.4112 | 0.4230 |
Nanjing | 0.6753 | 0.7080 | 0.7360 | 0.7424 | 0.7697 |
Changzhou | 0.4996 | 0.5108 | 0.5329 | 0.5709 | 0.5739 |
Wuxi | 0.6678 | 0.6900 | 0.7065 | 0.6808 | 0.7341 |
Average value | 0.5257 | 0.5457 | 0.5605 | 0.5727 | 0.5918 |
Huzhou | 0.4532 | 0.4705 | 0.4855 | 0.4850 | 0.4664 |
Hangzhou | 0.7045 | 0.7309 | 0.7648 | 0.7916 | 0.7682 |
Quzhou | 0.4504 | 0.4617 | 0.4792 | 0.4812 | 0.4934 |
Average value | 0.5595 | 0.5804 | 0.6037 | 0.6153 | 0.6053 |
Shangrao | 0.4607 | 0.4519 | 0.4548 | 0.4807 | 0.4782 |
Jiujiang | 0.4476 | 0.4626 | 0.4541 | 0.4335 | 0.4045 |
Average value | 0.4664 | 0.4656 | 0.4571 | 0.4581 | 0.4460 |
Huanggang | 0.3680 | 0.3622 | 0.3428 | 0.3301 | 0.3688 |
Average value | 0.4386 | 0.4534 | 0.4669 | 0.4757 | 0.4880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, Y.; Zhu, L.; Geng, X.; Liu, J. Evaluation of the Degree of Synergy in High-Quality Development Among Inter-Provincial Adjacent Districts and Planning Recommendations: The Case Study of Anhui Province and Its Surrounding Provinces. Sustainability 2025, 17, 197. https://doi.org/10.3390/su17010197
Li Q, Zhang Y, Zhu L, Geng X, Liu J. Evaluation of the Degree of Synergy in High-Quality Development Among Inter-Provincial Adjacent Districts and Planning Recommendations: The Case Study of Anhui Province and Its Surrounding Provinces. Sustainability. 2025; 17(1):197. https://doi.org/10.3390/su17010197
Chicago/Turabian StyleLi, Qiguo, Yafei Zhang, Linfeng Zhu, Xiaohan Geng, and Jia Liu. 2025. "Evaluation of the Degree of Synergy in High-Quality Development Among Inter-Provincial Adjacent Districts and Planning Recommendations: The Case Study of Anhui Province and Its Surrounding Provinces" Sustainability 17, no. 1: 197. https://doi.org/10.3390/su17010197
APA StyleLi, Q., Zhang, Y., Zhu, L., Geng, X., & Liu, J. (2025). Evaluation of the Degree of Synergy in High-Quality Development Among Inter-Provincial Adjacent Districts and Planning Recommendations: The Case Study of Anhui Province and Its Surrounding Provinces. Sustainability, 17(1), 197. https://doi.org/10.3390/su17010197