Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability
Abstract
:1. Introduction
2. Overview of Electricity Consumption, Renewable Energy Production, and Current Account Balance
2.1. Electricity Consumption
2.2. Renewable Energy Production
2.3. Current Account Balance
3. Literature Review
3.1. Electricity Consumption–Renewable Energy Production Nexuses
3.2. Electricity Consumption–Current Account and Renewable Energy Production–Current Account Nexusses
4. Data Collection
5. Econometrics Methodology
5.1. Cross-Section Dependence Test
- Breusch-Pagan Chi-square;
- Pearson LM Normal;
- Pearson CD Normal;
- Friedman Chi-square;
- Frees Normal.
5.2. Bootstrapped Granger Causality Test
- Step One: A regression model with cross-section SURs is estimated to generate a bootstrapped sample of residuals for EPC, CACC, and RENEN.
- Step Two: Use a bootstrapped sample of EPCi,t*, CACCi,t*, RENENi,t* for the Granger Causality Test, Wald test, and bootstrap confidence intervals.
6. Empirical Findings and Their Discussions
7. Conclusion and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydin, M. Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries. Renew. Energy 2019, 136, 599–606. [Google Scholar] [CrossRef]
- Carley, S. State renewable energy electricity policies: An empirical evaluation of effectiveness. Energy Policy 2009, 37, 3071–3081. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. 2004. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=572504 (accessed on 25 June 2023).
- IEA. Electricity Statistics. 2019. Available online: https://www.iea.org/statistics/electricity/ (accessed on 25 June 2023).
- OECD. Renewable Energy. 2019. Available online: https://data.oecd.org/energy/renewable-energy.htm (accessed on 25 June 2023).
- Eurostat. Energy Production and Imports. 2016. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_production_and_imports (accessed on 25 June 2023).
- World Economic Forum. Five Charts that Show Renewable Energy’s Latest Milestone. 2019. Available online: https://www.weforum.org/agenda/2019/08/renewables-energy-electricity-green-oecd/ (accessed on 25 June 2023).
- Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 2010, 14, 462–469. [Google Scholar] [CrossRef]
- Bousnina, R.; Gabsi, F.B. Exploring the role of renewable energy and carbon dioxide emissions for sustainable current account balance under the shadow of energy crisis: Evidence from OECD countries. Environ. Sci. Pollut. Res. 2023, 30, 118304–118317. [Google Scholar] [CrossRef] [PubMed]
- Atems, B.; Hotaling, C. The effect of renewable and nonrenewable electricity generation on economic growth. Energy Policy 2018, 112, 111–118. [Google Scholar] [CrossRef]
- De Jonghe, C.; Delarue, E.; Belmans, R.; D’haeseleer, W. Interactions between measures for the support of electricity from renewable energy sources and CO2 mitigation. Energy Policy 2009, 37, 4743–4752. [Google Scholar] [CrossRef]
- Finn, P.; Fitzpatrick, C. Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Appl. Energy 2014, 113, 11–21. [Google Scholar] [CrossRef]
- Haas, R.; Resch, G.; Panzer, C.; Busch, S.; Ragwitz, M.; Held, A. Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources–Lessons from EU countries. Energy 2011, 36, 2186–2193. [Google Scholar] [CrossRef]
- Ibitoye, F.I.; Adenikinju, A. Future demand for electricity in Nigeria. Appl. Energy 2007, 84, 492–504. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Y. Does electricity price matter for innovation in renewable energy technologies in China? Energy Econ. 2019, 78, 259–266. [Google Scholar] [CrossRef]
- Banos, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimisation methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- OECD. Pursuing Strong, Sustainable and Balanced Growth: The Role of Structural Reform. 2010. Available online: https://www.oecd.org/general/46390343.pdf (accessed on 25 June 2023).
- Destek, M.A.; Aslan, A. Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality. Renew. Energy 2017, 111, 757–763. [Google Scholar] [CrossRef]
- Yıldırım, E.; Sukruoglu, D.; Aslan, A. Energy consumption and economic growth in the next 11 countries: The bootstrapped autoregressive metric causality approach. Energy Econ. 2014, 44, 14–21. [Google Scholar] [CrossRef]
- HI Energy. How Electricity Is Generated in the UK? 2016. Available online: https://hi-energy.ch/en/ (accessed on 25 June 2023).
- US Energy Information Administration. What Is U.S. Electricity Generation by Energy Source? 2016. Available online: https://www.eia.gov/tools/faqs/faq.cfm?id=427&t=3 (accessed on 25 June 2023).
- Statistics Finland. Volume of Electricity Produced with Renewable Energy Sources at Record Level. 2016. Available online: https://www.stat.fi/til/salatuo/2015/salatuo_2015_2016-11-02_tie_001_en.html (accessed on 25 June 2023).
- Reseau de Transport d’Electricite. France Electricity Report for 2014. 2016. Available online: http://www.rtefrance.com/sites/default/files/2015_01_27_pk_rte_2014_french_electricity_report.pdf (accessed on 25 June 2023).
- Federal Ministry of Economic Affairs and Energy. Development of Renewable Energy Sources in Germany 2015. 2016. Available online: http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/development-of-renewable-energy-sources-in-germany-2015.pdf?__blob=publicationFile&v=8; (accessed on 25 June 2023).
- World Bank. Electric Power Consumption. 2019. Available online: https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC (accessed on 25 June 2023).
- Pilbeam, K. International Finance, 4th ed.; Palgrave Macmillian: New York, NY, USA, 2013. [Google Scholar]
- Ferrero, A. House price booms, current account deficits, and low interest rates. J. Money Credit. Bank. 2015, 47, 261–293. [Google Scholar] [CrossRef]
- Beusch, E.; Döbeli, B.; Fischer, A.M.; Yeşin, P. Merchanting and current account balances. World Econ. 2017, 40, 140–167. [Google Scholar] [CrossRef]
- Federal Reserve Bank. How Dangerous Is the US Current Account Deficit? 2017. Available online: https://www.stlouisfed.org/publications/regional-economist/april-2006/how-dangerous-is-the-us-current-account-deficit (accessed on 25 June 2023).
- Spence, P. Why the UK’s ‘Other Deficit’ Has Economists Scared? 2015. Available online: http://www.telegraph.co.uk/finance/economics/11532598/Why-the-UKs-current-account-deficit-has-economists-scared.html (accessed on 25 June 2023).
- Sharif, A.; Raza, S.A.; Ozturk, I.; Afshan, S. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations. Renew. Energy 2019, 133, 685–691. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef]
- Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008, 36, 3578–3587. [Google Scholar] [CrossRef]
- Strbac, G. Demand side management: Benefits and challenges. Energy Policy 2008, 36, 4419–4426. [Google Scholar] [CrossRef]
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. The Role of Energy Storage with Renewable Electricity Generation; National Renewable Energy Laboratory: Golden, CO, USA, 2010.
- Roscoe, A.J.; Ault, G. Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response. IET Renew. Power Gener. 2010, 4, 369–382. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable and non-renewable electricity consumption–growth nexus: Evidence from emerging market economies. Appl. Energy 2011, 88, 5226–5230. [Google Scholar] [CrossRef]
- Richardson, D.B. Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 2013, 19, 247–254. [Google Scholar] [CrossRef]
- Bento, J.P.C.; Moutinho, V. CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- Bélaïd, F.; Youssef, M. Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria. Energy Policy 2017, 102, 277–287. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Renewable energy resources in South Asian countries: Challenges, policy and recommendations. Resour.-Effic. Technol. 2017, 3, 342–346. [Google Scholar] [CrossRef]
- Bildirici, M.; Kayıkçı, F. Renewable energy and current account balance nexus. Environ. Sci. Pollut. Res. 2022, 29, 48759–48768. [Google Scholar] [CrossRef] [PubMed]
- Clarida, R.H.; Goretti, M.; Taylor, M.P. Are there thresholds of current account adjustment in the G7? In G7 Current Account Imbalances: Sustainability and Adjustment; University of Chicago Press: Chicago, IL, USA, 2007; pp. 169–204. [Google Scholar]
- Engel, C.; Rogers, J.H. The US current account deficit and the expected share of world output. J. Monet. Econ. 2006, 53, 1063–1093. [Google Scholar] [CrossRef]
- Reisen, H. Sustainable and excessive current account deficits. Empirica 1998, 25, 111–131. [Google Scholar] [CrossRef]
- Eichengreen, B. Trade policy and the macroeconomy. IMF Econ. Rev. 2019, 67, 4–23. [Google Scholar] [CrossRef]
- Thomas, M.P. Impact of services trade on economic growth and current account balance: Evidence from India. J. Int. Trade Econ. Dev. 2019, 28, 331–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S. The impacts of GDP, trade structure, exchange rate and FDI inflows on China’s carbon emissions. Energy Policy 2018, 120, 347–353. [Google Scholar] [CrossRef]
- Gruben, W.C.; McLeod, D. Capital account liberalization and inflation. Econ. Lett. 2002, 77, 221–225. [Google Scholar] [CrossRef]
- Mansoorian, A.; Mohsin, M. On the employment, investment and current account effects of inflation. J. Int. Econ. 2006, 70, 296–313. [Google Scholar] [CrossRef]
- Dooley, M.P.; Folkerts-Landau, D.; Garber, P.M. The US Current Account Deficit and Economic Development: Collateral for a Total Return Swap; No. w10727; National Bureau of Economic Research: Cambridge, MA, USA, 2004. [Google Scholar]
- Micossi, S. Balance-of-Payments Adjustment in the Eurozone. CEPS Policy Brief. 2016. Available online: http://aei.pitt.edu/70992/1/PB_338_SM_BoP_Adjustment_in_EZ.pdf (accessed on 25 June 2023).
- Razmi, A. Correctly analysing the balance-of-payments constraint on growth. Camb. J. Econ. 2015, 40, 1581–1608. [Google Scholar] [CrossRef]
- Adams, F.G.; Shachmurove, Y. Modelling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020. Energy Econ. 2008, 30, 1263–1278. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Rafindadi, A.A.; Ozturk, I. Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-Fukushima Japan. Renew. Sustain. Energy Rev. 2016, 54, 1073–1084. [Google Scholar] [CrossRef]
- Al-Bajjali, S.K.; Shamayleh, A.Y. Estimating the determinants of electricity consumption in Jordan. Energy 2018, 147, 1311–1320. [Google Scholar] [CrossRef]
- Glomsrød, S.; Vennemo, H.; Johnsen, T. Stabilization of emissions of CO2: A computable general equilibrium assessment. Scand. J. Econ. 1992, 94, 53–69. [Google Scholar] [CrossRef]
- Narayan, P.K.; Smyth, R. Multivariate Granger causality between electricity consumption, exports and GDP: Evidence from a panel of Middle Eastern countries. Energy Policy 2009, 37, 229–236. [Google Scholar] [CrossRef]
- Shahbaz, M.; Gozgor, G.; Hammoudeh, S. Human capital and export diversification as new determinants of energy demand in the United States. Energy Econ. 2019, 78, 335–349. [Google Scholar] [CrossRef]
- Gnansounou, E. Assessing the energy vulnerability: Case of industrialised countries. Energy Policy 2008, 36, 3734–3744. [Google Scholar] [CrossRef]
- Weber, C.L.; Peters, G.P.; Guan, D.; Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy 2008, 36, 3572–3577. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, Z.; Liu, M. China’s energy development strategy under the low-carbon economy. Energy 2010, 35, 4257–4264. [Google Scholar] [CrossRef]
- Dai, H.; Xie, X.; Xie, Y.; Liu, J.; Masui, T. Green growth: The economic impacts of large-scale renewable energy development in China. Appl. Energy 2016, 162, 435–449. [Google Scholar] [CrossRef]
- Andini, C.; Cabral, R.; Santos, J.E. The macroeconomic impact of renewable electricity power generation projects. Renew. Energy 2019, 131, 1047–1059. [Google Scholar] [CrossRef]
- Zeren, F.; Akkuş, H.T. The relationship between renewable energy consumption and trade openness: New evidence from emerging economies. Renew. Energy 2020, 147, 322–329. [Google Scholar] [CrossRef]
- OECD. Current Account Balance. 2019. Available online: https://data.oecd.org/trade/current-account-balance.htm#indicator-chart (accessed on 25 June 2023).
- OECD. Renewable Energy Production. 2019. Available online: https://data.oecd.org/energy/renewable-energy.htm (accessed on 25 June 2023).
- Robertson, D.; Symons, J. Factor Residuals in SUR Regressions: Estimating Panels Allowing for Cross Sectional Correlation; No. 473; Centre for Economic Performance, London School of Economics and Political Science: London, UK, 2000. [Google Scholar]
- Anselin, L. Spatial Econometrics. In A Companion to Theoretical Econometrics; Baltagi, B.H., Ed.; Blackwell Scientific Publications: Oxford, UK, 2001; pp. 310–330. [Google Scholar]
- Baltagi, B.H. Econometric Analysis of Panel Data, 3rd ed.; Wiley: New York, NJ, USA, 2005. [Google Scholar]
- IHS EViews. Panel Cross Section Dependence Test. 2019. Available online: http://www.eviews.com/help/helpintro.html#page/content%2Fpanel-Panel_Equation_Testing.html%23ww191025 (accessed on 25 June 2023).
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Harris, M.N.; Konya, L.; Matyas, L. Modelling the impact of environmental regulations on bilateral trade flows: OECD, 1990–1996. World Econ. 2002, 25, 387–405. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J. Financial integration and international risk sharing. J. Int. Econ. 2012, 86, 17–32. [Google Scholar] [CrossRef]
- Hellerstein, R.; Tille, C. The Changing Nature of the US Balance of Payments. Curr. Issues Econ. Financ. 2008, 14. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1156934 (accessed on 25 June 2023).
- Osakwe, P.; Verick, S. Current Account Deficits in Sub-Saharan Africa: Do They Matter; United Nations Commission for Africa: Addis Ababa, Ethiopia, 2007; pp. 201–220. [Google Scholar]
- US Energy Information Administration. Electricity Explained: Electricity in the United States. 2019. Available online: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php (accessed on 25 June 2023).
- Lal, R.; Kumar, S.; Naidu, S. A cost-benefit analysis of small biofuel projects in Fiji: Lessons and implications. J. Clean. Prod. 2022, 340, 130812. [Google Scholar] [CrossRef]
- Naidu, S. Exploring the dynamic effects of urbanization and real effective exchange rate on tourism output of Singapore. Tour. Anal. 2017, 22, 185–200. [Google Scholar] [CrossRef]
- Naidu, S.; Chand, A.; Pandaram, A. Exploring the nexus between urbanisation, inflation and tourism output: Empirical evidences from the Fiji Islands. Asia Pac. J. Tour. Res. 2017, 22, 1021–1037. [Google Scholar] [CrossRef]
- Naidu, S.; Pandaram, A.; Chand, A. Urbanisation, local food crop production and tourism output of Pakistan. Int. Soc. Sci. J. 2019, 69, 105–117. [Google Scholar] [CrossRef]
- Naidu, S.; Zhao, F.; Chand, A.; Patel, A.; Pandaram, A. E-Government Innovation, Financial Disclosure, and Public Sector Accounts: A Global Study of 30 Small Island Countries. Int. J. Electron. Gov. Res. IJEGR 2022, 18, 1–22. [Google Scholar] [CrossRef]
- Naidu, S.; Zhao, F.; Pandaram, A.; Chand, A.; Patel, A. Borrowing for health, sustainability, credit card use and ownership: A study of 74 countries. Entrep. Sustain. Issues 2021, 8, 622–640. [Google Scholar] [CrossRef] [PubMed]
No. | Variables | Definition of Variables | Database |
---|---|---|---|
1 | Current Account Balance (CACC) | The current account variable is usually expressed in millions of US dollars and as a percentage of GDP. This indicator records a country’s international transactions with the rest of the world. This indicator is measured in millions of US dollars. | OECD |
2 | Electric Power Consumption (EPC) | This measure captures the difference between electricity production from power plants, combined heatless transmission, and own use of electric power by the power plants. Electric power consumption is measured in Kilowatt Hours (KwH) per capita. | World Bank |
3 | Renewable Energy Production (RENEN) | This measure captures the overall total contribution of renewables to the total primary energy supply. Renewable energy production is measured in thousand Tons of Oil Equivalent (TTOE). | OECD |
Country | CACC | EPC | RENEN | |||
---|---|---|---|---|---|---|
Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev. | |
Switzerland | 53,191.34 | 20,386.56 | 6310.608 | 1711.158 | 3712.778 | 973.8371 |
Germany | 116,675.9 | 131,240.9 | 5506.047 | 1813.188 | 10,621.14 | 11,283.07 |
Finland | 3842.653 | 5903.715 | 10,325.26 | 5047.088 | 6412.898 | 1995.258 |
France | −3218.202 | 20,250.78 | 5122.382 | 2123.503 | 14,581.92 | 5580.355 |
United Kingdom (UK) | −30,313.03 | 43,809.32 | 4908.430 | 1019.614 | 2752.680 | 4112.099 |
United States of America (USA) | −194,224.4 | 234,365.0 | 10,318.05 | 3027.765 | 92,337.46 | 30,781.27 |
ADF Test | |||
---|---|---|---|
Country | Variables | Levels | t-Statistics |
Switzerland | CACC | I (0) | −2.558 |
EPC | I (0) | −3.069 ** | |
RENEN | I (0) | −0.694 | |
CACC | I (1) | −3.496 ** | |
EPC | I (1) | −2.219 | |
RENEN | I (1) | −11.229 *** | |
Decision | CACC: I (1) EPC: I (0) RENEN: I (1) | ||
Germany | CACC | I (0) | −0.231 |
EPC | I (0) | −3.231 ** | |
RENEN | I (0) | 2.339 | |
CACC | I (1) | −4.971 *** | |
EPC | I (1) | −5.331 | |
RENEN | I (1) | −5.951 *** | |
Decision | CACC: I (1) EPC: I (0) RENEN: I (1) | ||
Finland | CACC | I (0) | −3.221 ** |
EPC | I (0) | −2.638 * | |
RENEN | I (0) | −1.422 | |
CACC | I (1) | −5.406 *** | |
EPC | I (1) | −0.054 | |
RENEN | I (1) | −8.913 *** | |
Decision | CACC: I (0) EPC: I (0) RENEN: I (1) | ||
France | CACC | I (0) | −3.221 ** |
EPC | I (0) | −2.638 * | |
RENEN | I (0) | −1.423 | |
CACC | I (1) | −5.406 *** | |
EPC | I (1) | −0.054 | |
RENEN | I (1) | −8.913 *** | |
Decision | CACC: I (0) EPC: I (0) RENEN: I (1) | ||
United Kingdom (UK) | CACC | I (0) | −0.577058 |
EPC | I (0) | −3.914622 *** | |
RENEN | I (0) | 6.484 | |
CACC | I (1) | −7.331 *** | |
EPC | I (1) | −4.695 *** | |
RENEN | I (1) | 2.276 | |
RENEN | I(2) | −7.285 *** | |
Decision | CACC: I (1) EPC: I (0) RENEN: I (2) | ||
United States of America (USA) | CACC | I (0) | −0.718148 |
EPC | I (0) | −3.357462 ** | |
RENEN | I (0) | 1.091886 | |
CACC | I (1) | −6.120418 *** | |
EPC | I (1) | −6.890528 *** | |
RENEN | I (1) | −6.796180 *** | |
Decision | CACC: I (1) EPC: I (0) RENEN: I (1) |
Equation: | |||||||||
Null hypothesis: Cross-sectional independence | |||||||||
CACC | EPC | RENEN | |||||||
Test | Statistic | d.f. | Prob. | Statistic | d.f. | Prob. | Statistic | d.f. | Prob. |
Breusch-Pagan Chi-square | 102.4401 | 15 | 0.0000 | 96.85849 | 15 | 0.0000 | 78.71164 | 15 | 0.0000 |
Pearson LM Normal | 14.86887 | 0.0000 | 13.84980 | 0.0000 | 10.53666 | 0.0000 | |||
Pearson CD Normal | −2.357699 | 0.0184 | 5.712588 | 0.0000 | 5.004555 | 0.0000 | |||
Friedman Chi-square | 12.86686 | 61 | 1.0000 | 92.34041 | 61 | 0.0059 | 148.5631 | 61 | 0.0000 |
Frees Normal | 1.623827 | 0.0000 | 1.678362 | 0.0000 | 1.613497 | 0.0000 | |||
All analysis was undertaken based on automatic lag selection. |
Countries | H0: EPC Does Not Cause RENEN | H0: RENEN Does Not Cause EPC | |
---|---|---|---|
Bootstrap F-Statistics | Bootstrap F-Statistics | ||
1 | Switzerland | 0.07997 | 2.90581 * |
2 | Germany | 1.42841 | 0.39343 |
3 | Finland | 0.23104 | 0.98235 |
4 | France | 0.64613 | 1.97479 |
5 | United Kingdom (UK) | 0.52344 | 1.19431 |
6 | United States of America (USA) | 2.35128 | 1.27885 |
Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: EPC Does Not Have an Impact on RENEN | ||||||
---|---|---|---|---|---|---|---|---|---|
Bootstrap Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | 14.52163 *** | 0.487285 *** | 0.431109 | 0.543462 | 0.419981 | 0.554590 | 0.397630 | 0.576941 |
2 | Germany | 5.505355 *** | 2.471924 *** | 1.720240 | 3.223608 | 1.571337 | 3.372511 | 1.272266 | 3.671582 |
3 | Finland | 6.536499 *** | 0.219662 *** | 0.163403 | 0.275922 | 0.152258 | 0.287066 | 0.129874 | 0.309450 |
4 | France | 11.17913 *** | 2.063843 *** | 1.754775 | 2.372911 | 1.693551 | 2.434135 | 1.570582 | 2.557103 |
5 | United Kingdom (UK) | 3.776071 *** | 1.457062 *** | 0.811075 | 2.103049 | 0.683110 | 2.231015 | 0.426093 | 2.488031 |
6 | United States of America (USA) | 15.73048 *** | 8.701787 *** | 7.775699 | 9.627875 | 7.592248 | 9.811326 | 7.223788 | 10.17979 |
Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: RENEN Does Not Have an Impact on EPC | ||||||
Bootstrap Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | 12.54597 *** | 1.469294 *** | 1.273233 | 1.665354 | 1.234395 | 1.704192 | 1.156389 | 1.782198 |
2 | Germany | 6.184959 *** | 0.157270 *** | 0.114701 | 0.199839 | 0.106268 | 0.208272 | 0.089331 | 0.225209 |
3 | Finland | 6.306914 *** | 1.974258 *** | 1.450208 | 2.498308 | 1.646398 | 2.602118 | 1.137895 | 2.810621 |
4 | France | 11.34860 *** | 0.353262 *** | 0.301149 | 0.405374 | 0.290826 | 0.415697 | 0.270093 | 0.436431 |
5 | United Kingdom (UK) | 3.412491 *** | 0.151879 *** | 0.077370 | 0.226389 | 0.062610 | 0.241149 | 0.032965 | 0.270794 |
6 | United States of America (USA) | 16.30379 *** | 0.102582 *** | 0.092048 | 0.113115 | 0.089962 | 0.115202 | 0.085771 | 0.119393 |
No. | Countries | H0: EPC Does Not Cause CACC | H0: CACC Does Not Cause EPC |
---|---|---|---|
Bootstrap F-Statistics | Bootstrap F-Statistics | ||
1 | Switzerland | 0.89874 | 4.37267 * |
2 | Germany | 0.68023 | 0.51526 |
3 | Finland | 1.46654 | 0.64658 |
4 | France | 1.53091 | 10.7089 *** |
5 | United Kingdom (UK) | 0.98849 | 1.04918 |
6 | United States of America (USA) | 4.33835 ** | 0.08774 |
No. | Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: EPC Does Not Have an Impact on CACC | |||||
---|---|---|---|---|---|---|---|---|---|
Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | 0.249044 | 7.611215 | −46.51167 | 61.73410 | −58.41350 | 73.63593 | −84.44931 | 99.6717 |
2 | Germany | 10.25986 *** | 289.8447 *** | 241.3348 | 338.3547 | 231.2571 | 348.4324 | 210.2139 | 369.4756 |
3 | Finland | 1.452269 | 1.396737 | −0.271020 | 3.064494 | −0.623850 | 3.417325 | −1.371638 | 4.165113 |
4 | France | 0.586445 | 12.77958 | −25.60223 | 51.16138 | −33.95880 | 59.51795 | −52.09065 | 77.6498 |
5 | United Kingdom (UK) | −4.512872 *** | −23.39872 *** | −32.07882 | −14.71862 | −33.79829 | −12.99916 | −37.25182 | −9.54563 |
6 | United States of America (USA) | −8.346923 *** | −56.19020 *** | −67.46010 | −44.92031 | −69.69258 | −42.68783 | −74.17650 | −38.20390 |
No. | Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: CACC Does Not Have an Impact on EPC | |||||
Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | −0.367759 | −0.001042 | −0.006060 | 0.003976 | −0.007163 | 0.005079 | −0.009577 | 0.007493 |
2 | Germany | 7.517867 *** | 0.002525 *** | 0.001948 | 0.003101 | 0.001828 | 0.003221 | 0.001578 | 0.003471 |
3 | Finland | −0.232544 | −0.009669 | −0.081773 | 0.062434 | −0.09027 | 0.077688 | −0.129356 | 0.110018 |
4 | France | −0.371569 | −0.000856 | −0.004914 | 0.003202 | −0.005798 | 0.004085 | −0.007715 | 0.006003 |
5 | United Kingdom (UK) | −6.125400 *** | −0.020140 *** | −0.025644 | −0.014636 | −0.026735 | −0.013545 | −0.028925 | −0.011355 |
6 | United States of America (USA) | −7.658754 *** | −0.008843 *** | −0.010776 | −0.006910 | −0.011159 | −0.006527 | −0.011928 | −0.005758 |
Countries | H0: RENEN Does Not Cause CACC | H0: CACC Does Not Cause RENEN | |
---|---|---|---|
Bootstrap F-Statistics | Bootstrap F-Statistics | ||
1 | Switzerland | 0.04949 | 0.97759 |
2 | Germany | 1.98625 | 0.13346 |
3 | Finland | 0.46535 | 2.37416 |
4 | France | 0.00382 | 2.19741 |
5 | United Kingdom (UK) | 0.16612 | 1.08341 |
6 | United States of America (USA) | 0.60158 | 0.29509 |
No. | Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: RENEN Does Not Have an Impact on CACC | |||||
---|---|---|---|---|---|---|---|---|---|
Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | 0.596420 | 6.381433 | −12.56678 | 25.32965 | −16.73357 | 29.49644 | −25.84861 | 38.61157 |
2 | Germany | 19.40682 *** | 11.51826 *** | 10.49910 | 12.53751 | 10.28738 | 12.74913 | 9.845280 | 13.19123 |
3 | Finland | −3.056442 *** | −2.742061 *** | −4.297761 | −1.186361 | −4.626885 | −0.857237 | −5.324429 | −0.159693 |
4 | France | −3.881570 *** | −5.769546 *** | −8.387549 | −3.151544 | −8.957546 | −2.581546 | −10.19431 | −1.344782 |
5 | United Kingdom (UK) | −15.63027 *** | −10.39552 *** | −11.50896 | −9.282084 | −11.72952 | −9.061521 | −12.17252 | −8.628521 |
6 | United States of America (USA) | −5.466601 *** | −4.883083 | −6.378500 | −3.387666 | −6.674730 | −3.091435 | −7.269708 | −2.496457 |
No. | Countries | Bootstrap Wald Test T-Statistics | Bootstrap β Coefficients | H0: CACC Does Not Have an Impact on RENEN | |||||
Confidence Interval Critical Values | |||||||||
90% | 95% | 99% | |||||||
Low | High | Low | High | Low | High | ||||
1 | Switzerland | 1.684194 | 0.005727 | −0.000295 | 0.011749 | −0.001619 | 0.013073 | −0.004516 | 0.015970 |
2 | Germany | 15.99593 *** | 0.083298 *** | 0.074356 | 0.092240 | 0.072498 | 0.094097 | 0.068619 | 0.097976 |
3 | Finland | −4.689594 *** | −0.151901 *** | −0.208070 | −0.095733 | −0.219953 | −0.083850 | −0.245137 | −0.058665 |
4 | France | −3.462684 *** | −0.081916 *** | −0.123583 | −0.040249 | −0.132655 | −0.031177 | −0.152339 | −0.011494 |
5 | United Kingdom (UK) | −17.21812 *** | −0.053069 *** | −0.058229 | −0.047909 | −0.059251 | −0.046887 | −0.061304 | −0.044834 |
6 | United States of America (USA) | −7.471812 *** | −0.085804 *** | −0.105029 | −0.066579 | −0.108838 | −0.062771 | −0.116487 | −0.055122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidu, S.; Chand, A.; Pandaram, A.; Vosikata, S. Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability. Sustainability 2024, 16, 3722. https://doi.org/10.3390/su16093722
Naidu S, Chand A, Pandaram A, Vosikata S. Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability. Sustainability. 2024; 16(9):3722. https://doi.org/10.3390/su16093722
Chicago/Turabian StyleNaidu, Suwastika, Anand Chand, Atishwar Pandaram, and Sunia Vosikata. 2024. "Electricity Consumption, Renewable Energy Production, and Current Account of Organisation for Economic Co-Operation and Development Countries: Implications for Sustainability" Sustainability 16, no. 9: 3722. https://doi.org/10.3390/su16093722