Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia
Abstract
:1. Introduction
2. A Review of Microgrids: Their Use and Key Components
- A.
- What are microgrids?
- B.
- Agrivoltaics
- C.
- Energy storage
- D.
- Water desalination
3. Empowering Community-Led Energy Initiatives through Social Innovation
4. Case Study: Namibia
Social Innovation in Namibia
5. Materials and Methods
6. Results
7. Discussion
8. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Change 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- The World Bank. Sub-Saharan Africa|Data. Available online: https://data.worldbank.org/country/ZG (accessed on 4 June 2023).
- Statista. Sub-Saharan Africa—Total Population 2011–2022|Statista. Available online: https://www.statista.com/statistics/805605/total-population-sub-saharan-africa/ (accessed on 3 September 2023).
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.J.; Ringler, C. Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecol. Econ. 2013, 93, 150–165. [Google Scholar] [CrossRef]
- Cattaneo, C.; Beine, M.; Fröhlich, C.J.; Kniveton, D.; Martinez-Zarzoso, I.; Mastrorillo, M.; Millock, K.; Piguet, E.; Schraven, B. Human Migration in the Era of Climate Change. Rev. Environ. Econ. Policy 2019, 13, 189–206. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Change 2020, 20, 15. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Change 2013, 134, 371–385. [Google Scholar] [CrossRef]
- Derrick Ngoran, S.; Etornam Dogah, K.; Wang, Y. Assessing the Impacts of Climate Change on Water Resources: The Sub-Saharan Africa Perspective. 2015. Available online: www.iiste.org (accessed on 13 September 2023).
- Fischer, G.; Shah, M.; Van Velthuizen, H. Climate Change and Agricultural Vulnerability; Laxenburg, Austria. 2002; Available online: https://pure.iiasa.ac.at/id/eprint/6670/1/XO-02-001.pdf (accessed on 10 December 2023).
- Jankowska, M.M.; Lopez-Carr, D.; Funk, C.; Husak, G.J.; Chafe, Z.A. Climate change and human health: Spatial modeling of water availability, malnutrition, and livelihoods in Mali, Africa. Appl. Geogr. 2012, 33, 4–15. [Google Scholar] [CrossRef]
- Blanc, E. The Impact of Climate Change on Crop Yields in Sub-Saharan Africa. Am. J. Clim. Change 2012, 1, 1–13. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.B.; Jafari, M.; Lissner, T.K.; Stevens, N.; der Pahlen, C.T.-V. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Mutono, N.; Wright, J.A.; Mutembei, H.; Muema, J.; Thomas, M.L.H.; Mutunga, M.; Thumbi, S.M. The nexus between improved water supply and water-borne diseases in urban areas in Africa: A scoping review. AAS Open Res. 2021, 4, 27. [Google Scholar] [CrossRef]
- The World Bank. Rural Population (% of Total Population)—Sub-Saharan Africa|Data. Available online: https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=ZG (accessed on 29 August 2023).
- Progress on Household Drinking Water, Sanitation, and Hygiene 2000–2017. Special Focus on Inequalities. New York: United Nations Children’s Fund (UNICEF) and World Health Organization. Available online: https://www.who.int/publications-detail-redirect/9789241516235 (accessed on 29 August 2023).
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food and Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Abedin, M.A.; Collins, A.E.; Habiba, U.; Shaw, R. Climate Change, Water Scarcity, and Health Adaptation in Southwestern Coastal Bangladesh. Int. J. Disaster Risk Sci. 2019, 10, 28–42. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Africa to Drastically Accelerate Progress on Water, Sanitation and Hygiene—Report. Available online: https://www.unicef.org/media/117731/file/Press%20Release.pdf (accessed on 22 March 2022).
- Coates, S.J.; Enbiale, W.; Davis, M.D.P.; Andersen, L.K. The effects of climate change on human health in Africa, a dermatologic perspective: A report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 2020, 59, 265–278. [Google Scholar] [CrossRef]
- Sunga, L.S. Does climate change kill people in Darfur? J. Hum. Rights Environ. 2011, 2, 64–85. [Google Scholar] [CrossRef]
- Burke, M.B.; Miguel, E.; Satyanath, S.; Dykema, J.A.; Lobell, D.B. Warming increases the risk of civil war in Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20670–20674. [Google Scholar] [CrossRef]
- Nordås, R.; Gleditsch, N.P. Climate Change and Conflict. In Competition and Conflicts on Resource Use; Springer International Publishing: Cham, Switzerland, 2015; pp. 21–38. [Google Scholar] [CrossRef]
- Scheffran, J.; Ide, T.; Schilling, J. Violent climate or climate of violence? Concepts and relations with focus on Kenya and Sudan. Int. J. Hum. Rights 2014, 18, 369–390. [Google Scholar] [CrossRef]
- Maystadt, J.-F.; Calderone, M.; You, L. Local warming and violent conflict in North and South Sudan. J. Econ. Geogr. 2015, 15, 649–671. [Google Scholar] [CrossRef]
- Olsson, O. Climate Change and Market Collapse: A Model Applied to Darfur. Games 2016, 7, 9. [Google Scholar] [CrossRef]
- De Juan, A. Long-term environmental change and geographical patterns of violence in Darfur, 2003–2005. Political Geogr. 2015, 45, 22–33. [Google Scholar] [CrossRef]
- Koubi, V. Climate Change and Conflict. Annu. Rev. Political Sci. 2019, 22, 343–360. [Google Scholar] [CrossRef]
- Mazo, J. Chapter Three: Darfur: The First Modern Climate-Change Conflict. Adelphi Pap. 2009, 49, 73–86. [Google Scholar] [CrossRef]
- Buhaug, H.; A Benjaminsen, T.; Sjaastad, E.; Theisen, O.M. Climate variability, food production shocks, and violent conflict in Sub-Saharan Africa. Environ. Res. Lett. 2015, 10, 125015. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Aslam, A.; Coelli, F.; Eugster, J.; Ho, G.; Juamotte, F.; Buitron, O.C.; Piazza, R. Chapter 4: Is Productivity Growth Shared in a Global Economy? In World Economic Outlook (pp. 1–42). 2018. Available online: https://www.imf.org/en/Publications/WEO/Issues/2018/03/20/world-economic-outlook--2018#Chapter%204 (accessed on 10 February 2024).
- Konstantinos, K. Introducing Microgrids & Local Energy Communities. Available online: https://www.incite-itn.eu/blog/introducing-microgrids-local-energy-communities/ (accessed on 4 June 2023).
- Nicolli, F.; Vona, F. Energy market liberalization and renewable energy policies in OECD countries. Energy Policy 2019, 128, 853–867. [Google Scholar] [CrossRef]
- Necoechea-Porras, P.D.; López, A.; Salazar-Elena, J.C. Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review. Sustainability 2021, 13, 3429. [Google Scholar] [CrossRef]
- Nosakhale, O.S.; Mwaniki, C.; Akorede, M.F. Optimal Sizing and Analysis of a Hybrid Energy System for a Community Microgrid in Nigeria. J. Eng. Appl. Sci. 2019, 14, 8769–8778. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Roosa, S.A. Community and Local Microgrids. Taylor & Francis Group, 2020; pp. 141–156. Available online: https://www.taylorfrancis.com/books/edit/10.1201/9781003082408/fundamentals-microgrids-stephen-roosa?refId=f5cee991-6551-4739-b073-97dcff28af42&context=ubx (accessed on 10 February 2024).
- Warneryd, M.; Håkansson, M.; Karltorp, K. Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids. Renew. Sustain. Energy Rev. 2020, 121, 109690. [Google Scholar] [CrossRef]
- Trivedi, R.; Patra, S.; Sidqi, Y.; Bowler, B.; Zimmermann, F.; Deconinck, G.; Papaemmanouil, A.; Khadem, S. Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network. Energies 2022, 15, 918. [Google Scholar] [CrossRef]
- Kojonsaari, A.-R.; Palm, J. Distributed Energy Systems and Energy Communities Under Negotiation. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 17. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Parvathy, A.K.; Priyadarshini, S. Community Energy Sharing in a Microgrid Architecture with Energy Storage and Renewable Energy Support. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012023. [Google Scholar] [CrossRef]
- Gui, E.M.; Diesendorf, M.; MacGill, I. Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context. Renew. Sustain. Energy Rev. 2017, 72, 1355–1365. [Google Scholar] [CrossRef]
- Warneryd, M.; Karltorp, K. Microgrid communities: Disclosing the path to future system-active communities. Sustain. Futures 2022, 4, 100079. [Google Scholar] [CrossRef]
- Scott, N. Microgrids: A Guide to Their Issues and Value. 2016. Available online: https://www.hie.co.uk/media/5957/a-guide-to-microgrids.pdf (accessed on 10 January 2024).
- Gorjian, S.; Ebadi, H.; Jathar, L.D.; Savoldi, L. Solar energy for sustainable food and agriculture: Development, barriers, and policies. In Solar Energy Advancements in Agriculture and Food Production System, 1st ed.; Gorjian, S., Campana, P.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–29. [Google Scholar]
- van de Ven, D.-J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Toledo, C.; Scognamiglio, A. Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns). Sustainability 2021, 13, 6871. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2020, 281, 116102. [Google Scholar] [CrossRef]
- Sreekar, V.S.; Gaikwad, N.A.; Sathe, T. A Case Study on Agrovoltaic: Technology for Rural Infrastructure Development. In Infrastructure Development—Theory, Practice and Policy—Sustainability and Resilience; Gangwar, R., Agarwalla, A., Sreekumar, S., Eds.; Routledge: London, UK, 2023; pp. 45–51. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Amaducci, S.; Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod. 2021, 325, 129091. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Jain, P.; Raina, G.; Sinha, S.; Malik, P.; Mathur, S. Agrovoltaics: Step towards sustainable energy-food combination. Bioresour. Technol. Rep. 2021, 15, 100766. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Design of agrivoltaic system to optimize land use for clean energy-food production: A socio-economic and environmental assessment. Clean Technol. Environ. Policy 2022, 24, 2595–2606. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A.; Ramadan, M. Critical Review of Flywheel Energy Storage System. Energies 2021, 14, 2159. [Google Scholar] [CrossRef]
- Okou, R.; Sebitosi, A.; Pillay, P. Flywheel rotor manufacture for rural energy storage in sub-Saharan Africa. Energy 2011, 36, 6138–6145. [Google Scholar] [CrossRef]
- Pullen, K.R. The Status and Future of Flywheel Energy Storage. Joule 2019, 3, 1394–1399. [Google Scholar] [CrossRef]
- Hebner, R.; Beno, J.; Walls, A. Flywheel batteries come around again. IEEE Spectr. 2002, 39, 46–51. [Google Scholar] [CrossRef]
- Esparcia, E.A.; Castro, M.T.; Buendia, R.E.; Ocon, J.D. Long-Discharge Flywheel Versus Battery Energy Storage for Microgrids: A Techno-Economic Comparison. Chem. Eng. Trans. 2019, 76, 949–954. [Google Scholar] [CrossRef]
- Esparcia, E.A.; Castro, M.T.; Odulio, C.M.F.; Ocon, J.D. A stochastic techno-economic comparison of generation-integrated long duration flywheel, lithium-ion battery, and lead-acid battery energy storage technologies for isolated microgrid applications. J. Energy Storage 2022, 52, 104681. [Google Scholar] [CrossRef]
- Mousavi, G.S.M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustain. Energy Rev. 2017, 67, 477–490. [Google Scholar] [CrossRef]
- Bamisile, O.; Zheng, Z.; Adun, H.; Cai, D.; Ting, N.; Huang, Q. Development and prospect of flywheel energy storage technology: A citespace-based visual analysis. Energy Rep. 2023, 9, 494–505. [Google Scholar] [CrossRef]
- Amiryar, M.E.; Pullen, K.R. A Review of Flywheel Energy Storage System Technologies and Their Applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef]
- Choudhury, S. Flywheel energy storage systems: A critical review on technologies, applications, and future prospects. Int. Trans. Electr. Energy Syst. 2021, 31, e13024. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K. Energy storage systems in modern grids—Matrix of technologies and applications. J. Energy Storage 2016, 6, 248–259. [Google Scholar] [CrossRef]
- Kikusato, H.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hashimoto, J.; Otani, K.; Ikeda, N.; Komuro, I.; Yokoi, H.; Takahashi, K. Flywheel energy storage system based microgrid controller design and PHIL testing. Energy Rep. 2022, 8, 470–475. [Google Scholar] [CrossRef]
- Arani, A.K.; Karami, H.; Gharehpetian, G.; Hejazi, M. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renew. Sustain. Energy Rev. 2017, 69, 9–18. [Google Scholar] [CrossRef]
- Li, X.; Palazzolo, A. A review of flywheel energy storage systems: State of the art and opportunities. J. Energy Storage 2022, 46, 103576. [Google Scholar] [CrossRef]
- Amber Kinetic. The Industry’s Only Long-Duration Kinetic Energy Storage System (KESS)—Enabling Highly Efficient Industrial and Commercial Applications. Available online: https://www.amberkinetics.com/wp-content/uploads/2020/05/Amber-Kinetics-DataSheet.pdf (accessed on 10 January 2024).
- Jiangmen Greenfall Water Treatment Technology Co., Ltd. Sea Water Treatment Equipment/Seawater Desalination System. Available online: https://jmglf.en.alibaba.com/index.html?spm=a2700.details.0.0.5dd95a06f633ev&from=detail&productId= (accessed on 10 December 2023).
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Boden, K.; Subban, C. A Road Map for Small Scale Desalination: An Overview of Existing and Emerging Technology Solutions for Cost-Efficient and Low-Energy Desalination in South and Southeast Asia. 2018. Available online: https://policy-practice.oxfam.org/resources/a-desalination-road-map-for-asia-an-overview-of-existing-and-emerging-desalinat-620448/ (accessed on 10 January 2024).
- Liponi, A.; Tempesti, C.; Baccioli, A.; Ferrari, L. Small-Scale Desalination Plant Driven by Solar Energy for Isolated Communities. Energies 2020, 13, 3864. [Google Scholar] [CrossRef]
- Wang, J.; Huo, E. Opportunities and Challenges of Seawater Desalination Technology. Front. Energy Res. 2022, 10, 960537. [Google Scholar] [CrossRef]
- Cosín, C. The Evolution of Rates in Desalination (Part I). Available online: https://smartwatermagazine.com/blogs/carlos-cosin/evolution-rates-desalination-part-i (accessed on 4 June 2023).
- Antonyan, M. Energy Footprint of Water Desalination. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Gorjian, S.; Ghobadian, B.; Ebadi, H.; Ketabchi, F.; Khanmohammadi, S. Chapter 8—Applications of solar PV systems in desalination technologies. In Photovoltaic Solar Energy Conversion: Technologies, Applications and Environmental Impacts; Gorjian, S., Shukla, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 237–275. [Google Scholar] [CrossRef]
- Mansour, T.M.; Ismail, T.M.; Ramzy, K.; El-Salam, M.A. Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations. Alex. Eng. J. 2020, 59, 3741–3753. [Google Scholar] [CrossRef]
- Cipollina, A.; Tzen, E.; Subiela, V.; Papapetrou, M.; Koschikowski, J.; Schwantes, R.; Wieghaus, M.; Zaragoza, G. Renewable energy desalination: Performance analysis and operating data of existing RES desalination plants. Desalination Water Treat. 2015, 55, 3120–3140. [Google Scholar]
- Andrew, B. No Batteries Needed: Can Low-Cost Solar Desalination System ‘Green’ Namibia’s Desert Coast? No Batteries Needed: Can Low-Cost Solar Desalination System “Green” Namibia’s Desert Coast? Available online: https://solarmagazine.com/no-batteries-needed-low-cost-solar-desalination-system-green-namibia-desert-coast/ (accessed on 4 June 2023).
- Shatat, M.; Worall, M.; Riffat, S. Economic study for an affordable small scale solar water desalination system in remote and semi-arid region. Renew. Sustain. Energy Rev. 2013, 25, 543–551. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Papadakis, G. Is Small Scale Desalination Coupled with Renewable Energy a Cost-Effective Solution? Appl. Sci. 2021, 11, 5419. [Google Scholar] [CrossRef]
- Mohammed, R.A.; Alkhafaja, R.J.M. Review: Water Desalination Cost. University of Thi-Qar Journal for Engineering Science. Available online: https://www.researchgate.net/publication/367450886_Review_Water_Desalination_Cost (accessed on 17 October 2023).
- Lattemann, S.; Kennedy, M.D.; Schippers, J.C.; Amy, G. Chapter 2 Global Desalination Situation. Sustain. Sci. Eng. 2010, 2, 7–39. [Google Scholar] [CrossRef]
- Sichuan Zhuoyue Water Treatment Equipment Co., Ltd. Small Desalination Plant RO Water Plant Price For Drinking ZYCJ. Available online: https://zhuoyuescl.en.alibaba.com/search/product?SearchText=Desalination%20Plant%20RO (accessed on 16 January 2024).
- Ghermandi, A.; Messalem, R. Solar-driven desalination with reverse osmosis: The state of the art. Desalination Water Treat. 2009, 7, 285–296. [Google Scholar] [CrossRef]
- Environmental Investment Fund of Namibia. Press Release on Signing of Moa Mawlr & EIF on Water Softening Project. Available online: https://www.eif.org.na/post/press-release-on-signing-of-moa-mawlr-eif-on-water-softening-project (accessed on 15 December 2023).
- Hoffmann, J.; Dall, E. Integrating desalination with concentrating solar thermal power: A Namibian case study. Renew. Energy 2018, 115, 423–432. [Google Scholar] [CrossRef]
- Neumeier, S. Social innovation in rural development: Identifying the key factors of success. Geogr. J. 2016, 183, 34–46. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Silalahi, M.; Sambodo, M.T.; Juwono, V. Understanding rural context in the social innovation knowledge structure and its sector implementations. Manag. Rev. Q. 2022, 73, 1873–1901. [Google Scholar] [CrossRef]
- Hoppe, T.; De Vries, G. Social Innovation and Energy Transition. Sustainability 2018, 11, 141. [Google Scholar] [CrossRef]
- Berzin, S.C.; Pitt-Catsouphes, M.; Peterson, C. Role of State-Level Governments in Fostering Social Innovation. J. Policy Pract. 2014, 13, 135–155. [Google Scholar] [CrossRef]
- Steinerowski, A.A.; Steinerowska-Streb, I. Can social enterprise contribute to creating sustainable rural communities? Using the lens of structure theory to analyse the emergence of rural social enterprise. Local Econ. 2012, 27, 167–182. [Google Scholar] [CrossRef]
- Moulaert, F.; MacCallum, D.; Hilier, J. Social Innovation: Institution, Precept, Concept, Theory and Practice. In The International Handbook on Social Innovation; 2014; pp. 13–25. ISBN 978 1 78254 559 0. Available online: https://www.e-elgar.com/shop/gbp/the-international-handbook-on-social-innovation-9781782545590.html (accessed on 22 December 2023).
- McClenaghan, P. Social Capital: Exploring the theoretical foundations of community development education. Br. Educ. Res. J. 2020, 26, 565–582. [Google Scholar] [CrossRef]
- Selvakkumaran, S.; Ahlgren, E.O. Impacts of social innovation on local energy transitions: Diffusion of solar PV and alternative fuel vehicles in Sweden. Glob. Transit. 2020, 2, 98–115. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. Smart City Implementation Through Shared Vision of Social Innovation for Environmental Sustainability. Soc. Sci. Comput. Rev. 2016, 34, 757–773. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.; Cunha, J.; Araújo, M.; Ferreira, P. A systematic review of social innovation and community energy transitions. Energy Res. Soc. Sci. 2022, 88, 102625. [Google Scholar] [CrossRef]
- Steiner, A.; Calò, F.; Shucksmith, M. Rurality and social innovation processes and outcomes: A realist evaluation of rural social enterprise activities. J. Rural Stud. 2023, 99, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Pilloni, M.; Hamed, T.A.; Pilloni, M.; Hamed, T.A. Small-Size Biogas Technology Applications for Rural Areas in the Context of Developing Countries. In Anaerobic Digestion in Built Environments; IntechOpen: London, UK, 2021; ISBN 978-1-83969-224-6. [Google Scholar] [CrossRef]
- Spitzer, H.; Twikirize, J. Social innovations in rural communities in Africa’s Great Lakes region. A social work perspective. J. Rural Stud. 2021, 99, 262–271. [Google Scholar] [CrossRef]
- Berka, A.L.; MacArthur, J.L.; Gonnelli, C. Explaining inclusivity in energy transitions: Local and community energy in Aotearoa New Zealand. Environ. Innov. Soc. Transit. 2020, 34, 165–182. [Google Scholar] [CrossRef]
- The World Factbook. Namibia—The World Factbook. Available online: https://www.cia.gov/the-world-factbook/countries/namibia/summaries (accessed on 4 June 2023).
- Woldometer. Namibia Population (2023)—Worldometer. Available online: https://www.worldometers.info/world-population/namibia-population/ (accessed on 4 June 2023).
- The World Bank. GDP Growth (Annual %)—Namibia|Data. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=NA (accessed on 4 June 2023).
- Wilhelm, M. Impact of Climate Change in Namibia—A Case Study of Omusati Region. Polytechnic of Namibia, Windhoek, Namibia. 2012. Available online: https://ir.nust.na/server/api/core/bitstreams/00d6195c-a7af-4a86-926c-05b60193d932/content (accessed on 16 February 2024).
- World Bank. The World Bank in Namibia. Available online: https://www.worldbank.org/en/country/namibia/overview (accessed on 4 June 2023).
- Forrest, J.B. Water policy and environmental sustainability: The case of post-colonial Namibia. Public Adm. Dev. 2001, 21, 393–400. [Google Scholar] [CrossRef]
- Hossain, F.; Helao, T. Local governance and water resource management: Experiences from Northern Namibia. Public Adm. Dev. 2008, 28, 200–211. [Google Scholar] [CrossRef]
- Montle, B.P.; Teweldemedhin, M.Y. Assessment of farmers perceptions and the economic impact of climate change in Namibia: Case study on small-scale irrigation farmers (SSIFs) of Ndonga Linena irrigation project. J. Dev. Agric. Econ. 2014, 6, 443–454. [Google Scholar] [CrossRef]
- Chisanga, C.B.; Mubanga, K.H.; Sichigabula, H.; Banda, K.; Muchanga, M.; Ncube, L.; van Niekerk, H.J.; Zhao, B.; Mkonde, A.A.; Rasmeni, S.K. Modelling climatic trends for the Zambezi and Orange River Basins: Implications on water security. J. Water Clim. Chang. 2022, 13, 1275–1296. [Google Scholar] [CrossRef]
- John, G. Extreme Measures Are Needed: Namibia’s Battle with Drought Comes to Its Cities. The Guardian, 13 July 2016. Available online: https://www.theguardian.com/sustainable-business/2016/jul/13/namibia-drought-coca-cola-meat-construction-industry-water-crisis-climate-change(accessed on 4 June 2023).
- Inman, E.N.; Hobbs, R.J.; Tsvuura, Z. No safety net in the face of climate change: The case of pastoralists in Kunene Region, Namibia. PLoS ONE 2020, 15, e0238982. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, J. Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade. Water 2021, 13, 2942. [Google Scholar] [CrossRef]
- Amupolo, A.; Nambundunga, S.; Chowdhury, D.S.P.; Grün, G. Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia. Energies 2022, 15, 4235. [Google Scholar] [CrossRef]
- Amesho, K.T.; Edoun, E.I. Financing Renewable Energy in Namibia—A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All. Int. J. Energy Econ. Policy 2019, 9, 442–450. [Google Scholar] [CrossRef]
- US Department of Commerce. Namibia—Energy. Available online: https://www.trade.gov/country-commercial-guides/namibia-energy (accessed on 23 August 2023).
- Database Earth. Hydro Power Plants in NA Namibia (Map)|Database Earth. Available online: https://database.earth/energy/power-plants/hydro-power/namibia (accessed on 21 August 2023).
- Permanent Mission of the Republic of Namibia to the United Nations. Chapter 12—Regional And Local Government. Available online: https://www.un.int/namibia/namibia/chapter-12-regional-and-local-government (accessed on 4 June 2023).
- Brinkhoff, T. City Population. Available online: http://citypopulation.de/en/namibia/cities/ (accessed on 4 June 2023).
- NamWater. Bukalo water supply scheme—Environmental Management Plan. Windhoek, Namibia, April 2021. Available online: http://the-eis.com/elibrary/sites/default/files/downloads/literature/2554_EMP_Bukalo%20Water%20Supply%20Scheme%20and%20maintenance%20to%20infrastructure_Zambezi%20Region.pdf (accessed on 16 January 2024).
- Bukalo, Namibia—Google Map. Available online: https://www.google.com/maps/d/u/1/edit?mid=1rLKjsFY7FxdH8Lk2VXdCSOPnL652VXQ&usp=sharing (accessed on 21 March 2024).
- Matthews, J.R. Understanding Indigenous Innovation in Rural West Africa: Challenges to Diffusion of Innovations Theory and Current Social Innovation Practice. J. Hum. Dev. Capab. 2017, 18, 223–238. [Google Scholar] [CrossRef]
- International Labor Organization. Social and Solidarity Economy: Social Innovation Catalyst in Africa? 2022. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---emp_ent/---coop/documents/publication/wcms_856431.pdf (accessed on 18 December 2023).
- Jauhiainen, J.S.; Hooli, L. Indigenous Knowledge and Developing Countries’ Innovation Systems: The Case of Namibia. Int. J. Innov. Stud. 2017, 1, 89–106. [Google Scholar] [CrossRef]
- Russmann, N. The Harambee Prosperity Plan II (2021–2025). Available online: https://www.kas.de/documents/279052/279101/Der+Harambee+Prosperity+Plan+II.pdf/7691d89b-2e35-20e9-86d4-cd9779a40f61?version=1.0&t=1624954438275 (accessed on 21 December 2023).
- Hooli, L.J.; Jauhiainen, J.S. Development Aid 2.0—Towards Innovation-Centric Development Co-Operation: The Case of Finland in Southern Africa; Cunningham, P., Cunningham, M., Eds.; Windhoek, Namibia, 2017; pp. 1–9. Available online: https://www.researchgate.net/profile/Lauri-Hooli/publication/316035261_Development_Aid_20_-_Towards_Innovation-Centric_Development_Co-operation_The_Case_of_Finland_in_Southern_Africa/links/59b2a670aca2728472d5056b/Development-Aid-20-Towards-Innovation-Centric-Development-Co-operation-The-Case-of-Finland-in-Southern-Africa.pdf (accessed on 19 January 2024).
- Wach, D.; Kruse, P.; Costa, S.; Antonio Moriano, J. Exploring Social and Commercial Entrepreneurial Intentions from Theory of Planned Behaviour Perspective: A Cross-Country Study among Namibian and German Students. J. Soc. Entrep. 2023, 14, 226–247. [Google Scholar] [CrossRef]
- Cornell University; INSEAD; WIPO. The Global Innovation Index 2015: Effective Innovation Policies for Development. Fontainebleau, Ithaca, and Geneva. 2015. Available online: https://www.wipo.int/edocs/pubdocs/en/wipo_gii_2015.pdf (accessed on 16 November 2023).
- Diergaardt, G. National Experience on Water Statistics. Windhoek. December 2019. Available online: https://unstats.un.org/unsd/envstats/meetings/2019-Namibia/documents/Session%205.1.1%20Water%20Statistics%20Namibia.pdf (accessed on 16 December 2023).
- Commonwealth Local Government Forum. Namibia. Available online: https://www.clgf.org.uk/default/assets/File/Country_profiles/Namibia.pdf (accessed on 16 December 2023).
- Okiana—Water Solutions. Water Treatment System (1 m3/h) Description; Okiana: Haifa, Israel, 2020; pp. 1–9. [Google Scholar]
- STATISTA. Average Installed Cost for Solar Photovoltaics Worldwide from 2010 to 2022 (in U.S. Dollars Per Kilowatt). Available online: https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/ (accessed on 4 June 2023).
- Global Solar Atlas. Namibia. Available online: https://globalsolaratlas.info/map?c=6.402648,-12.480469,3&s=-23.241346,13.710938&m=site (accessed on 4 June 2023).
- Uhlendahl, T.; Ziegelmayer, D.; Wienecke, A.; Mawisa, M.L.; du Pisani, P. Water Consumption at Household Level in Windhoek, Namibia Survey about Water Consumption at Household Level in Different Areas of Windhoek Depending on Income Level and Water Access in 2010. 2010. Available online: https://freidok.uni-freiburg.de/dnb/download/7937 (accessed on 5 November 2023).
- Trading Economics. Namibia Prime Lending Rate. Available online: https://tradingeconomics.com/namibia/lending-rate (accessed on 13 September 2023).
- NamWater. Cost of Water Supply. Available online: https://www.namwater.com.na/index.php/about-us?start=7 (accessed on 4 June 2023).
- FAO. Chapter 6: Investment Decisions—Capital Budgeting. Available online: https://www.fao.org/3/w4343e/w4343e07.htm (accessed on 17 March 2024).
- ZOOZ. Proprietary Flywheel Technology for EV Charging. Available online: https://www.zoozpower.com/flywheel-technology-ev/#:~:text=The%20flywheel%20passes%20through%203%20main%20phases%3A&text=Deceleration%20%E2%80%93%20The%20integrated%20motor%2Fgenerator,system%20through%20the%20local%20grid (accessed on 16 February 2024).
Namibia | Urban | Rural | Total |
---|---|---|---|
Population (2022) | 1,403,099 | 1,137,806 | 2,540,905 [108,123] |
Water for domestic use (m3/month/capita) | 5.41 | 0.80 | 6.21 [134] |
Amount of Water Consumed in m3 | Tariff, $USD per m3 [139] |
---|---|
0–6 | 0.36 |
6–36 | 4.04 |
>36 | 81.81 |
Sample Village | Bukalo [124] |
---|---|
Population | 600 |
Monthly domestic water demand per capita in m3 | 0.8 [134] |
Monthly total domestic water demand in m3 | 480 |
Desalination plant information table [136] | |
Model | Okiana desalination system |
Energy Input (kWh) | 3 |
Production capacity (m3/h) | 1 |
Optimal daily output in m3 | 20 |
System cost details [136] | |
Initial cost | $22,069 |
Installation cost | $6621 |
Energy cost | $2571 |
Total cost | $31,260 |
Annual O&M cost | $3310 |
Additional information based on assumptions | |
Shipping & Installation (with respect to initial cost) | 30% |
Operation & Maintenance (with respect to initial cost) | 15% |
AVG. Installed PV price | $0.879 |
Days in month | 30 |
Revenue information | |
Water tariff per m3 | $1.01 |
Annual interest rate | 7.75% |
Monthly interest rate | 0.65% |
Project lifetime in year | 20 |
Annual Revenue | $6976 |
Year | Initial Cost | OPEX | Revenue | Gross Income | PV |
---|---|---|---|---|---|
1 | $(28,691.95) | $(3310.31) | $6838.26 | $(25,164.00) | $(22,954.61) |
2 | 0 | $(3310.31) | $6838.26 | $3527.96 | $2935.65 |
3 | 0 | $(3310.31) | $6838.26 | $3527.96 | $2677.90 |
4 | 0 | $(3310.31) | $6838.26 | $3527.96 | $2442.78 |
5 | 0 | $(3310.31) | $6838.26 | $3527.96 | $2228.31 |
6 | 0 | $(3310.31) | $6838.26 | $3527.96 | $2032.66 |
7 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1854.20 |
8 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1691.40 |
9 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1542.90 |
10 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1407.43 |
11 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1283.86 |
12 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1171.14 |
13 | 0 | $(3310.31) | $6838.26 | $3527.96 | $1068.31 |
14 | 0 | $(3310.31) | $6838.26 | $3527.96 | $974.52 |
15 | 0 | $(3310.31) | $6838.26 | $3527.96 | $888.95 |
16 | 0 | $(3310.31) | $6838.26 | $3527.96 | $810.90 |
17 | 0 | $(3310.31) | $6838.26 | $3527.96 | $739.71 |
18 | 0 | $(3310.31) | $6838.26 | $3527.96 | $674.76 |
19 | 0 | $(3310.31) | $6838.26 | $3527.96 | $615.52 |
20 | 0 | $(3310.31) | $6838.26 | $3527.96 | $561.48 |
NPV | $4647.77 | ||||
Payback period (in year) | 4.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kádár, J.; Abdelshakour, O.; Zohar, T.; Hamed, T.A. Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia. Sustainability 2024, 16, 3685. https://doi.org/10.3390/su16093685
Kádár J, Abdelshakour O, Zohar T, Hamed TA. Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia. Sustainability. 2024; 16(9):3685. https://doi.org/10.3390/su16093685
Chicago/Turabian StyleKádár, József, Omad (Hassan) Abdelshakour, Tali Zohar, and Tareq Abu Hamed. 2024. "Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia" Sustainability 16, no. 9: 3685. https://doi.org/10.3390/su16093685
APA StyleKádár, J., Abdelshakour, O., Zohar, T., & Hamed, T. A. (2024). Feasibility Assessment of a Small-Scale Agrivoltaics-Based Desalination Plant with Flywheel Energy Storage—Case Study: Namibia. Sustainability, 16(9), 3685. https://doi.org/10.3390/su16093685