Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate, Streamflow, Population and Water Demand Modeling
2.3. Input Data
2.4. Methodology
3. Results
3.1. Future Streamflow
3.2. Irrigation and Environmental Demand
3.3. Municipal–Industrial Water Demand
3.4. Adaptation Scenarios
3.4.1. Scenario 1 (S1)
3.4.2. Scenario 2 (S2)
3.4.3. Scenario 3 (S3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleidon, A.; Renner, M. A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change. Earth Syst. Dyn. 2013, 4, 455–465. [Google Scholar] [CrossRef]
- Wu, P.; Christidis, N.; Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Chang. 2013, 3, 807–810. [Google Scholar] [CrossRef]
- Sohoulande Djebou, D.C.; Singh, V.P. Impact of climate change on the hydrologic cycle and implications for society. Environ. Soc. Psychol. 2016, 1, 36–49. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Chang. Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A. Evaporation and Evapotranspiration: Measurements and Estimations; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9789400747, pp. 1–206. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, E.K. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Zhang, X.; Aguilar, E.; Sensoy, S.; Melkonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Ameri, R.A. Evaluation of drought indices correlation for drought frequency analysis of the Mosul dam watershed. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012077. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Marcus, R.; et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Chang. 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Gürsoy, S.İ.; Jacques, P.J. Water security in the Middle East and North African region. J. Environ. Stud. Sci. 2014, 4, 310–314. [Google Scholar] [CrossRef]
- Feitelson, E.; Tubi, A. A main driver or an intermediate variable? Climate change, water and security in the Middle East. Glob. Environ. Chang. 2017, 44, 39–48. [Google Scholar] [CrossRef]
- Zawahri, N.A. Stabilising Iraq’s water supply: What the Euphrates and Tigris rivers can learn from the Indus. Third World Q. 2006, 27, 1041–1058. [Google Scholar] [CrossRef]
- Evans, J.P. 21st century climate change in the Middle East. Clim. Chang. 2009, 92, 417–432. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Chalabi, R.D. Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq. Hydrology 2019, 6, 63. [Google Scholar] [CrossRef]
- Al-Hasani, A.A.J. Sensitivity assessment of the impacts of climate change on streamflow using climate elasticity in Tigris River Basin, Iraq. Int. J. Environ. Stud. 2019, 76, 7–28. [Google Scholar] [CrossRef]
- Saeed, F.H.; Al-Khafaji, M.S.; Al-Faraj, F. Hydrologic response of arid and semi-arid river basins in Iraq under a changing climate. J. Water Clim. Chang. 2022, 13, 1225–1240. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Sharafati, A.; Salem, G.S.A.; Abu Bakar, A.; Farooque, A.A.; Chung, E.-S.; Ahmed, Y.A.; Mikhail, B.; Yaseen, Z.M. Projection of agricultural water stress for climate change scenarios: A regional case study of Iraq. Agriculture 2021, 11, 1288. [Google Scholar] [CrossRef]
- Saeed, F.H.; Al-Khafaji, M.S.; Furat, A. Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources. Sustainability 2021, 13, 13608. [Google Scholar] [CrossRef]
- Moradi, R.; Koocheki, A.; Nassiri Mahallati, M.; Mansoori, H. Adaptation strategies for maize cultivation under climate change in Iran: Irrigation and planting date management. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 265–284. [Google Scholar] [CrossRef]
- Herman, J.D.; Quinn, J.D.; Steinschneider, S.; Giuliani, M.; Fletcher, S. Climate Adaptation as a Control Problem: Review and Perspectives on Dynamic Water Resources Planning Under Uncertainty. Water Resour. Res. 2020, 56, e24389. [Google Scholar] [CrossRef]
- Babel, M.S.; Shinde, V.R.; Sharma, D.; Dang, N.M. Measuring water security: A vital step for climate change adaptation. Environ. Res. 2020, 185, 109400. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.; Donkor, E.; Owusu, V. Climate change adaptation strategies, productivity and sustainable food security in southern Mali. Clim. Chang. 2020, 159, 309–327. [Google Scholar] [CrossRef]
- Nyeko, M. Hydrologic Modelling of Data Scarce Basin with SWAT Model: Capabilities and Limitations. Water Resour. Manag. 2015, 29, 81–94. [Google Scholar] [CrossRef]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A review of swat model application in africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Kot, P.; Hashim, K.; Alkhaddar, R.; Abdellatif, M.; Muhsin, Y.R. Using LARS-WG model for prediction of temperature in Columbia City, USA. IOP Conf. Ser. Mater. Sci. Eng. 2019, 584, 012026. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Amiri, B.J.; Endergoli, L.E.; Karimi, S. Coupling Tank Model and Lars-Weather Generator in Assessments of the Impacts of Climate Change on Water Resources. Slovak J. Civ. Eng. 2019, 27, 14–24. [Google Scholar] [CrossRef]
- Kishiwa, P.; Nobert, J.; Kongo, V.; Ndomba, P. Assessment of impacts of climate change on surface water availability using coupled SWAT and WEAP models: Case of upper Pangani River Basin, Tanzania. Proc. Int. Assoc. Hydrol. Sci. 2018, 378, 23–27. [Google Scholar] [CrossRef]
- Touseef, M.; Chen, L.; Yang, W. Assessment of surfacewater availability under climate change using coupled SWAT-WEAP in hongshui river basin, China. ISPRS Int. J. Geo-Inf. 2021, 10, 298. [Google Scholar] [CrossRef]
- Nasser Hilo, A.; Saeed, F.H.; Al-Ansari, N. Impact of Climate Change on Water Resources of Dokan Dam Watershed. Engineering 2019, 11, 464–474. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency. Data Collection Survey on Water Resource Management and Agriculture Irrigation in the Republic of Iraq; JICA: Tokyo, Japan, 2016; p. 125.
- Kibaroglu, A. State-of-the-art review of transboundary water governance in the Euphrates–Tigris river basin. Int. J. Water Resour. Dev. 2019, 35, 4–29. [Google Scholar] [CrossRef]
- Cullen, H.M. North Atlantic influence on Tigris–Euphrates streamflow. Int. J. Climatol. 2000, 20, 853–863. [Google Scholar] [CrossRef]
- Al-Ansari, N.A. Management of Water Resources in Iraq: Perspectives and Prognoses. Engineering 2013, 05, 667–684. [Google Scholar] [CrossRef]
- ESCWA; BGR. Inventory of Shared Water Resources in Western Asia: 3-Tigris River Basin. Inventory of Shared Water Resources in Western Asia. 2013, pp. 99–125. Available online: http://waterinventory.org/sites/waterinventory.org/files/00-inventory-of-shared-water-resources-in-western-asia-web.pdf (accessed on 11 February 2024).
- Al-Faraj, F.A.M.; Tigkas, D. Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin. Water Resour. Manag. 2016, 30, 5131–5143. [Google Scholar] [CrossRef]
- Şen, Z. Climate Change Expectations in the Upper Tigris River Basin, Turkey; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Semenov, M.A.; Barrow, E.M. LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies Version 3. User Manual. User Man. Herts. UK 2002, 1–27. Available online: http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf (accessed on 11 February 2024).
- Srinivasan, R.; Arnold, J.G.; Jones, C.A. Hydrologic modelling of the United States with the Soil and Water Assessment Tool. Int. J. Water Resour. Dev. 1998, 14, 315–325. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p, Available online: http://www.climasouth.eu/sites/default/files/FAO%2056.pdf (accessed on 11 February 2024).
- Sieber, J.; Purkey, D. Ser uide. Environment, No. August. 2011, p. 343. Available online: http://www.weap21.org/WebHelp/index.html (accessed on 11 February 2024).
- Fuka, D.R.; Walter, M.T.; Macalister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 2014, 28, 5613–5623. [Google Scholar] [CrossRef]
- Tolera, M.B.; Chung, I.M.; Chang, S.W. Evaluation of the climate forecast system reanalysis weather data for watershed modeling in Upper Awash Basin, ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef]
- Abbas, N.; Wasimi, S.; Al-Ansari, N. Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2017, 11, 823–829. [Google Scholar] [CrossRef]
- Saeed, F.H.; Al-Khafaji, M.S.; Al-Faraj, F.A. Spatiotemporal hydroclimatic characteristics of arid and semi-arid river basin under climate change: A case study of Iraq. Arab. J. Geosci. 2022, 15, 1260. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Makonin, S.; Ellert, B.; Bajić, I.V.; Popowich, F. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data 2016, 3, 160037. [Google Scholar] [CrossRef]
- Sharma, S.K.; Vairavamoorthy, K. Urban water demand management: Prospects and challenges for the developing countries. Water Environ. J. 2009, 23, 210–218. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Feldman, D.; Hoerling, M.; Huxman, T.; Lund, J. Water and climate: Recognize anthropogenic drought. Nature 2015, 524, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Patil, J.P.; Goyal, V.C.; Singh, A. Assessment of Water Supply–Demand Using Water Evaluation and Planning (WEAP) Model for Ur River Watershed, Madhya Pradesh, India. J. Inst. Eng. Ser. A 2019, 100, 21–32. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z.; Venkatesh, G.; Brattebø, H.; Sægrov, S.; Rozos, E.; Makropoulos, C.; Ugarelli, R.; Milina, J.; Hem, L. Urban water system metabolism assessment using WaterMet2 model. Procedia Eng. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Al-Mukhtar, M.; Qasim, M. Future predictions of precipitation and temperature in Iraq using the statistical downscaling model. Arab. J. Geosci. 2019, 12, 25. [Google Scholar] [CrossRef]
- Jones, R.N. Analysing the risk of climate change using an irrigation demand model. Clim. Res. 2000, 14, 89–100. [Google Scholar] [CrossRef]
Province | River | Irrigated Area (ha) | Marshland Area (ha) | Census 1987 (inh *) | Census 1997 (inh) | Estimation 2020 (inh) |
---|---|---|---|---|---|---|
Duhok | Tigris | 450 | - | 207,216 | missing | 565,853 |
Ninawa | Tigris | 182,925 | - | 697,191 | 1,115,141 | 2,030,181 |
Ninawa | GZ | 10,100 | - | - | - | - |
Salah-Addin | Tigris | 186,450 | - | 551,031 | 662,117 | 1,423,915 |
Erbil | GZ | 28,675 | - | 165,491 | missing | 652,394 |
Sulaymaniyah | Diyala | 20,625 | - | 238,614 | missing | 573,565 |
LZ | 4850 | - | 103,596 | missing | 410,560 | |
Adhaim | - | - | missing | missing | 62,528 | |
Kirkuk | Adhaim | - | - | 418,696 | 459,529 | 999,869 |
LZ | 145,175 | - | 29,828 | 32,178 | 99,322 | |
Diyala | Diyala | 239,150 | - | 371,032 | 457,890 | 805,155 |
Baghdad | Tigris | 52,625 | - | 3,454,494 | 5,008,262 | 7,055,854 |
Wasit | Tigris | 569,475 | - | 493,101 | 668,599 | 1,378,129 |
Maysan | Tigris | 159,650 | 45,200 | 487,448 | 631,712 | 1,142,131 |
Basrah | Tigris | 32,900 | - | 524,929 | 1,218,783 | 2,308,286 |
Dhi Qar | Tigris | 52,400 | - | 290,724 | 396,304 | 716,158 |
Province | River | Consumption (l.p.c.d) | Annual Municipal–Industrial Water Demand (BCM/y) | |||
---|---|---|---|---|---|---|
RP | P1 | P2 | P3 | |||
Duhok | Tigris | 239 | 0.06 | 0.10 | 0.13 | 0.20 |
Ninawa | Tigris | 296 | 0.38 | 0.58 | 0.78 | 1.18 |
Salah-addin | Tigris | 1000 | 0.68 | 1.02 | 1.37 | 2.08 |
Erbil | GZ | 261 | 0.08 | 0.12 | 0.16 | 0.25 |
Sulaymaniyah | Diyala | 132 | 0.04 | 0.05 | 0.07 | 0.11 |
LZ | 132 | 0.03 | 0.04 | 0.05 | 0.08 | |
Adhaim | 132 | 0.00 | 0.01 | 0.01 | 0.01 | |
Kirkuk | Adhaim | 608 | 0.29 | 0.44 | 0.59 | 0.89 |
LZ | 608 | 0.03 | 0.04 | 0.06 | 0.09 | |
Diyala | Diyala | 670 | 0.26 | 0.39 | 0.52 | 0.79 |
Baghdad | Tigris | 631 | 2.11 | 3.20 | 4.29 | 6.51 |
Wasit | Tigris | 633 | 0.41 | 0.63 | 0.84 | 1.28 |
Maysan | Tigris | 672 | 0.36 | 0.55 | 0.74 | 1.12 |
Basrah | Tigris | 452 | 0.50 | 0.75 | 1.01 | 1.53 |
Dhi Qar | Tigris | 432 | 0.15 | 0.22 | 0.23 | 0.35 |
Sum. | 5.37 | 8.15 | 10.92 | 16.55 |
Province | River | RP | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |||
Duhok + Ninawa | Tigris | +18.5 1 | +18.2 | +17.9 | +17.4 | +17.1 | +16.4 | +15.6 | +16.9 | +16.0 | +15.4 |
Ninawa + Erbil | GZ | +12.0 | +11.6 | +11.3 | +11.2 | +10.6 | +10.4 | +10.2 | +10.4 | +10.1 | +9.7 |
Salah-addin | Tigris | +30.0 | +28.9 | +27.9 | +26.4 | +26.6 | +25.1 | +23.1 | +26.0 | +24.1 | +22.1 |
Sulaymaniyah | Diyala | +3.3 | +2.3 | +2.2 | +2.2 | +2.3 | +1.9 | +1.9 | +2.2 | +1.8 | +1.3 |
Sulaymaniyah | LZ | +3.7 | +3.6 | +3.5 | +3.4 | +3.4 | +3.1 | +3.1 | +3.1 | +3.0 | +2.9 |
Kirkuk | LZ | +2.4 | +2.2 | +2.0 | +1.9 | +1.9 | +1.6 | +1.5 | +1.7 | +1.5 | +1.2 |
Diyala | Diyala | +1.3 | −0.3 | −0.7 | −1.0 | −0.4 | −1.1 | −1.4 | −0.6 | −1.2 | −1.9 |
Baghdad | Tigris | +27.8 | +25.6 | +23.3 | +19.5 | +23.0 | +20.4 | +16.1 | +22.3 | +19.3 | +15.0 |
Wasit | Tigris | +18.9 | +16.3 | +13.8 | +9.5 | +13.7 | +10.8 | +5.8 | +12.9 | +9.6 | +4.5 |
Maysan | Tigris | +10.2 | +7.9 | +5.6 | +1.8 | +5.8 | +3.2 | −1.2 | +5.2 | +2.2 | −2.4 |
Basrah | Tigris | +7.7 | +5.2 | +2.8 | −1.4 | +3.1 | +0.3 | −4.5 | +2.5 | −0.7 | −5.7 |
Dhi Qar | Tigris | +2.6 | +2.0 | +1.4 | +0.4 | +1.5 | +0.8 | −0.3 | +1.4 | +0.6 | −0.6 |
Province | River | RP | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |||
Duhok + Ninawa | Tigris | +18.5 | +18.2 | +18.0 | +17.4 | +17.1 | +16.5 | +15.7 | +17.1 | +16.1 | +15.5 |
Ninawa + Erbil | GZ | +12.0 | +11.6 | +11.4 | +11.2 | +10.7 | +10.4 | +10.2 | +10.4 | +10.1 | +9.7 |
Salah-addin | Tigris | +30.0 | +28.8 | +27.7 | +26.1 | +26.3 | +24.8 | +22.8 | +25.7 | +23.8 | +21.8 |
Sulaymaniyah | Diyala | +3.3 | +2.3 | +2.2 | +2.2 | +2.3 | +1.9 | +1.9 | +2.2 | +1.8 | +1.3 |
Sulaymaniyah | LZ | +3.7 | +3.6 | +3.5 | +3.4 | +3.4 | +3.1 | +3.1 | +3.1 | +3.0 | +2.9 |
Kirkuk | LZ | +2.4 | +2.3 | +2.2 | +2.0 | +2.1 | +1.8 | +1.7 | +1.8 | +1.6 | +1.4 |
Diyala | Diyala | +1.3 | −0.3 | −0.7 | −0.9 | −0.4 | −1.0 | −1.4 | −0.6 | −1.1 | −1.8 |
Baghdad | Tigris | +27.8 | +27.8 | +25.9 | +23.9 | +20.1 | +23.7 | +20.7 | +16.4 | +22.6 | +19.7 |
Wasit | Tigris | +18.9 | +17.7 | +14.4 | +10.1 | +14.4 | +11.2 | +6.2 | +13.3 | +10.0 | +4.9 |
Maysan | Tigris | +10.2 | +11.3 | +10.0 | +7.1 | +3.4 | +7.4 | +4.6 | +0.3 | +6.6 | +3.6 |
Basrah | Tigris | +7.7 | +7.3 | +4.3 | +0.1 | +4.7 | +1.8 | −3.0 | +3.9 | +0.8 | −4.1 |
Dhi Qar | Tigris | +2.6 | +2.8 | +1.8 | +0.8 | +1.9 | +1.2 | +0.1 | +1.7 | +1.0 | −0.2 |
Province | River | RP | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |||
Duhok + Ninawa | Tigris | +18.5 | +18.2 | +18.0 | +17.4 | +17.1 | +16.5 | +15.7 | +17.1 | +16.1 | +15.5 |
Ninawa + Erbil | GZ | +12.0 | +11.6 | +11.4 | +11.2 | +10.7 | +10.4 | +10.2 | +10.4 | +10.1 | +9.7 |
Salah-addin | Tigris | +30.0 | +29.7 | +28.9 | +27.8 | +27.5 | +25.9 | +24.3 | +26.6 | +24.9 | +23.2 |
Sulaymaniyah | Diyala | +3.3 | +2.3 | +2.2 | +2.2 | +2.3 | +1.9 | +1.9 | +2.2 | +1.8 | +1.3 |
Sulaymaniyah | LZ | +3.7 | +3.6 | +3.5 | +3.4 | +3.4 | +3.1 | +3.1 | +3.1 | +3.0 | +2.9 |
Kirkuk | LZ | +2.4 | +2.3 | +2.2 | +2.0 | +2.1 | +1.8 | +1.7 | +1.8 | +1.7 | +1.4 |
Diyala | Diyala | +1.3 | −0.1 | −0.5 | −0.7 | −0.2 | −0.8 | −1.1 | −0.4 | −0.9 | −1.7 |
Baghdad | Tigris | +27.8 | +28.2 | +26.4 | +23.4 | +25.9 | +23.4 | +19.9 | +25.0 | +22.4 | +18.9 |
Wasit | Tigris | +18.9 | +19.5 | +17.2 | +13.9 | +16.8 | +14.1 | +10.1 | +15.9 | +13.0 | +8.9 |
Maysan | Tigris | +10.2 | +12.1 | +10.8 | +8.7 | +5.7 | +8.5 | +6.2 | +2.6 | +7.7 | +5.2 |
Basrah | Tigris | +7.7 | +9.7 | +7.4 | +4.0 | +7.4 | +4.9 | +0.9 | +6.6 | +3.9 | −0.2 |
Dhi Qar | Tigris | +2.6 | +3.1 | +2.3 | +1.5 | +2.3 | +1.7 | +0.7 | +2.1 | +1.4 | +0.4 |
Province | RCP 2.6 | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |
Diyala | 8 * | 23 | 28 | 13 | 35 | 45 | 20 | 38 | 68 |
Basrah | - | - | - | - | - | - | - | - | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, F.H.; Al-Khafaji, M.S.; Al-Faraj, F.A.M.; Uzomah, V. Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin. Sustainability 2024, 16, 2676. https://doi.org/10.3390/su16072676
Saeed FH, Al-Khafaji MS, Al-Faraj FAM, Uzomah V. Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin. Sustainability. 2024; 16(7):2676. https://doi.org/10.3390/su16072676
Chicago/Turabian StyleSaeed, Fouad H., Mahmoud Saleh Al-Khafaji, Furat A. Mahmood Al-Faraj, and Vincent Uzomah. 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin" Sustainability 16, no. 7: 2676. https://doi.org/10.3390/su16072676