Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review
Abstract
:1. Introduction
2. Related Works
2.1. Qualitative Approaches in the Air Quality Field
2.2. Air Quality Analysis and Forecasting
2.3. Machine Learning in Urban and Industrial Planning
2.4. Machine Learning in Climate Change Context
3. Method
3.1. Database Collection
3.2. Initial Selection
3.3. Preliminary Screening
3.4. Assessment and Retrieval
3.5. Synthesis and Presentation
4. Air Quality Monitoring with Supervised Learning
4.1. Air Quality Field
4.1.1. Air Quality Landscape
4.1.2. Pollutants and Air Quality Indices
- PMs, including PM1, PM2.5, and PM10, which refers to particles with a diameter less than 1 µm, 2.5 µm, and 10 µm, respectively, are linked to illnesses and fatalities. Reducing PM2.5 levels from 35 µg/m3 to 10 µg/m3 could potentially decrease air pollution-related deaths by 15% [43,45]. PM2.5 was the fifth-ranked mortality risk factor in the world and was responsible for 7.6% of all fatalities [46].
- Ozone (O3) is produced through photochemical reactions and plays a dual role in greenhouse gas emissions and its impact on human health and the environment. High concentrations of ground-level ozone can be particularly harmful. O3 exists as a gas both in the upper atmosphere (stratosphere) and at ground level. Stratospheric ozone is beneficial as it acts as a protective shield against ultraviolet rays. However, at the ground level and in the troposphere, ozone becomes a secondary air pollutant. It is formed through a series of intricate photochemical reactions involving solar radiation and ozone precursors [47].
- Nitrogen dioxide (NO2) and sulfur dioxide (SO2), produced from fuel burning [48], particularly in power plants and vehicles, are associated with respiratory issues and were responsible for 39% of NOx emissions in Europe’s road transportation industry in 2017 [49]. These gasses are the primary acidic gases released by human activities. they not only contribute to the creation of acid rain and photochemical smog but also have detrimental effects on human health, vegetation, and materials [50].
- Carbon dioxide (CO2), produced by burning fossil fuels, respiration, and natural processes, is a greenhouse gas contributing to global warming and pollution concentration, accounting for a significant percentage of emissions [35,51]. CO2, as one of the greenhouse gasses (GHGs), plays a significant role in the global warming issue intertwined with industrial development in the globalized world. According to the current literature, the adoption of low-carbon practices is considered the most effective strategy for mitigating global warming. The combustion of fossil fuels by human activities is the primary source of CO2 emissions, which greatly contributes to the creation of an environment conducive to global warming [52].
- Carbon monoxide (CO) is a hazardous gas emitted from various sources such as incineration, power plants, and urban road traffic. Inhalation of this gas can be fatal, as it converts to CO2 in the atmosphere. CO poisoning is a prevalent form of toxicity in the modern world and is the leading cause of poisoning-related deaths in the United States. It is a highly toxic gas that lacks taste, odor, and irritants. Detecting CO is challenging due to these properties and the absence of a distinctive clinical signature, often mimicking other common disorders. CO is produced when hydrocarbons undergo incomplete combustion. Sources of CO include poorly ventilated garages with motor vehicle exhaust, as well as areas near garages. Combustion appliances can also generate CO when there is partial combustion of fuels like oils, coal, wood, kerosene, and others. A common scenario involves infrequently used and poorly maintained heating units [53].
- Methane (CH4), mainly from natural gas and human activities like landfills and livestock, is another potent greenhouse gas. Methane contributes to the enhanced greenhouse effect. Methane production is a microbiological process, which is predominantly controlled by the absence of oxygen and the amount of easily [54]. CH4 plays a significant role in intensifying the greenhouse effect, as it is approximately 20 times more potent than CO2 on a molar basis. It is the second most influential greenhouse gas, following CO2, and its overall impact, considering both direct and indirect effects on tropospheric ozone and stratospheric water vapor, is equivalent to about half of CO2 [55].
- Volatile organic compounds (VOC), are considered significant contributors to air pollution, affecting the environment through both indirect and direct means. Indirectly, they act as precursors to the formation of ozone and smog. Directly, they pose toxicity risks to the environment. The rise of industrialization and urbanization has resulted in an increase in VOC emissions from various sources, both indoors and outdoors. These sources include the chemical industry, paper manufacturing, food processing, transportation, petroleum refineries, vehicle manufacturing, textiles, electronics, solvents, and cleaning products [56].
4.2. Supervised Learning Field
4.3. Supervised Learning Approaches for Air Quality Analysis
4.3.1. PM and Beyond: Exploring Pollutant Prediction in Air Quality Analysis
4.3.2. Regression Techniques for Air Pollution Prediction
4.3.3. Enhancing Air Quality Classification Methods
4.3.4. Deep Learning’s Role in Reliable Air Pollution Forecasting
4.3.5. Enhancing Air Pollution Forecasting with Hybrid Models
5. Challenges and Future Directions
5.1. Findings, Limitations, and Challenges in Air Quality Research
5.2. The Role of ML Models in Mitigating Climate Change and Air Pollution: A Sustainable Development
5.3. Future Directions and Open Perspectives in Urban Planning for Air Quality Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Is Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100; United Nations: San Francisco, CA, USA, 2022. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 6 October 2023).
- Johnson, T.M.; Guttikunda, S.; Wells, G.J.; Artaxo, P.; Bond, T.C.; Russell, A.G.; Watson, J.G.; West, J. Tools for Improving Air Quality Management: A Review of Top-Down Source Apportionment Techniques and Their Application in Developing Countries; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Kaginalkar, A.; Kumar, S.; Gargava, P.; Niyogi, D. Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Clim. 2021, 39, 100972. [Google Scholar] [CrossRef]
- Karroum, K.; Lin, Y.; Chiang, Y.-Y.; Ben Maissa, Y.; El Haziti, M.; Sokolov, A.; Delbarre, H. A Review of Air Quality Modeling. MAPAN 2020, 35, 287–300. [Google Scholar] [CrossRef]
- Méndez, M.; Merayo, M.G.; Núñez, M. Machine learning algorithms to forecast air quality: A survey. Artif. Intell. Rev. 2023, 56, 10031–10066. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.M.; Dinde, H.T.; Powar, S.K. A Literature Review on Prediction of Air Quality Index and Forecasting Ambient Air Pollutants using Machine Learning Algorithms. Int. J. Innov. Sci. Res. Technol. 2020, 5, 1148–1152. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J. Clean. Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Liu, H.; Yin, S.; Chen, C.; Duan, Z. Data multi-scale decomposition strategies for air pollution forecasting: A comprehensive review. J. Clean. Prod. 2020, 277, 124023. [Google Scholar] [CrossRef]
- Bellinger, C.; Mohomed Jabbar, M.S.; Zaïane, O.; Osornio-Vargas, A. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef]
- Zhang, B.; Rong, Y.; Yong, R.; Qin, D.; Li, M.; Zou, G.; Pan, J. Deep learning for air pollutant concentration prediction: A review. Atmos. Environ. 2022, 290, 119347. [Google Scholar] [CrossRef]
- Zaini, N.; Ean, L.W.; Ahmed, A.N.; Malek, M.A. A systematic literature review of deep learning neural network for time series air quality forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4958–4990. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Calautit, J.K. A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment. Renew. Sustain. Energy Rev. 2022, 167, 112704. [Google Scholar] [CrossRef]
- Jia, J.-J.; Zhu, M.; Wei, C. Household cooking in the context of carbon neutrality: A machine-learning-based review. Renew. Sustain. Energy Rev. 2022, 168, 112856. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine Learning and Deep Learning Methods for Enhancing Building Energy Efficiency and Indoor Environmental Quality—A Review. Energy AI 2022, 10, 100198. [Google Scholar] [CrossRef]
- Ma, N.; Aviv, D.; Guo, H.; Braham, W.W. Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality. Renew. Sustain. Energy Rev. 2021, 135, 110436. [Google Scholar] [CrossRef]
- Ben Atitallah, S.; Driss, M.; Boulila, W.; Ben Ghézala, H. Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Comput. Sci. Rev. 2020, 38, 100303. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine Learning and Remote Sensing Integration for Leveraging Urban Sustainability: A Review and Framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [Google Scholar] [CrossRef]
- Narciso, D.A.; Martins, F. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020, 6, 1181–1199. [Google Scholar] [CrossRef]
- Lwakatare, L.E.; Raj, A.; Crnkovic, I.; Bosch, J.; Olsson, H.H. Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions. Inf. Softw. Technol. 2020, 127, 106368. [Google Scholar] [CrossRef]
- Balogun, A.-L.; Tella, A.; Baloo, L.; Adebisi, N. A review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information science. Urban Clim. 2021, 40, 100989. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Sietsma, A.J.; Callaghan, M.; Minx, J.C.; Scheelbeek, P.F.D.; Haddaway, N.R.; Haines, A.; Dangour, A.D. Systematic mapping of global research on climate and health: A machine learning review. Lancet Planet. Health 2021, 5, 514–525. [Google Scholar] [CrossRef]
- Sachs, J.D.; Lafortune, G.; Fuller, G.; Drumm, E. Implementing the SDG Stimulus. In Sustainable Development Report 2023; Dublin University Press: Dublin, Ireland, 2023. [Google Scholar] [CrossRef]
- Harie, Y.; Gautam, B.P.; Wasaki, K. Computer vision techniques for growth prediction: A prisma-based systematic literature review. Appl. Sci. 2023, 13, 5335. [Google Scholar] [CrossRef]
- Madlener, R.; Sunak, Y. Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management? Sustain. Cities Soc. 2011, 1, 45–53. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, B.; Chen, D.; Griffy-Brown, C.; Ma, Y.; Fei, W. Energy consumption patterns in the process of China’s urbanization. Popul. Environ. 2012, 33, 202–220. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Industrialization, urbanization and CO2 emissions in Saudi Arabia: Asymmetry analysis. Energy Rep. 2020, 6, 1553–1560. [Google Scholar] [CrossRef]
- Cherniwchan, J. Economic growth, industrialization, and the environment. Resour. Energy Econ. 2012, 34, 442–467. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and industrialization impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Pizzulli, V.A.; Telesca, V.; Covatariu, G. Analysis of Correlation between Climate Change and Human Health Based on a Machine Learning Approach. Healthcare 2021, 9, 86. [Google Scholar] [CrossRef]
- Bollen, J.; van der Zwaan, B.; Brink, C.; Eerens, H. Local air pollution and global climate change: A combined cost-benefit analysis. Resour. Energy Econ. 2009, 31, 161–181. [Google Scholar] [CrossRef]
- Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef]
- Thu, M.Y.; Htun, W.; Aung, Y.L.; Shwe, P.E.E.; Tun, N.M. Smart Air Quality Monitoring System with LoRaWAN. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 1–3 November 2018; IEEE: Bali, India, 2018; pp. 10–15. [Google Scholar] [CrossRef]
- Firdaus, R.; Murti, M.A.; Alinursafa, I. Air quality monitoring system based internet of things (IoT) using lpwan lora. In Proceedings of the 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 5–7 November 2019; pp. 195–200. [Google Scholar]
- Bougoudis, I.; Demertzis, K.; Iliadis, L.; Anezakis, V.-D.; Papaleonidas, A. Fussffra, a fuzzy semi-supervised forecasting framework: The case of the air pollution in athens. Neural Comput. Appl. 2018, 29, 375–388. [Google Scholar] [CrossRef]
- Badicu, A.; Suciu, G.; Balanescu, M.; Dobrea, M.; Birdici, A.; Orza, O.; Pasat, A. Pms concentration forecasting using arima algorithm. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Cihan, P.; Ozel, H.; Ozcan, H.K. Modeling of atmospheric particulate matters via artificial intelligence methods. Environ. Monit. Assess. 2021, 193, 287. [Google Scholar] [CrossRef] [PubMed]
- Magazzino, C.; Mele, M.; Sarkodie, S.A. The nexus between COVID-19 deaths, air pollution and economic growth in new york state: Evidence from deep machine learning. J. Environ. Manag. 2021, 286, 112241. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R.; Liu, B. The Impact of the Wuhan COVID-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach. Environ. Resour. Econ. 2020, 76, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla Gatti, R.; Velichevskaya, A.; Tateo, A.; Amoroso, N.; Monaco, A. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in italy. Environ. Pollut. 2020, 267, 115471. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Venkatakrishnan, P.; Balaji, N. Intelligent based novel embedded system based IoT enabled air pollution monitoring system. Microprocess. Microsyst. 2020, 77, 103172. [Google Scholar] [CrossRef]
- Sharma, P.K.; Mondal, A.; Jaiswal, S.; Saha, M.; Nandi, S.; De, T.; Saha, S. Indoairsense: A framework for indoor air quality estimation and forecasting. Atmos. Pollut. Res. 2021, 12, 10–22. [Google Scholar] [CrossRef]
- Kanabkaew, T.; Mekbungwan, P.; Raksakietisak, S.; Kanchanasut, K. Detection of PM2.5 plume movement from IoT ground level monitoring data. Environ. Pollut. 2019, 252, 543–552. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary; World Health Organization: Geneva, Switzerland, 2021.
- Lin, L.; Di, L.; Yang, R.; Zhang, C.; Yu, E.; Rahman, M.S.; Sun, Z.; Tang, J. Using machine learning approach to evaluate the PM2.5 concentrations in china from 1998 to 2016. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar]
- Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; Islam, S.U.; Asghar, M.N. Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access 2019, 7, 128325–128338. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in milan, italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef]
- El Khaili, M.; Bakkoury, J.; Khiat, A.; Alloubane, A. Crowdsourcing by IoT using labview for measuring the air quality. In Proceedings of the 3rd International Conference on Smart City Applications, Tetouan, Morocco, 10–11 October 2018; pp. 1–8. [Google Scholar]
- Li, Z.; Yim, S.H.-L.; Ho, K.-F. High temporal resolution prediction of streetlevel PM2.5 and NOx concentrations using machine learning approach. J. Clean. Prod. 2020, 268, 121975. [Google Scholar] [CrossRef]
- Chang, M.B.; Lee, H.M.; Wu, F.; Lai, C.R. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology. J. Air Waste Manag. Assoc. 2004, 54, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Lara-Cueva, R.A.; Meneses, P.B.; Marquez, M.D.; Gordillo, R.X.; Benitez, D.S. Air quality monitoring system within campus by using wireless sensor networks. In Proceedings of the 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; IEEE: Piscataway, NJ, USA; pp. 1–4. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Prockop, L.D.; Chichkova, R.I. Carbon monoxide intoxication: An updated review. J. Neurol. Sci. 2007, 262, 122–130. [Google Scholar] [CrossRef]
- Segers, R. Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry 1998, 41, 23–51. [Google Scholar] [CrossRef]
- Beerling, D.; Berner, R.A.; Mackenzie, F.T.; Harfoot, M.B.; Pyle, J.A. Methane and the ch4 related greenhouse effect over the past 400 million years. Am. J. Sci. 2009, 309, 97–113. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Raghuveera, E.; Kanakaraja, P.; Kishore, K.H.; Sriya, C.T.; Prasad B, D.; Lalith, B.S.K.T. An IoT enabled air quality monitoring system using LoRa and LPWAN. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; IEEE: Piscataway, NJ, USA; pp. 453–459. [Google Scholar] [CrossRef]
- Yang, C.-T.; Liao, C.-J.; Liu, J.-C.; Den, W.; Chou, Y.-C.; Tsai, J.-J. Construction and application of an intelligent air quality monitoring system for healthcare environment. J. Med. Syst. 2014, 38, 15. [Google Scholar] [CrossRef]
- Tran, T.V.; Dang, N.T.; Chung, W.-Y. Battery-free smart-sensor system for real-time indoor air quality monitoring. Sens. Actuators B Chem. 2017, 248, 930–939. [Google Scholar] [CrossRef]
- Mitchell, T.M. The Discipline of Machine Learning; Machine Learning, School of Computer Science, Carnegie Mellon University: Pittsburg, PA, USA, 2006; Volume 9. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. Overview of Supervised Learning. In The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; pp. 9–41. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Dridi, S. Supervised learning—A systematic literature review. OSF 2021. [Google Scholar] [CrossRef]
- Adams, M.D.; Massey, F.; Chastko, K.; Cupini, C. Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmos. Environ. 2020, 230, 117479. [Google Scholar] [CrossRef]
- Bozdağ, A.; Dokuz, Y.; Gökçek, B. Spatial prediction of PM10 concentration using machine learning algorithms in ankara, turkey. Environ. Pollut. 2020, 263, 114635. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Razban, A. Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Build. Environ. 2021, 205, 108164. [Google Scholar] [CrossRef]
- Chen, S.; Yuval; Broday, D.M. Re-framing the gaussian dispersion model as a nonlinear regression scheme for retrospective air quality assessment at a high spatial and temporal resolution. Environ. Model. Softw. 2020, 125, 104620. [Google Scholar] [CrossRef]
- Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al. Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrationsin a highly polluted city. Environ. Pollut. 2019, 245, 746–753. [Google Scholar] [CrossRef]
- Murillo-Escobar, J.; Sepulveda-Suescun, J.P.; Correa, M.A.; Orrego-Metaute, D. Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in aburrá valley, colombia. Urban Clim. 2019, 29, 100473. [Google Scholar] [CrossRef]
- Son, Y.; Osornio-Vargas, R.; O’Neill, M.S.; Hystad, P.; Texcalac-Sangrador, J.L.; Ohman-Strickland, P.; Meng, Q.; Schwander, S. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Sci. Total Environ. 2018, 639, 40–48. [Google Scholar] [CrossRef]
- Araujo, L.N.; Belotti, J.T.; Alves, T.A.; de Souza Tadano, Y.; Siqueira, H. Ensemble method based on artificial neural networks to estimate air pollution health risks. Environ. Model. Softw. 2020, 123, 104567. [Google Scholar] [CrossRef]
- De Mattos Neto, P.S.G.; Firmino, P.R.A.; Siqueira, H.; De Souza Tadano, Y.; Alves, T.A.; De Oliveira, J.F.L.; Da Nobrega Marinho, M.H.; Madeiro, F. Neural-based ensembles for particulate matter forecasting. IEEE Access 2021, 9, 14470–14490. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Salam, M.A.; Chowdhury, S. Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh. Air Qual. Atmos. Health 2020, 13, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.R.; Jahani, A.; Moeinaddini, M.; Khorasani, N. Air carbon monoxide forecasting using an artificial neural network in comparison with multiple regression. Model. Earth Syst. Environ. 2020, 6, 1467–1475. [Google Scholar] [CrossRef]
- Ketu, S.; Mishra, P.K. Scalable kernel-based SVM classification algorithm on imbalance air quality data for proficient healthcare. Complex Intell. Syst. 2021, 7, 2597–2615. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B Chem. 2012, 174, 114–125. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80, 426–437. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.-L.; Adebisi, N.; Abdullah, S. Spatial assessment of PM10 hotspots using random forest, K-nearest neighbour and Naïve Bayes. Atmos. Pollut. Res. 2021, 12, 101202. [Google Scholar] [CrossRef]
- Velásquez, R.M.A.; Lara, J.V.M. Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima. Urban Clim. 2020, 33, 100664. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, I.; Bechkit, W.; Rivano, H.; Yaici, M.R. Uncertainty-aware deep learning architectures for highly dynamic air quality prediction. IEEE Access 2021, 9, 14765–14778. [Google Scholar] [CrossRef]
- Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access 2019, 7, 76690–76698. [Google Scholar] [CrossRef]
- Han, Y.; Lam, J.C.; Li, V.O.; Reiner, D. A Bayesian LSTM model to evaluate the effects of air pollution control regulations in Beijing, China. Environ. Sci. Policy 2021, 115, 26–34. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Hameed, M.M.; AlSaadi, M.A. Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmos. Pollut. Res. 2020, 11, 1572–1587. [Google Scholar] [CrossRef]
- Jiang, P.; Li, C.; Li, R.; Yang, H. An innovative hybrid air pollution early-warning system based on pollutants forecasting and extenics evaluation. Knowl.-Based Syst. 2019, 164, 174–192. [Google Scholar] [CrossRef]
- Ravindra, K.; Bahadur, S.S.; Katoch, V.; Bhardwaj, S.; Kaur-Sidhu, M.; Gupta, M.; Mor, S. Application of machine learning approaches to predict the impact of ambient air pollution on outpatient visits for acute respiratory infections. Sci. Total Environ. 2023, 858, 159509. [Google Scholar] [CrossRef]
- Dutta, D.; Pal, S.K. Prediction and assessment of the impact of COVID-19 lockdown on air quality over kolkata: A deep transfer learning approach. Environ. Monit. Assess. 2023, 195, 223. [Google Scholar] [CrossRef]
- Van, N.; Van Thanh, P.; Tran, D.; Tran, D.-T. A new model of air quality prediction using lightweight machine learning. Int. J. Environ. Sci. Technol. 2023, 20, 2983–2994. [Google Scholar] [CrossRef]
- Eren, B.; Aksangür, İ.; Erden, C. Predicting next hour fine particulate matter (PM2.5) in the istanbul metropolitan city using deep learning algorithms with time windowing strategy. Urban Clim. 2023, 48, 101418. [Google Scholar] [CrossRef]
- Barthwal, A. A markov chain–based IoT system for monitoring and analysis of urban air quality. Environ. Monit. Assess. 2023, 195, 235. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Shi, J.; Ma, J.; Liu, X.; Han, D.; Gao, H.; Huang, T. Predicting ozone formation in petrochemical industrialized lanzhou city by interpretable ensemble machine learning. Environ. Pollut. 2023, 318, 120798. [Google Scholar] [CrossRef]
- Persis, J.; Amar, A.B. Predictive modeling and analysis of air quality–visualizing before and during COVID-19 scenarios. J. Environ. Manag. 2023, 327, 116911. [Google Scholar] [CrossRef]
- Koo, Y.-S.; Kwon, H.-Y.; Bae, H.; Yun, H.-Y.; Choi, D.-R.; Yu, S.; Wang, K.-H.; Koo, J.-S.; Lee, J.-B.; Choi, M.-H.; et al. A development of PM2.5 forecasting system in south korea using chemical transport modeling and machine learning. Asia-Pac. J. Atmos. Sci. 2023, 59, 577–595. [Google Scholar] [CrossRef]
- Natsagdorj, N.; Zhou, H. Prediction of PM2.5 concentration in Ulaanbaatar with deep learning models. Urban Clim. 2023, 47, 101357. [Google Scholar]
- Falah, S.; Kizel, F.; Banerjee, T.; Broday, D.M. Accounting for the aerosol type and additional satellite-borne aerosol products improves the prediction of PM2.5 concentrations. Environ. Pollut. 2023, 320, 121119. [Google Scholar] [CrossRef]
- Xie, Q.; Ni, J.-Q.; Li, E.; Bao, J.; Zheng, P. Sequential air pollution emission estimation using a hybrid deep learning model and health-related ventilation control in a pig building. J. Clean. Prod. 2022, 371, 133714. [Google Scholar] [CrossRef]
- Muthukumar, P.; Cocom, E.; Nagrecha, K.; Comer, D.; Burga, I.; Taub, J.; Calvert, C.F.; Holm, J.; Pourhomayoun, M. Predicting PM2.5 atmospheric air pollution using deep learning with meteorological data and ground-based observations and remote-sensing satellite big data. Air Qual. Atmos. Health 2022, 15, 1221–1234. [Google Scholar] [CrossRef]
- Abu El-Magd, S.; Soliman, G.; Morsy, M.; Kharbish, S. Environmental hazard assessment and monitoring for air pollution using machine learning and remote sensing. Int. J. Environ. Sci. Technol. 2022, 20, 6103–6116. [Google Scholar] [CrossRef]
- Huang, C.; Hu, T.; Duan, Y.; Li, Q.; Chen, N.; Wang, Q.; Zhou, M.; Rao, P. Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning. Build. Environ. 2022, 219, 109173. [Google Scholar] [CrossRef]
- Gilik, A.; Ogrenci, A.S.; Ozmen, A. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture. Environ. Sci. Pollut. Res. 2022, 29, 11920–11938. [Google Scholar] [CrossRef]
- Kumar, K.; Pande, B.P. Air pollution prediction with machine learning: A case study of Indian cities. Int. J. Environ. Sci. Technol. 2022, 20, 5333–5348. [Google Scholar] [CrossRef]
- Sethi, J.K.; Mittal, M. Efficient weighted naive bayes classifiers to predict air quality index. Earth Sci. Inform. 2022, 15, 541–552. [Google Scholar] [CrossRef]
- Abirami, G.; Girija, R.; Das, A.; Sreenivasan, N. Predicting air quality index with machine learning models. In Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems; CRC Press: Boca Raton, FL, USA, 2022; pp. 353–371. [Google Scholar]
- Chen, Y.-W.; Medya, S.; Chen, Y.-C. Investigating variable importance in ground-level ozone formation with supervised learning. Atmos. Environ. 2022, 282, 119148. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, W.; Wenzel, A.; Chen, J. Stacked ResNet-LSTM and CORAL model for multi-site air quality prediction. Neural Comput. Appl. 2022, 34, 13849–13866. [Google Scholar] [CrossRef]
- Cho, J.H.; Moon, J.W. Integrated artificial neural network prediction model of indoor environmental quality in a school building. J. Clean. Prod. 2022, 344, 131083. [Google Scholar] [CrossRef]
- Yadav B, V.; Geetha, D. Prediction of concentration of air pollution using deep and machine learning. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 1, pp. 1369–1375. [Google Scholar]
- Liu, C.-C.; Lin, T.-C.; Yuan, K.-Y.; Chiueh, P.-T. Spatio-temporal prediction and factor identification of urban air quality using support vector machine. Urban Clim. 2022, 41, 101055. [Google Scholar] [CrossRef]
- Martín-Baos, J.Á.; Rodriguez-Benitez, L.; García-Ródenas, R.; Liu, J. IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 2022, 115, 108282. [Google Scholar] [CrossRef]
- Asha, P.; Natrayan, L.; Geetha, B.; Beulah, J.R.; Sumathy, R.; Varalakshmi, G.; Neelakandan, S. IoT enabled environmental toxicology for air pollution monitoring using ai techniques. Environ. Res. 2022, 205, 112574. [Google Scholar] [CrossRef]
- Ferreira, W.d.A.P.; Grout, I.; da Silva, A.C.R. Application of a fuzzy artmap neural network for indoor air quality prediction. In Proceedings of the 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 9–11 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Choudhury, A.; Middya, A.I.; Roy, S. A comparative study of machine learning and deep learning techniques in forecasting air pollution levels. In Proceedings of the International Conference on Data Science and Applications, Kolkata, India, 26–27 March 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 607–619. [Google Scholar]
- Qader, M.R.; Khan, S.; Kamal, M.; Usman, M.; Haseeb, M. Forecasting carbon emissions due to electricity power generation in Bahrain. Environ. Sci. Pollut. Res. 2022, 29, 17346–17357. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Zhu, T.; Gong, Z. Fusion prediction model of atmospheric pollutant based on self-organized feature. IEEE Access 2021, 9, 8110–8120. [Google Scholar] [CrossRef]
- Meena, K.; Raja Sekar, R.; Mayuri, A.V.R.; Preetha, V.; Krishna Veni, N.N. 5G narrow band-IoT based air contamination prediction using recurrent neural network. Sustain. Comput. Inform. Syst. 2022, 33, 100619. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Abimannan, S.; Chiao, H.-T.; Lin, C.-Y.; Huang, Y.-P. An ensemble learning based hybrid model and framework for air pollution forecasting. Environ. Sci. Pollut. Res. 2020, 27, 38155–38168. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Chiao, H.-T.; Abimannan, S.; Huang, Y.-P.; Tsai, Y.-T.; Lin, K.-M. An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. The relationship between air pollution and COVID-19-related deaths: An application to three french cities. Appl. Energy 2020, 279, 115835. [Google Scholar] [CrossRef]
- Zeinalnezhad, M.; Chofreh, A.G.; Goni, F.A.; Klemeš, J.J. Air pollution prediction using semi-experimental regression model and adaptive neuro-fuzzy inference system. J. Clean. Prod. 2020, 261, 121218. [Google Scholar] [CrossRef]
- Alyousifi, Y.; Othman, M.; Faye, I.; Sokkalingam, R.; Silva, P.C.L. Markov Weighted Fuzzy Time-Series Model Based on an Optimum Partition Method for Forecasting Air Pollution. Int. J. Fuzzy Syst. 2020, 22, 1468–1486. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Yan, Y.; Zhou, L.; Ma, W. Estimating hourly PM2.5 concentrations using Himawari-8 AOD and a DBSCAN-modified deep learning model over the YRDUA, China. Atmos. Pollut. Res. 2021, 12, 183–192. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Lin, K.-P.; Wang, C.-H.; Li, L. A gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction. Appl. Soft Comput. 2019, 85, 105789. [Google Scholar] [CrossRef]
- Yadav, M.; Jain, S.; Seeja, K.R. Prediction of air quality using time series data mining. In Proceedings of the International Conference on Innovative Computing and Communications, Ostrava, Czech Republic, 21–22 March 2019; Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I., Eds.; Springer: Singapore, 2019; pp. 13–20. [Google Scholar]
- Khiat, A.; Bahnasse, A.; Bakkoury, J.; El Khaili, M.; Louhab, F.E. New approach based internet of things for a clean atmosphere. Int. J. Inf. Technol. 2019, 11, 89–95. [Google Scholar] [CrossRef]
- Sahil, K.; Mehta, P.; Bhardwaj, S.K.; Dhaliwal, L.K. Development of mitigation strategies for the climate change using artificial intelligence to attain sustainability. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2023; pp. 421–448. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Sharma, N.; Panwar, D. Green IoT: Advancements and Sustainability with Environment by 2050. In Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 4–5 June 2020; IEEE: Noida, India, 2020; pp. 1127–1132. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Qian, Y.; Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan. Sci. 2022, 83, 101002. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Lopes, S.I.; Fern´andez-Caram´es, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors 2021, 21, 5745. [Google Scholar] [CrossRef]
- Lannelongue, L.; Grealey, J.; Inouye, M. Green Algorithms: Quantifying the Carbon Footprint of Computation. Adv. Sci. 2021, 8, 2100707. [Google Scholar] [CrossRef]
- Fernandez-Cerero, D.; Fernandez-Montes, A.; Jakobik, A. Limiting Global Warming by Improving Data-Centre Software. IEEE Access 2020, 8, 44048–44062. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Source | ML Method | Predicted Value | |
---|---|---|---|
01 | Ravindra et al. [86] | RF, K-NN, LASSO, Decision Tree(DT), SVR Xgboost, DNN | Hospital admissions related to Acute Respiratory Infections |
02 | Dutta and Pal [87] | stacked-bidirectional long short-term memory (stacked-BDLSTM) | PM2.5, PM10 |
03 | Van et al. [88] | DT, RF, XGBoost | AQI |
04 | Eren et al. [89] | LSTM, RNN, GRU | PM2.5 |
05 | Barthwal [90] | Markov chain (DTMC) models | AQI |
06 | Wang et al. [91] | EML | Ozone |
07 | Persis and Amar [92] | NNs, SVM, DT, RF, XGboost. | AQI |
08 | Koo et al. [93] | DNN, RNN, Convolutional Neural Network (CNN), | PM2.5 |
09 | Natsagdorj et al. [94] | Bayesian optimized LSTM, CNN-LSTM | PM2.5 |
10 | Falah et al. [95] | RF, XGboost | PM2.5 |
11 | Xie et al. [96] | Deep Learning-based Complex Trait Estimation Model(DL-CTEM) | NH3, CO2, H2S |
12 | Muthukumar et al. [97] | Convolutional Long Short-Term Memory (ConvLSTM), Graph Convolutional Network (GCN) | PM2.5 |
13 | Abu El-Magd et al. [98] | RF | PM10 |
14 | Huang et al. [99] | LR, RF, SVM, GPR, NN, ensemble tree | PM2.5, PM10 |
15 | Gilik et al. [100] | CNN, LSTM | PM, NOx, SO2 |
16 | Kumar and Pande [101] | Gaussian naive bayes (GNB), SVM XGBoost | AQI |
17 | Sethi and Mittal [102] | weighted naive bayes(WNB) | AQI |
18 | Abirami et al. [103] | SVR, Decision Tree Regression (DTR) RFR, MLR | AQI |
19 | Chen et al. [104] | DNN, LSTM | Ozone |
20 | Cheng et al. [105] | ResNet-LSTM | PM2.5 |
21 | Cho and Moon [106] | ANN | CO2, PM10, PM2.5 |
22 | Geetha et al. [107] | LSTM, RNN | SO2, CO2, NO2, CO, CFCs |
23 | Liu et al. [108] | SVM | AQI |
24 | Martín-Baos et al. [109] | LR, GPR, RF | AQI |
25 | Asha et al. [110] | Edited Nearest Neighbor (ENN) | NH3, CO, NO2, CH4, CO2, PM2.5 |
26 | Ferreira et al. [111] | fuzzy ARTMAP | PMs |
27 | Choudhury et al. [112] | KNN, SVR, Hidden Markov Model(HMM) CNN,LSTM | NO2, O3 |
28 | Qader et al. [113] | NNs, GPR | CO2 |
29 | Magazzino et al. [38] | NNs, DT | Deaths |
30 | Mokhtari et al. [81] | CNN, LSTM | Propylene |
31 | De Mattos Neto et al. [73] | ANN, MLP | PM10, PM2.5 |
32 | Wei et al. [114] | EMD-FUSION | SO2 |
33 | Cihan et al. [37] | ANFIS, SVR, CART, RF, KNN, ELM | PM10, PM2.5 |
34 | Taheri and Razban [67] | SVM, AdaBoost, RF, GBM, LR, MLP | CO2 |
35 | K et al. [115] | LR | PM2.5 |
36 | Cole et al. [39] | RF | PM2.5 |
37 | Shahriar et al. [74] | L-SVM, GPR, RFR | PM2.5 |
38 | Chang et al. [116] | Gradient Boosting Trees (GBT), SVR LSTM, LSTM2 | PM2.5 |
39 | Bozdag et al. [65] | LASSO, SVR, RF, kNN, xGBoost, ANN | PM10 |
40 | Chang et al. [117] | LSTM, SVR, GBT | PM2.5 |
41 | Magazzino et al. [118] | ANNs | Deaths |
42 | AlOmar et al. [84] | W-ANN | Ozone |
43 | Cazzolla Gatti et al. [40] | RF | Deaths |
44 | Han et al. [83] | LSTM | PM2.5 |
45 | Shams et al. [75] | MLR, ANN | CO |
46 | Zeinalnezhad et al. [119] | ANFIS | SO2, O3, NO2, CO |
47 | Alyousifi et al. [120] | Multi-Wave Fuzzy Time Series (MWFTS) | API |
48 | Lu et al. [121] | Density-Based Spatial Clustering of Applications with Noise (DBSCAN), DNN | PM2.5 |
49 | Tao et al. [82] | CBGRU | PM2.5 |
50 | Chen et al. [66] | 16 methods | NO2 |
51 | Araujo et al. [72] | ELM, MLR, Radial Basis Function(RBF) Echo State Network(ESN),ENN | Hospitalizations |
52 | Murillo-Escobar et al. [70] | SVR–PSO | NO, NO2, O3, PM10, PM2.5 |
53 | Zhou et al. [122] | GPM | NO2, HC |
54 | Yadav et al. [123] | CTSPD Algorithm | CO, Ozone, NO2, PM2.5, PM10 |
55 | Jiang et al. [85] | ICEEMDAN-BPNN-ICA | PM2.5, SO2, NO2, CO, O3 |
56 | Yuchi et al. [69] | MLR, RFR | PM2.5 |
57 | Son et al. [71] | LASSO | PM2.5, PM10, O3, NO2, CO, SO2 |
58 | Ketu et al. [76] | Adjusting Kernel Scaling (AKS)Adaboost, Multi-Layer Perceptron, GaussianNB, and SVM | AQI |
59 | Zhang, Lei, et al. [77] | hybrid SVM (HSVM)Euclidean distance to centroids (EDC), simplified fuzzy ARTMAP network (SFAM), multilayer perceptron neural network (MLP), individual FLDA, and single SVM | SO2, NO2, CO, CO2, NH3, O3, formaldehyde, benzene, toluene, inhalable particle, and VOCs |
60 | Singh et al. [78] | PCA, Single Decision Tree (SDT), Decision Tree Forest (DTF), Decision Tree Boost (DTB)SVM | AQI |
61 | Tella, Abdulwaheed, et al. [79] | Naïve Bayes, Random Forest, and K-Nearest Neighbor | PM10 |
62 | Velásquez et al. [80] | Reduced-Space Gaussian Process Regression | NO2, PM10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essamlali, I.; Nhaila, H.; El Khaili, M. Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review. Sustainability 2024, 16, 976. https://doi.org/10.3390/su16030976
Essamlali I, Nhaila H, El Khaili M. Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review. Sustainability. 2024; 16(3):976. https://doi.org/10.3390/su16030976
Chicago/Turabian StyleEssamlali, Ismail, Hasna Nhaila, and Mohamed El Khaili. 2024. "Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review" Sustainability 16, no. 3: 976. https://doi.org/10.3390/su16030976