Digital Technologies, Sustainability, and Efficiency in Grain Post-Harvest Activities: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis
- Digital Technologies and Sustainable Agriculture: keywords like “agriculture,” “plantations,” and “quality control” emphasize the relevance of digital technologies in optimizing agricultural processes for greater efficiency and sustainability in production and post-grain harvest;
- Accurate Monitoring and Grain Quality: Terms such as “temperature,” “humidity,” “quality control,” and “artificial intelligence” underscore the importance of rigorous monitoring in storage and post-harvest conditions. IoT sensors and machine learning techniques improve grain quality, preventing losses and ensuring food safety;
- Simulation and Climate Change: The words “simulation” and “climate change” highlight the need to anticipate climate impacts on plantations and post-harvest. Simulation enables the modeling of climate scenarios to develop strategies addressing climate change challenges;
- Efficiency and Sustainability: “Artificial intelligence,” “machine learning,” and “drying” reflect the pursuit of energy efficiency and sustainability in the post-harvest process. AI-driven automation optimizes drying, reducing resource consumption and ensuring grain quality;
- Biological Data Integration: Terms like “genetics,” “microbiology,” “metabolism,” and “physiology” indicate the convergence of biology and digital technology. Integrating molecular and biological data enhances our understanding of interactions between grains, microorganisms, and environmental factors;
- Socioeconomic Challenges and Food Security: Keywords such as “food security” and “human” highlight the importance of grain quality for global food security. Post-harvest digital technology impacts agricultural production, human health, and nutrition.
3.2. Descriptive Analysis: Technologies
4. Managing Losses with Technological Solutions: Applications and Gaps
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klingenberg, C.; Antunes Júnior, J.; Müller-Seitz, G. Impacts of digitalization on value creation and capture: Evidence from the agricultural value chain. Agric. Syst. 2022, 201, 103468. [Google Scholar] [CrossRef]
- Oruma, S.; Misra, S.; Fernandez-Sanz, L. Agriculture 4.0: An implementation framework for food security attainment in Nigeria’s post-COVID-19 era. IEEE Access 2021, 9, 83592–83627. [Google Scholar] [CrossRef]
- Das, S.; Barve, A.; Sahu, N.; Muduli, K.; Kumar, A.; Luthra, S. Analysing the challenges to sustainable food grain storage management: A path to food security in emerging nations. Int. J. Food Sci. Technol. 2023, 58, 5501–5509. [Google Scholar] [CrossRef]
- Mogale, D.; Cheikhrouhou, N.; Tiwari, M. Modelling of sustainable food grain supply chain distribution system: A bi-objective approach. Int. J. Prod. Res. 2020, 58, 5521–5544. [Google Scholar] [CrossRef]
- Venkatesh, G. Circular bio-economy—Paradigm for the future: Systematic review of scientific journal publications from 2015 to 2021. Circ. Econ. Sustain. 2022, 2, 231–279. [Google Scholar] [CrossRef]
- Ngwenyama, P.; Siziba, S.; Nyanga, L.; Stathers, T.; Mubayiwa, M.; Mlambo, S.; Nyabako, T.; Bechoff, A.; Shee, A.; Mvumi, B. Determinants of smallholder farmers’ maize grain storage protection practices and understanding of the nutritional aspects of grain postharvest losses. Food Secur. 2023, 15, 937–951. [Google Scholar] [CrossRef]
- Williams, S.; Murdock, L.; Baributsa, D. Safe storage of maize in alternative hermetic containers. J. Stored Prod. Res. 2017, 71, 125–129. [Google Scholar] [CrossRef]
- Jayas, D. Storing grains for food security and sustainability. Agric. Res. 2012, 1, 21–24. [Google Scholar] [CrossRef]
- Mlambo, S.; Mvumi, B.M.; Stathers, T.; Mubayiwa, M.; Nyabako, T. Field efficacy of hermetic and other maize grain storage options under smallholder farmer management. Crop Prot. 2017, 98, 198–210. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Yan, C. Comparative analysis of economic efficiency of grain storage by solar absorption refrigeration. Adv. Inf. Sci. Serv. Sci. 2012, 4, 342–348. [Google Scholar]
- Adebo, G.; Oladele, O. Awareness and use of non-chemical prevention and control of storage pests of grains: An international audience perspective. Mediterr. J. Soc. Sci. 2014, 5, 150–155. [Google Scholar] [CrossRef]
- Dexian, Z.; Tiejun, Y.; Hongliang, F.; Chao, F.; Yuan, Z. An online detection model of granary storage quantity. Acta Autom. Sin. 2014, 40, 2213–2220. [Google Scholar]
- Gao, L.; Xu, S.; Li, Z.; Cheng, S.; Yu, W.; Zhang, Y.; Li, D.; Wang, Y.; Wu, C. Main grain crop posharvest losses and its reducing potential in China. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–11. [Google Scholar]
- Dowell, F.; Dowell, C. Reducing grain storage losses in developing countries. Qual. Assur. Saf. Crops Foods 2017, 9, 93–100. [Google Scholar] [CrossRef]
- Mendoza, J.; Sabillón, L.; Martinez, W.; Campabadal, C.; Hallenadams, H.; Bianchini, A. Traditional maize post-harvest management practices amongst smallholder farmers in Guatemala. J. Stored Prod. Res. 2017, 71, 14–21. [Google Scholar] [CrossRef]
- Danso, J.; Osekre, E.A.; Manu, N.; Opit, G.; Armstrong, P.; Arthur, F.; Campbell, J.; Mbata, G. Moisture content, insect pests and mycotoxin levels of maize at harvest and pos-harvest in the Middle Belt of Ghana. J. Stored Prod. Res. 2017, 74, 46–55. [Google Scholar] [CrossRef]
- Likhayo, P.; Bruce, A.; Mutambuki, K.; Tefera, T.; Mueke, J. On-Farm Evaluation of Hermetic Technology Against Maize Storage Pests in Kenya. J. Econ. Entomol. 2016, 9, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Krska, R.; De Nijs, M.; Mcnerney, O.; Pichler, M.; Gilbert, J.; Edwards, S.; Suman, M.; Magan, N.; Rossi, V.; Van Der Fels-Klerx, H.; et al. Safe food and feed through an integrated toolbox for mycotoxin management: The MyToolBox approach. World Mycotoxin J. 2016, 9, 487–495. [Google Scholar] [CrossRef]
- USDA—U.S. Department of Agriculture. Available online: https://www.usda.gov (accessed on 21 January 2019).
- El Bilali, H.; Strassner, C.; Ben Hassen, T. Sustainable agri-food systems: Environment, economy, society, and policy. Sustainability 2021, 13, 6260. [Google Scholar] [CrossRef]
- Zupaniec, M.; Schafft, H.; Lindemann, A.; Pieper, R.; Mader, A. Critical factors for food safety in global commodity flows with a focus on logistics—A case study on Mycotoxin contamination of agri-bulk commodities. Oper. Supply Chain Manag. Int. J. 2021, 14, 545–563. [Google Scholar] [CrossRef]
- Ziegler, V.; Paraginski, R.; Ferreira, C. Grain storage systems and effects of moisture, temperature and time on grain quality—A review. J. Stored Prod. Res. 2021, 91, 101770. [Google Scholar] [CrossRef]
- Schmidt, D.; Butturi, M.; Sellitto, M. Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider. AgriEngineering 2023, 5, 1226–1242. [Google Scholar] [CrossRef]
- Zhu, D.; Porter, A.; Cunningham, S.; Carlisie, J.; Nayak, A. A Process for Mining Science & Technology Documents Data base Illustrate For the Case of Knowledge Discovery and Data Mining. Ciênc. Inf. 1999, 28, 7–14. [Google Scholar]
- Paterson, R.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.; Sarwar, G.; Haque, E.; et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 2020, 10, 18013. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Putnik, P.; Kovačević, D.; Santos, J.; Calado, V.; Rocha, R.; Cruz, A.; Jarvis, B.; Rodionova, O.; Pomerantsev, A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Shishodia, A.; Kamble, S.; Gunasekaran, A.; Belhadi, A. Agriculture supply chain risks and COVID-19: Mitigation strategies and implications for the practitioners. Int. J. Logist. Res. Appl. 2020. [Google Scholar] [CrossRef]
- Pranto, T.; Noman, A.; Mahmud, A.; Haque, A. Blockchain and smart contract for IoT enabled smart agriculture. PeerJ Comput. Sci. 2021, 7, e407. [Google Scholar] [CrossRef]
- Cattaneo, A.; Sánchez, M.; Torero, M.; Vos, R. Reducing food loss and waste: Five challenges for policy and research. Food Policy 2021, 98, 101974. [Google Scholar] [CrossRef]
- Visconti, P.; De Fazio, R.; Velázquez, R.; Del-Valle-Soto, C.; Giannoccaro, N. Development of sensors-based agrifood traceability system remotely managed by a software platform for optimized farm management. Sensors 2020, 20, 3632. [Google Scholar] [CrossRef]
- Lin, P.; Xiaoli, L.; Li, D.; Jiang, S.; Zou, Z.; Lu, Q.; Chen, Y. Rapidly and exactly determining post-harvest dry soybean seed quality based on machine vision technology. Sci. Rep. 2019, 9, 17143. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Yang, W.; Wang, X.; Mao, S.; Zhang, Y. Forecasting of Grain Pile Temperature from Meteorological Factors Using Machine Learning. IEEE Access 2019, 7, 130721–130733. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, B. Containerized Grain Logistics Processes for Implementing Sustainable Identity Preservation. Sustainability 2022, 14, 13352. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X.; Tao, Q.; Zheng, C. Hyperledger fabric access control system for internet of things layer in blockchain-based applications. Entropy 2021, 23, 1054. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hou, J.; Liu, C.; Hu, K.; Wang, J. Visualization Analysis of Cross Research between Big Data and Construction Industry Based on Knowledge Graph. Buildings 2022, 12, 1812. [Google Scholar] [CrossRef]
- Moreno, T.; Almeida, A.; Toscano, C.; Ferreira, F.; Azevedo, A. Scalable Digital Twins for industry 4.0 digital services: A dataspaces approach. Prod. Manuf. Res. 2023, 11, 2173680. [Google Scholar] [CrossRef]
- Chan, W.; Hanks, G.; Sakr, M.; Zhang, H.; Zuo, T.; Van der Loos, H.; Croft, E. Design and evaluation of an augmented reality head-mounted display interface for human robot teams collaborating in physically shared manufacturing tasks. ACM Trans. Hum. Robot Interact. 2022, 11, 1–19. [Google Scholar] [CrossRef]
- Chai, J.; Xu, J.; O’Sullivan, C. Real-Time Detection of Strawberry Ripeness Using Augmented Reality and Deep Learning. Sensors 2023, 23, 7639. [Google Scholar] [CrossRef]
- Pathare, P.; Al-Dairi, M. Effect of simulated vibration and storage on quality of tomato. Horticulturae 2021, 7, 417. [Google Scholar] [CrossRef]
- Dokholyan, S.; Ermolaeva, E.; Verkhovod, A.; Dupliy, E.; Gorokhova, A.; Ivanov, V.; Sekerin, V. Influence of management automation on managerial decision-making in the agro-industrial complex. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 597–603. [Google Scholar] [CrossRef]
- Singh, A.; Vaidya, G.; Jagota, V.; Darko, D.; Agarwal, R.; Debnath, S.; Potrich, E. Recent advancement in postharvest loss mitigation and quality management of fruits and vegetables using machine learning frameworks. J. Food Qual. 2022, 2022, 6447282. [Google Scholar] [CrossRef]
- Hayajneh, A.; Batayneh, S.; Alzoubi, E.; Alwedyan, M. TinyML Olive Fruit Variety Classification by Means of Convolutional Neural Networks on IoT Edge Devices. AgriEngineering 2023, 5, 2266–2283. [Google Scholar] [CrossRef]
- Nagendra, N.; Narayanamurthy, G.; Moser, R. Satellite big data analytics for ethical decision making in farmer’s insurance claim settlement: Minimization of type-I and type-II errors. Ann. Oper. Res. 2020, 315, 1061–1082. [Google Scholar] [CrossRef]
- Melesse, T.; Franciosi, C.; Di Pasquale, V.; Riemma, S. Analyzing the Implementation of Digital Twins in the Agri-Food Supply Chain. Logistics 2023, 7, 33. [Google Scholar] [CrossRef]
- Hayat, U.; Li, W.; Bie, H.; Liu, S.; Guo, D.; Cao, K. An Overview on Post-Harvest Technological Advances and Ripening Techniques for Increasing Peach Fruit Quality and Shelf Life. Horticulturae 2023, 10, 4. [Google Scholar] [CrossRef]
- Khan, M.; Hossain, M.; Shahaab, A.; Khan, I. ShrimpChain: A blockchain-based transparent and traceable framework to enhance the export potentiality of Bangladeshi shrimp. Smart Agric. Technol. 2022, 2, 100041. [Google Scholar] [CrossRef]
- Schaefer, J.; Baierle, I.; Sellitto, M.; Siluk, J.; Furtado, J.; Nara, E. Competitiveness scale as a basis for Brazilian Small and Medium-Sized Enterprises. Eng. Manag. J. 2021, 33, 255–271. [Google Scholar] [CrossRef]
Attribute | Filter |
---|---|
Search base | Scopus |
Year | Up to 2022 |
Author name | No filter |
Search area | No filter |
Document Type | Limited to Articles |
Country | No filter |
Research field | Any field |
Language | English |
Technology | Article | Citations by July/2023 | Citations per Year |
---|---|---|---|
Simulation | [25] | 389 | 389 |
Automation | [26] | 102 | 34 |
Artificial Intelligence | [27] | 303 | 60.6 |
Big Data and CC | [28] | 161 | 53.7 |
IoT | [29] | 55 | 27.5 |
Blockchain | [30] | 64 | 32 |
Rfid | [31] | 40 | 13.3 |
Additive manufacturing | [32] | 12 | 3 |
Virtual reality | [33] | 12 | 3 |
Digital twins | [34] | 1 | 1 |
Cyber-physical systems | [35] | 21 | 10.5 |
Augmented reality | [36] | 2 | 2 |
CCP | Augmented Reality (1) | Virtual Reality (2) | Simulation (3) | Automation (4) | Artificial Intelligence (5) | IoT (6) | Big Data/CC (7) | Digital Twins (8) | Cyber-Physical Systems (9) | Blockchain (10) | Rfid (11) | Additive Manufacturing (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CCP 1—Grain reception | X | X | X | X | X | X | X | X | ||||
CCP 2—Hoppers | X | X | X | X | ||||||||
CCP 3—Pre-cleaning | X | X | X | X | X | X | X | X | X | X | X | |
CCP 4—Buffer silos | X | X | X | X | ||||||||
CCP 5—Dryers | X | X | X | X | X | X | X | X | X | X | X | |
CCP 6—Cleaning machines | X | X | X | X | X | X | X | X | X | X | X | |
CCP 7—Storage silos | X | X | X | X | X | X | X | X | X | X | X | |
CCP 8—Shipping | X | X | X | X | X | X | X | X | ||||
CCP 9—Connection points | X | X | X | X | ||||||||
Example of a recent case study | [37] | [37] | [38] | [39] | [40] | [41] | [42] | [43] | [44] | [45] | [46] | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, D.; Casagranda, L.F.; Butturi, M.A.; Sellitto, M.A. Digital Technologies, Sustainability, and Efficiency in Grain Post-Harvest Activities: A Bibliometric Analysis. Sustainability 2024, 16, 1244. https://doi.org/10.3390/su16031244
Schmidt D, Casagranda LF, Butturi MA, Sellitto MA. Digital Technologies, Sustainability, and Efficiency in Grain Post-Harvest Activities: A Bibliometric Analysis. Sustainability. 2024; 16(3):1244. https://doi.org/10.3390/su16031244
Chicago/Turabian StyleSchmidt, Daniel, Luis Fernando Casagranda, Maria Angela Butturi, and Miguel Afonso Sellitto. 2024. "Digital Technologies, Sustainability, and Efficiency in Grain Post-Harvest Activities: A Bibliometric Analysis" Sustainability 16, no. 3: 1244. https://doi.org/10.3390/su16031244
APA StyleSchmidt, D., Casagranda, L. F., Butturi, M. A., & Sellitto, M. A. (2024). Digital Technologies, Sustainability, and Efficiency in Grain Post-Harvest Activities: A Bibliometric Analysis. Sustainability, 16(3), 1244. https://doi.org/10.3390/su16031244