A Hybrid MRA-BN-NN Approach for Analyzing Airport Service Based on User-Generated Contents
Abstract
:1. Introduction
2. Relevant Literature
2.1. Relevant Literature on Airport Service Quality
2.2. User-Generated Online Content
2.3. Hypothesis Development
3. Research Methodology
3.1. Data
3.2. Data Analysis
4. Results
4.1. Descriptive Statistics
4.2. Results of the MRA Model
4.3. Results of the BNs
4.4. Results of NNs
5. Conclusions
5.1. Discussion and Theoretical Implications
5.2. Managerial Implications
5.3. Limitations and Prospective Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACI. Global Passenger Traffic Expected to Recover by 2024 and Reach 9.4 Billion Passengers. 2023. Available online: https://aci.aero/2023/09/27/global-passenger-traffic-expected-to-recover-by-2024-and-reach-9-4-billion-passengers/ (accessed on 19 January 2024).
- Elshafey, M.; Rowlands, D.; Contestabile, E.; El Halim, A.O.A. Airport level of service perceptions before and after September 11: A neural network analysis. WIT Trans. Built Environ. 2007, 94, 337–345. [Google Scholar]
- ACI. About ACI. 2022. Available online: https://aci.aero/about-aci/ (accessed on 6 October 2022).
- Lee, K.; Yu, C. Assessment of airport service quality: A complementary approach to measure perceived service quality based on Google reviews. J. Air Transp. Manag. 2018, 71, 28–44. [Google Scholar] [CrossRef]
- Molaei, P.; Hunter, W.C. A qualitative exploration of Incheon international airport (ICN) service quality from the passengers’ perspective in a web-based environment. Int. J. Tour. Sci. 2019, 19, 287–306. [Google Scholar] [CrossRef]
- Li, L.; Mao, Y.; Wang, Y.; Ma, Z. How has airport service quality changed in the context of COVID-19: A data-driven crowdsourcing approach based on sentiment analysis. J. Air Transp. Manag. 2022, 105, 102298. [Google Scholar] [CrossRef] [PubMed]
- Sezgen, E.; Mason, K.J.; Mayer, R. Voice of airline passenger: A text mining approach to understand customer satisfaction. J. Air Transp. Manag. 2019, 77, 65–74. [Google Scholar] [CrossRef]
- Nghiêm-Phú, B.; Suter, J.R. Airport image: An exploratory study of McCarran International Airport. J. Air Transp. Manag. 2018, 67, 72–84. [Google Scholar] [CrossRef]
- Martin-Domingo, L.; Martín, J.C.; Mandsberg, G. Social media as a resource for sentiment analysis of Airport Service Quality (ASQ). J. Air Transp. Manag. 2019, 78, 106–115. [Google Scholar] [CrossRef]
- Barakat, H.; Yeniterzi, R.; Martín-Domingo, L. Applying deep learning models to twitter data to detect airport service quality. J. Air Transp. Manag. 2021, 91, 102003. [Google Scholar] [CrossRef]
- Bunchongchit, K.; Wattanacharoensil, W. Data Analytics of Skytrax’s Airport Review and Ratings: Views of Airport Quality by Passengers Types. Res. Transp. Bus. Manag. 2021, 41, 100688. [Google Scholar] [CrossRef]
- Gitto, S.; Mancuso, P. Improving airport services using sentiment analysis of the websites. Tour. Manag. Perspect. 2017, 22, 132–136. [Google Scholar] [CrossRef]
- Kiliç, S.; Çadirci, T.O. An evaluation of airport service experience: An identification of service improvement opportunities based on topic modeling and sentiment analysis. Res. Transp. Bus. Manag. 2022, 43, 100744. [Google Scholar] [CrossRef]
- Wattanacharoensil, W.; Schuckert, M.; Graham, A.; Dean, A. An analysis of the airport experience from an air traveler perspective. J. Hosp. Tour. Manag. 2017, 32, 124–135. [Google Scholar] [CrossRef]
- Yavuz, N.; Olgaç, S.; Günay Aktaş, S.; Mert Kantar, Y. Passenger Satisfaction in European Airports in Travel and Tourism: Sustainability, Economics, and Management Issues; Springer: Singapore, 2020. [Google Scholar]
- Bakır, M.; Akan, S.; Özdemir, E.; Nguyen, P.-H.; Tsai, J.-F.; Pham, H.-A. How to Achieve Passenger Satisfaction in the Airport? Findings from Regression Analysis and Necessary Condition Analysis Approaches through Online Airport Reviews. Sustainability 2022, 14, 2151. [Google Scholar] [CrossRef]
- Bogicevic, V.; Yang, W.; Bilgihan, A.; Bujisic, M. Airport service quality drivers of passenger satisfaction. Tour. Rev. 2013, 68, 3–18. [Google Scholar] [CrossRef]
- Halpern, N.; Mwesiumo, D. Airport service quality and passenger satisfaction: The impact of service failure on the likelihood of promoting an airport online. Res. Transp. Bus. Manag. 2021, 41, 100667. [Google Scholar] [CrossRef]
- Bae, W.; Chi, J. Content Analysis of Passengers’ Perceptions of Airport Service Quality: The Case of Honolulu International Airport. J. Risk Financ. Manag. 2022, 15, 5. [Google Scholar] [CrossRef]
- Bulatović, I.; Dempere, J.; Papatheodorou, A. The explanatory power of the SKYTRAX’s airport rating system: Implications for airport management. Transp. Econ. Manag. 2023, 1, 104–111. [Google Scholar] [CrossRef]
- Homaid, M.S.; Moulitsas, I. Measuring Airport Service Quality Using Machine Learning Algorithms. In Proceedings of the 6th International Conference on Advances in Artificial Intelligence, New York, NY, USA, 18–20 November 2023; Association for Computing Machinery: Birmingham, UK, 2023; pp. 8–14. [Google Scholar]
- Arasli, H.; Saydam, M.B.; Jafari, K.; Arasli, F. Nordic Airports’ service quality attributes: Themes in online reviews. Scand. J. Hosp. Tour. 2023, 23, 248–263. [Google Scholar] [CrossRef]
- Abouseada, A.A.A.H.; Hassan, T.H.; Saleh, M.I.; Radwan, S.H. The power of airport branding in shaping tourist destination image: Passenger commitment perspective. GeoJournal Tour. Geosites 2023, 47, 440–449. [Google Scholar] [CrossRef]
- Skytrax. Explaining Airport Star Rating Levels. 2024. Available online: https://skytraxratings.com/explaining-airport-star-ratings-levels (accessed on 13 January 2024).
- Skytrax. Our Background. 2023. Available online: https://www.airlinequality.com/about-us/ (accessed on 3 July 2023).
- Sadou, A.; Tchouamou Njoya, E. Applications of Artificial Intelligence in the Air Transport Industry: A Bibliometric and Systematic Literature Review. J. Aerosp. Technol. Manag. 2023, 15, 1312. [Google Scholar] [CrossRef]
- ACI. Airport Service Quality Customer Experience. 2021. Available online: https://aci.aero/programs-and-services/asq/ (accessed on 6 July 2021).
- Wattanacharoensil, W.; Schuckert, M.; Graham, A. An Airport Experience Framework from a Tourism Perspective. Transp. Rev. 2015, 36, 318–340. [Google Scholar] [CrossRef]
- Graham, A. How important are commercial revenues to today’s airports? J. Air Transp. Manag. 2009, 15, 106–111. [Google Scholar] [CrossRef]
- Del Chiappa, G.; Martin, J.C.; Roman, C. Service quality of airports’ food and beverage retailers. A fuzzy approach. J. Air Transp. Manag. 2016, 53, 105–113. [Google Scholar] [CrossRef]
- Bezerra, G.C.L.; Gomes, C.F. Determinants of passenger loyalty in multi-airport regions: Implications for tourism destination. Tour. Manag. Perspect. 2019, 31, 145–158. [Google Scholar] [CrossRef]
- Freitas, P.T.; Silva, L.M.; Nascimento, M.V.; Borille, G.M. Passenger profile and its effects on satisfaction level in food and beverage establishments: Case study of major Brazilian airports. Case Stud. Transp. Policy 2021, 9, 1219–1224. [Google Scholar] [CrossRef]
- ACI. Airport Service Quality (ASQ). 2021. Available online: https://aci.aero/customer-experience-asq/ (accessed on 6 July 2021).
- Fodness, D.; Murray, B. Passengers’ expectations of airport service quality. J. Serv. Mark. 2007, 21, 492–506. [Google Scholar] [CrossRef]
- Lubbe, B.; Douglas, A.; Zambellis, J. An application of the airport service quality model in South Africa. J. Air Transp. Manag. 2011, 17, 224–227. [Google Scholar] [CrossRef]
- Bezerra, G.C.L.; Gomes, C.F. Antecedents and consequences of passenger satisfaction with the airport. J. Air Transp. Manag. 2020, 83, 101766. [Google Scholar] [CrossRef]
- Isa, N.A.M.; Ghaus, H.; Hamid, N.A.; Tan, P.-L. Key drivers of passengers’ overall satisfaction at klia2 terminal. J. Air Transp. Manag. 2020, 87, 101859. [Google Scholar] [CrossRef]
- Pholsook, T.; Wipulanusat, W.; Thamsatitdej, P.; Ramjan, S.; Sunkpho, J.; Ratanavaraha, V. A Three-Stage Hybrid SEM-BN-ANN Approach for Analyzing Airport Service Quality. Sustainability 2023, 15, 8885. [Google Scholar] [CrossRef]
- Skytrax. Airline and Airport Customer Reviews. 2023. Available online: https://www.airlinequality.com/ (accessed on 1 July 2023).
- Bezerra, G.C.L.; Gomes, C.F. Measuring airport service quality: A multidimensional approach. J. Air Transp. Manag. 2016, 53, 85–93. [Google Scholar] [CrossRef]
- Stolletz, R. Analysis of passenger queues at airport terminals. Res. Transp. Bus. Manag. 2011, 1, 144–149. [Google Scholar] [CrossRef]
- Aniyeri, R.; Nadar, R. Passengers queue analysis in international airports terminals in Kerala using multiphase queuing system. Int. J. Math. Oper. Res. 2018, 12, 1. [Google Scholar] [CrossRef]
- Schultz, M.; Luo, M.; Lubig, D.; Mota, M.M.; Scala, P. COVID-19-Related Challenges for New Normality in Airport Terminal Operations. In Proceedings of the Winter Simulation Conference (WSC), Phoenix, AZ, USA, 12–15 December 2021. [Google Scholar]
- Pandey, M.M. Evaluating the service quality of airports in Thailand using fuzzy multi-criteria decision making method. J. Air Transp. Manag. 2016, 57, 241–249. [Google Scholar] [CrossRef]
- Allen, J.; Bellizzi, M.G.; Eboli, L.; Forciniti, C.; Mazzulla, G. Identifying strategies for improving airport services: Introduction of the Gap-IPA to an Italian airport case study. Transp. Lett. 2021, 13, 243–253. [Google Scholar] [CrossRef]
- Paramonovs, S.; Ijevleva, K. Factor Analysis of Passengers’ Satisfaction at “RIGA International Airport”. Econ. Bus. 2015, 27, 46–52. [Google Scholar] [CrossRef]
- Bellizzi, M.G.; Eboli, L.; Forciniti, C.; Mazzulla, G. Air Transport Passengers’ Satisfaction: An Ordered Logit Model. Transp. Res. Procedia 2018, 33, 147–154. [Google Scholar] [CrossRef]
- Lopez-Valpuesta, L.; Casas-Albala, D. Has passenger satisfaction at airports changed with the onset of COVID-19? The case of Seville Airport (Spain). J. Air Transp. Manag. 2023, 108, 102361. [Google Scholar] [CrossRef]
- Wakefield, K.L.; Blodgett, J.G. The effect of the servicescape on customers’ behavioral intentions in leisure service settings. J. Serv. Mark. 1996, 10, 45–61. [Google Scholar] [CrossRef]
- Zheng, M.-C. How Airport Users luggage affects their Perception of Seat Design at Airports. J. Asian Archit. Build. Eng. 2014, 13, 141–148. [Google Scholar] [CrossRef]
- Lin, J.; Song, R.; Dai, J.; Jiao, P. Pedestrian Guiding Signs Optimization for Airport Terminal. Discret. Dyn. Nat. Soc. 2014, 2014, 125910. [Google Scholar] [CrossRef]
- Fewings, R. Wayfinding and Airport Terminal Design. J. Navig. 2001, 54, 177–184. [Google Scholar] [CrossRef]
- Das, A.; Choudhury, P. Identifying airline passengers satisfaction and ground airport services perception of kolkata airport during COVID19—ASQ (Airport Service Quality) perspective. Int. J. Health Sci. 2022, 6, 5583–5595. [Google Scholar] [CrossRef]
- Farr, A.C.; Kleinschmidt, T.; Johnson, S.; Yarlagadda, P.K.D.V.; Mengersen, K. Investigating effective wayfinding in airports: A Bayesian network approach. Transport 2014, 29, 90–99. [Google Scholar] [CrossRef]
- Cao, M.; Li, L.; Zhang, Y. Developing a passenger-centered airport: A case study of Urumqi airport in Xinjiang, China. J. Air Transp. Manag. 2023, 108, 102363. [Google Scholar] [CrossRef]
- D’Alonzo, L.; Leva, M.C.; Bucciarelli, E. Comparing Passenger Satisfaction, Employees’ Perspective and Performance on Quality and Safety Indicators: A Field Study. Sustainability 2021, 13, 5636. [Google Scholar] [CrossRef]
- Han, S.; Ham, S.; Yang, I.; Baek, S. Passengers’ perceptions of airline lounges: Importance of attributes that determine usage and service quality measurement. Tour. Manag. 2012, 33, 1103–1111. [Google Scholar] [CrossRef]
- Han, H.; Yu, J.; Kim, W. Airport shopping—An emerging non-aviation business: Triggers of traveler loyalty. J. Travel Tour. Mark. 2018, 35, 835–845. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y. An assessment of passenger experience at Melbourne Airport. J. Air Transp. Manag. 2016, 54, 88–92. [Google Scholar] [CrossRef]
- Antwi, C.O.; Fan, C.-J.; Ihnatushchenko, N.; Aboagye, M.O.; Xu, H. Does the nature of airport terminal service activities matter? Processing and non-processing service quality, passenger affective image and satisfaction. J. Air Transp. Manag. 2020, 89, 101869. [Google Scholar] [CrossRef]
- Mirghafoori, S.H.; Izadi, M.R.; Daei, A. An integrated approach for prioritizing the barriers to airport service quality in an intuitionistic-fuzzy environment. Cogent Bus. Manag. 2018, 5, 1532277. [Google Scholar] [CrossRef]
- OAG. Southeast Asia Aviation Market. 2024. Available online: https://www.oag.com/south-east-asia-aviation-flight-data (accessed on 19 January 2024).
- Skytrax. About Skytrax Rating. 2023. Available online: https://skytraxratings.com/about (accessed on 30 June 2023).
- Punel, A.; Al Hajj Hassan, L.; Ermagun, A. Variations in airline passenger expectation of service quality across the globe. Tour. Manag. 2019, 75, 491–508. [Google Scholar] [CrossRef]
- Shadiyar, A.; Ban, H.-J.; Kim, H.-S. Extracting Key Drivers of Air Passenger’s Experience and Satisfaction through Online Review Analysis. Sustainability 2020, 12, 9188. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mandal, P. Traveler preferences from online reviews: Role of travel goals, class and culture. Tour. Manag. 2020, 80, 104108. [Google Scholar] [CrossRef]
- Mooi, E.; Sarstedt, M. A Concise Guide to Market Research, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019; p. 308. [Google Scholar]
- Wipulanusat, W.; Panuwatwanich, K.; Stewart, R.A.; Arnold, S.L.; Wang, J. Bayesian network revealing pathways to workplace innovation and career satisfaction in the public service. J. Manag. Anal. 2020, 7, 253–280. [Google Scholar] [CrossRef]
- Zhou, Y.; Fenton, N.; Neil, M. Bayesian network approach to multinomial parameter learning using data and expert judgments. Int. J. Approx. Reason. 2014, 55, 1252–1268. [Google Scholar] [CrossRef]
- Zou, W.; Sun, Y.; Zhou, Y.; Lu, Q.; Nie, Y.; Sun, T.; Peng, L. Limited Sensing and Deep Data Mining: A New Exploration of Developing City-Wide Parking Guidance Systems. IEEE Intell. Transp. Syst. Mag. 2022, 14, 198–215. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Peng, W.; Xu, H.; Li, X.; Xu, W. Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18855–18863. [Google Scholar] [CrossRef]
- Leong, L.Y.; Hew, T.S.; Lee, V.H.; Ooi, K.B. An SEM–artificial-neural-network analysis of the relationships between SERVPERF, customer satisfaction and loyalty among low-cost and full-service airline. Expert Syst. Appl. 2015, 42, 6620–6634. [Google Scholar] [CrossRef]
- Kalinic, Z.; Marinkovic, V.; Molinillo, S.; Liébana-Cabanillas, F. A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. J. Retail. Consum. Serv. 2019, 49, 143–153. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS, 7th ed.; Routledge: London, UK, 2020; p. 378. [Google Scholar]
- Häger, D.; Andersen, L.B. A knowledge based approach to loss severity assessment in financial institutions using Bayesian networks and loss determinants. Eur. J. Oper. Res. 2010, 207, 1635–1644. [Google Scholar] [CrossRef]
- Kichhanagari, R.; Motley, R.D.; Duffy, S.A.; Fisher, D.L. Airport Terminal Signs: Use of Advance Guide Signs to Speed Search Times. Transp. Res. Rec. 2002, 1788, 26–32. [Google Scholar] [CrossRef]
- Pamucar, D.; Yazdani, M.; Montero-Simo, M.J.; Araque-Padilla, R.A.; Mohammed, A. Multi-criteria decision analysis towards robust service quality measurement. Expert Syst. Appl. 2021, 170, 114508. [Google Scholar] [CrossRef]
- Kayapınar, S.; Erginel, N. Designing the airport service with fuzzy QFD based on SERVQUAL integrated with a fuzzy multi-objective decision model. Total Qual. Manag. Bus. Excell. 2019, 30, 1429–1448. [Google Scholar] [CrossRef]
- Pantouvakis, A.; Renzi, M.F. Exploring different nationality perceptions of airport service quality. J. Air Transp. Manag. 2016, 52, 90–98. [Google Scholar] [CrossRef]
- Antwi, C.O.; Fan, C.-J.; Nataliia, I.; Aboagye, M.O.; Xu, H.; Azamela, J.C. Do airport staff helpfulness and communication generate behavioral loyalty in transfer passengers? A conditional mediation analysis. J. Retail. Consum. Serv. 2020, 54, 102002. [Google Scholar] [CrossRef]
Passenger Characteristics | Category | Subcategory | Frequency | Percentage |
---|---|---|---|---|
Passenger Experience | Arrival and Departure | 408 | 40.16% | |
Departure Only | 362 | 35.63% | ||
Transit | 146 | 14.37% | ||
Arrival Only | 100 | 9.84% | ||
Passenger Type | Solo Trip | 357 | 35.14% | |
Business Trip | 238 | 23.43% | ||
Family Trip | 224 | 22.05% | ||
Couple Trip | 197 | 19.39% | ||
Passenger by Continent | Asia | Southeast Asia | 452 | 44.49% |
East Asia | 56 | 5.51% | ||
South Asia | 27 | 2.66% | ||
West Asia | 21 | 2.07% | ||
Oceania | Australia and New Zealand | 154 | 15.16% | |
Europe | Northern Europe | 132 | 12.99% | |
Western Europe | 55 | 5.41% | ||
Southern Europe | 9 | 0.89% | ||
Eastern Europe | 8 | 0.79% | ||
North America | North America | 89 | 8.76% | |
Central America | 1 | 0.10% | ||
South America | South America | 2 | 0.20% | |
Africa | Southern Africa | 1 | 0.10% | |
Nonidentified | Nonidentified | 9 | 0.89% |
Attributes | Mean | SD 1 | Overall | Queuing Time | Cleanliness | Seating Areas | Signage | Food Services | Retail Options | Wi-Fi Availability | Staff Courtesy |
---|---|---|---|---|---|---|---|---|---|---|---|
Total rating | 4.90 | 3.284 | 1 | ||||||||
Queuing time | 2.76 | 1.555 | 0.804 ** | 1 | |||||||
Cleanliness | 3.33 | 1.414 | 0.759 ** | 0.661 ** | 1 | ||||||
Seating areas | 2.96 | 1.490 | 0.769 ** | 0.659 ** | 0.791 ** | 1 | |||||
Signage | 3.29 | 1.426 | 0.766 ** | 0.651 ** | 0.720 ** | 0.742 ** | 1 | ||||
Food services | 2.91 | 1.497 | 0.761 ** | 0.625 ** | 0.717 ** | 0.767 ** | 0.714 ** | 1 | |||
Retail options | 2.92 | 1.472 | 0.763 ** | 0.633 ** | 0.712 ** | 0.742 ** | 0.708 ** | 0.846 ** | 1 | ||
Wi-Fi availability | 3.05 | 1.487 | 0.665 ** | 0.610 ** | 0.632 ** | 0.620 ** | 0.622 ** | 0.616 ** | 0.606 ** | 1 | |
Staff courtesy | 2.91 | 1.557 | 0.805** | 0.705 ** | 0.682 ** | 0.673 ** | 0.682 ** | 0.667 ** | 0.666 ** | 0.619 ** | 1 |
Hypothesis Path | B | Standard Error | β | t Value | Decision | VIF |
---|---|---|---|---|---|---|
Constant | −1.930 | 0.118 | - | −16.363 ** | - | - |
H1: Queuing time → Total airport rating | 0.630 | 0.043 | 0.298 | 14.591 ** | Supported | 2.476 |
H2: Cleanliness → Total airport rating | 0.167 | 0.055 | 0.072 | 3.017 * | Supported | 3.380 |
H3: Seating areas → Total airport rating | 0.185 | 0.056 | 0.084 | 3.319 * | Supported | 3.800 |
H4: Signage → Total airport rating | 0.288 | 0.052 | 0.125 | 5.581 ** | Supported | 2.972 |
H5: Food services → Total airport rating | 0.199 | 0.059 | 0.091 | 3.356 * | Supported | 4.327 |
H6: Retail options → Total airport rating | 0.244 | 0.058 | 0.109 | 4.175 ** | Supported | 4.069 |
H7: Wi-Fi availability → Total airport rating | 0.064 | 0.041 | 0.029 | 1.558 | Not Supported | 2.070 |
H8: Staff courtesy → Total airport rating | 0.532 | 0.045 | 0.252 | 11.785 ** | Supported | 2.719 |
Sample | Observation | Prediction | |||
---|---|---|---|---|---|
Low | Medium | High | Percent Accuracy | ||
Training | Low | 302 | 23 | 9 | 90.4% |
Medium | 44 | 42 | 24 | 38.2% | |
High | 3 | 26 | 232 | 88.9% | |
Overall Percent | 49.5% | 12.9% | 37.6% | 81.7% | |
Testing | Low | 121 | 7 | 2 | 93.1% |
Medium | 26 | 10 | 21 | 17.5% | |
High | 3 | 5 | 116 | 93.5% | |
Overall Percent | 48.2% | 7.1% | 44.7% | 79.4% |
Attribute | Importance | Normalized Importance |
---|---|---|
Queuing time | 0.220 | 100.0% |
Staff courtesy | 0.211 | 96.0% |
Seating areas | 0.161 | 73.4% |
Signage | 0.135 | 61.3% |
Retail options | 0.095 | 43.1% |
Food services | 0.092 | 42.0% |
Cleanliness | 0.087 | 39.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pholsook, T.; Wipulanusat, W.; Ratanavaraha, V. A Hybrid MRA-BN-NN Approach for Analyzing Airport Service Based on User-Generated Contents. Sustainability 2024, 16, 1164. https://doi.org/10.3390/su16031164
Pholsook T, Wipulanusat W, Ratanavaraha V. A Hybrid MRA-BN-NN Approach for Analyzing Airport Service Based on User-Generated Contents. Sustainability. 2024; 16(3):1164. https://doi.org/10.3390/su16031164
Chicago/Turabian StylePholsook, Thitinan, Warit Wipulanusat, and Vatanavongs Ratanavaraha. 2024. "A Hybrid MRA-BN-NN Approach for Analyzing Airport Service Based on User-Generated Contents" Sustainability 16, no. 3: 1164. https://doi.org/10.3390/su16031164
APA StylePholsook, T., Wipulanusat, W., & Ratanavaraha, V. (2024). A Hybrid MRA-BN-NN Approach for Analyzing Airport Service Based on User-Generated Contents. Sustainability, 16(3), 1164. https://doi.org/10.3390/su16031164