From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies
Abstract
:1. Introduction
- To present a comprehensive overview of solar adaptive facades and building integrated photovoltaics (BIPVs) while offering a design-focused discussion on the strengths and weaknesses of three selected PV technologies;
- To extract and present solar adaptation aspects in plants;
- To explore the integration of photovoltaic (PV) technologies with plant-inspired solar adaptive design for building envelopes.
2. Research Methodology
3. Solar Adaptive Facades
- Maximal light transmission—this aims to optimize the entry of natural light into the building.
- Selective transmission of thermal solar radiation—this focuses on allowing specific wavelengths of solar radiation that contribute to heating while blocking others.
- Selective transmission of light and the guidance/tracing of light—this involves controlling the passage of light to enhance daylighting and visual comfort, and reduce the need for artificial lighting, thus improving thermal comfort [28].
4. Building Integrated Photovoltaics (BIPVs)
4.1. Crystalline Silicon (c-Si) PV Cells
4.2. Perovskite Solar Cells (PSCs)
4.3. Organic Photovoltaic (OPV) Cells
4.4. Summary—Comparative Analysis of Crystalline Silicon, Perovskite and Organic Solar Cells
5. Solar Adaptation in Plants
5.1. Light Harvesting—Maximizing Light Exposure
5.2. Light Regulating—Minimizing Light Exposure
5.3. Thermoregulation
5.4. Summary: Solar Adaptation Factors in Plants
- Orientation: Curved leaves (CL), Leaves pointing upward (LU);
- Surface area to volume ratio (SA:V ratio): Reduced surface area (RS), Thin Leaves (TL), Needle-like leaves (NL), Big, long leaves (BL), Hand-shaped Leaves (HL), Large surface area (LS);
- Arrangement: Needle-like leaves (NL), Sun and shade leaves (SS);
- Reflectivity: Waxy layer on the leaf/stem (WL), Hairy leaves (WL), Waxy layer on the underside of the leaf (WU).
6. Integrated Approach—From Flora to Solar Facades
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape Morphing Solar Shadings: A Review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [Google Scholar] [CrossRef]
- Tabadkani, A.; Valinejad Shoubi, M.; Soflaei, F.; Banihashemi, S. Integrated Parametric Design of Adaptive Facades for User’s Visual Comfort. Autom. Constr. 2019, 106, 102857. [Google Scholar] [CrossRef]
- Badarnah, L.; Kadri, U. A Methodology for the Generation of Biomimetic Design Concepts. Archit. Sci. Rev. 2015, 58, 120–133. [Google Scholar] [CrossRef]
- Fu, S.C.; Zhong, X.L.; Zhang, Y.; Lai, T.W.; Chan, K.C.; Lee, K.Y.; Chao, C.Y.H. Bio-Inspired Cooling Technologies and the Applications in Buildings. Energy Build. 2020, 225, 110313. [Google Scholar] [CrossRef]
- Jalali, S.; Davies, A.; Badarnah, L.; Nicoletti, E. Design Lessons from Plant for Adaptive Solar Skins. In Proceedings of the SEEDS Conference 2022 (International Conference for Sustainable Ecological Engineering Design for Society), Bristol, UK, 31 August–2 September 2022. [Google Scholar]
- Tabadkani, A.; Roetzel, A.; Li, H.X.; Tsangrassoulis, A. Design Approaches and Typologies of Adaptive Facades: A Review. Autom. Constr. 2021, 121, 103450. [Google Scholar] [CrossRef]
- Badarnah, L. Form Follows Environment: Biomimetic Approaches to Building Envelope Design for Environmental Adaptation. Buildings 2017, 7, 40. [Google Scholar] [CrossRef]
- Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins. Buildings 2020, 10, 114. [Google Scholar] [CrossRef]
- Premier, A. Solar Shading Devices Integrating Smart Materials: An Overview of Projects, Prototypes and Products for Advanced Façade Design. Archit. Sci. Rev. 2019, 62, 455–465. [Google Scholar] [CrossRef]
- Powell, D.; Hischier, I.; Jayathissa, P.; Svetozarevic, B.; Schlüter, A. A Reflective Adaptive Solar Façade for Multi-Building Energy and Comfort Management. Energy Build. 2018, 177, 303–315. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A Comprehensive Review of Solar Facades. Opaque Solar Facades. Renew. Sustain. Energy Rev. 2012, 16, 2820–2832. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A Comprehensive Review of Solar Facades. Transparent and Translucent Solar Facades. Renew. Sustain. Energy Rev. 2012, 16, 2643–2651. [Google Scholar] [CrossRef]
- Lai, C.-M.; Hokoi, S. Solar Façades: A Review. Build. Environ. 2015, 91, 152–165. [Google Scholar] [CrossRef]
- Sadatifar, S.; Johlin, E. Multi-Objective Optimization of Building Integrated Photovoltaic Solar Shades. Sol. Energy 2022, 242, 191–200. [Google Scholar] [CrossRef]
- Nagy, Z.; Svetozarevic, B.; Jayathissa, P.; Begle, M.; Hofer, J.; Lydon, G.; Willmann, A.; Schlueter, A. The Adaptive Solar Facade: From Concept to Prototypes. Front. Archit. Res. 2016, 5, 143–156. [Google Scholar] [CrossRef]
- Jalali, S.; Nicoletti, E.; Badarnah, L. Potential Applications of Photovoltaic Technologies for Biomimetic Adaptive Solar Building Envelopes; University of Suffolk: Ipswich, UK, 2023. [Google Scholar]
- Gordon, J.E.; Mattis, D.C. The New Science of Strong Materials, or, Why You Don’t Fall through the Floor. Am. J. Phys. 1985, 53, 508–509. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Bosch, M.; Donnison, I.; Spear, M.; Ormondroyd, G. Exploring Design Principles of Biological and Living Building Envelopes: What Can We Learn from Plant Cell Walls? Intell. Build. Int. 2018, 10, 78–102. [Google Scholar] [CrossRef]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of Technological Design Options for Building Integrated Photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Info. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Luther, M.; Altomonte, S. Natural and Environmentally Responsive Building Envelopes. In Proceedings of the 37th International Conference on Environmental Systems (ICES), Chicago, IL, USA, 9–12 July 2007; Society of Automotive Engineers: Warrendale, PA, USA, 2007; pp. 1–12. [Google Scholar]
- Knaack, U.; Klein, T.; Bilow, M.; Auer, T. Façades: Principles of ConstructionSecond and Revised Edition; Birkhäuser: Basel, Switzerland, 2014; ISBN 9783038211457. [Google Scholar]
- Hubert, T.; Dugué, A.; Vogt Wu, T.; Aujard, F.; Bruneau, D. An Adaptive Building Skin Concept Resulting from a New Bioinspiration Process: Design, Prototyping, and Characterization. Energies 2022, 15, 891. [Google Scholar] [CrossRef]
- Parsaee, M.; Demers, C.M.; Hébert, M.; Lalonde, J.-F.; Potvin, A. Biophilic, Photobiological and Energy-Efficient Design Framework of Adaptive Building Façades for Northern Canada. Indoor Built Environ. 2020, 30, 665–691. [Google Scholar] [CrossRef]
- Kim, H.; Clayton, M.J. A Multi-Objective Optimization Approach for Climate-Adaptive Building Envelope Design Using Parametric Behavior Maps. Build Environ. 2020, 185, 107292. [Google Scholar] [CrossRef]
- Loonen, R.C.; Trčka, M.; Cóstola, D.; Hensen, J.L. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef]
- De Luca, F.; Dogan, T.; Sepúlveda, A. Reverse Solar Envelope Method. A New Building Form-Finding Method That Can Take Regulatory Frameworks into Account. Autom. Constr. 2021, 123, 103518. [Google Scholar] [CrossRef]
- Gosztonyi, S.; Brychta, M.; Gruber, P. Challenging the Engineering View: Comparative Analysis of Technological and Biological Functions Targeting Energy Efficient Facade Systems. WIT Trans. Ecol. Environ. 2010, 138, 491–502. [Google Scholar]
- Badarnah, L.; Knaack, U. Organizational Features in Leaves for Application in Shading Systems for Building Envelopes. WIT Trans. Ecol. Environ 2008, 114, 87–96. [Google Scholar]
- Badarnah, L.; Zolotovsky, K. Chapter 15—Morphological Differentiation for the Environmental Adaptation of Biomimetic Buildings: Skins, Surfaces, and Structures. In Biomimicry for Materials, Design and Habitats; Eggermont, M., Shyam, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 439–466. ISBN 978-0-12-821053-6. [Google Scholar]
- Velikov, K.; Thün, G. Responsive Building Envelopes: Characteristics and Evolving Paradigms. In Design and Construction of High Performance Homes; Trubiano, F., Ed.; Routledge: Oxfordshire, UK, 2013; pp. 75–92. [Google Scholar]
- Monteleone, A.; Rodonò, G.; Gagliano, A.; Sapienza, V. SLICE: An Innovative Photovoltaic Solution for Adaptive Envelope Prototyping and Testing in a Relevant Environment. Sustainability 2021, 13, 8701. [Google Scholar] [CrossRef]
- Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A. Optimising Building Net Energy Demand with Dynamic BIPV Shading. Appl. Energy. 2017, 202, 726–735. [Google Scholar] [CrossRef]
- Zarzycki, A.; Decker, M. Climate-Adaptive Buildings: Systems and Materials. Int. J. Archit. Comput. 2019, 17, 166–184. [Google Scholar] [CrossRef]
- Raugei, M.; Frankl, P. Life Cycle Impacts and Costs of Photovoltaic Systems: Current State of the Art and Future Outlooks. Energy 2009, 34, 392–399. [Google Scholar] [CrossRef]
- Jelle, B.P.; Breivik, C.; Røkenes, H.D. Building Integrated Photovoltaic Products: A State-of-the-Art Review and Future Research Opportunities. Sol. Energy Mater. Sol. Cells 2012, 100, 82. [Google Scholar]
- Henemann, A. BIPV: Built-in Solar Energy. Renew. Energy Focus 2008, 9, 14–19. [Google Scholar] [CrossRef]
- Xu, X.; Dessel, S. Van Evaluation of an Active Building Envelope Window-System. Build Environ. 2008, 43, 1785–1791. [Google Scholar] [CrossRef]
- Corrao, R. Mechanical Tests on Innovative BIPV Façade Components for Energy, Seismic, and Aesthetic Renovation of High-Rise Buildings. Sustainability 2018, 10, 4523. [Google Scholar] [CrossRef]
- Lee, C.; Lee, H.; Choi, M.; Yoon, J. Design Optimization and Experimental Evaluation of Photovoltaic Double Skin Facade. Energy Build. 2019, 202, 109314. [Google Scholar] [CrossRef]
- Okil, M.; Salem, M.S.; Abdolkader, T.M.; Shaker, A. From Crystalline to Low-Cost Silicon-Based Solar Cells: A Review. Silicon 2021, 14, 1895–1911. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. A Comprehensive Review on Design of Building Integrated Photovoltaic System. Energy Build. 2016, 128, 102–104. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Xiao, S.; Gu, X. Review of Status Developments of High-Efficiency Crystalline Silicon Solar Cells. J. Phys. D Appl. Phys. 2018, 51, 123001. [Google Scholar] [CrossRef]
- Heinstein, P.; Ballif, C.; Perret-Aebi, L.-E. Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths. Green 2013, 3, 125–156. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic Solar Energy: Conceptual Framework. Renew. Sustain. Energy Rev. 2017, 74, 593. [Google Scholar] [CrossRef]
- Assadi, M.K.; Bakhoda, S.; Saidur, R.; Hanaei, H. Recent Progress in Perovskite Solar Cells. Renew. Sustain. Energy Rev. 2018, 81, 2812–2822. [Google Scholar] [CrossRef]
- Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.-Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Seok, S., II; Lee, J.; Seo, J. A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Qiu, L.; Ono, L.K.; Qi, Y. Advances and Challenges to the Commercialization of Organic–Inorganic Halide Perovskite Solar Cell Technology. Mater. Today Energy 2018, 7, 169–189. [Google Scholar] [CrossRef]
- Kumar, N.S.; Naidu, K.C.B. A Review on Perovskite Solar Cells (PSCs), Materials and Applications. J. Mater. 2021, 7, 940–956. [Google Scholar]
- Park, M.; Kim, H.J.; Jeong, I.; Lee, J.; Lee, H.; Son, H.J.; Kim, D.; Ko, M.J. Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Adv. Energy Mater. 2015, 5, 1501406. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Perovskite Solar Cells for BIPV Application: A Review. Buildings 2020, 10, 129. [Google Scholar] [CrossRef]
- Ahmad, M.; Amelot, D.; Cruguel, H.; Patil, B.R.; Ahmadpour, M.; Giangrisostomi, E.; Ovsyannikov, R.; Silly, M.G.; Dudy, L.; Madsen, M. Unveiling the Energy Alignment across Ultrathin 4P-NPD Hole Extraction Interlayers in Organic Solar Cells. ACS Appl. Energy Mater. 2022, 5, 5018–5025. [Google Scholar] [CrossRef]
- Hinsch, A.; Brandt, H.; Veurman, W.; Hemming, S.; Nittel, M.; Würfel, U.; Putyra, P.; Lang-Koetz, C.; Stabe, M.; Beucker, S. Dye Solar Modules for Facade Applications: Recent Results from Project ColorSol. Sol. Energy Mater. Sol. Cells 2009, 93, 820–824. [Google Scholar] [CrossRef]
- Darling, S.B.; You, F. The Case for Organic Photovoltaics. RSC Adv. 2013, 3, 17633–17648. [Google Scholar] [CrossRef]
- Burgués-Ceballos, I.; Lucera, L.; Tiwana, P.; Ocytko, K.; Tan, L.W.; Kowalski, S.; Snow, J.; Pron, A.; Bürckstümmer, H.; Blouin, N. Transparent Organic Photovoltaics: A Strategic Niche to Advance Commercialization. Joule 2021, 5, 2261–2272. [Google Scholar] [CrossRef]
- Ghosh, B.K.; Jha, P.K.; Ghosh, S.K.; Biswas, T.K. Organic Solar Cells Pros and Cons: Outlooks toward Semitransparent Cell Efficiency and Stability. AIP Adv. 2023, 13, 020701. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.; Yang, H. A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems. Energies 2018, 11, 3157. [Google Scholar] [CrossRef]
- Rhee, S.; An, K.; Kang, K.-T. Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications. Crystals 2020, 11, 39. [Google Scholar] [CrossRef]
- Farahat, M.E.; Welch, G.C. N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants 2023, 2, 151–178. [Google Scholar] [CrossRef]
- Pearsall, N. The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment; Woodhead Publishing: Cambridge, UK, 2016; ISBN 1782423540. [Google Scholar]
- Badarnah, L. Light Management Lessons from Nature for Building Applications. Procedia Eng. 2016, 145, 595–602. [Google Scholar] [CrossRef]
- Kevan, P.G. Thermoregulation in Arctic Insects and Flowers: Adaptation and Co-Adaptation in Behaviour, Anatomy, and Physiology. In Thermal Physiology; Elsevier Science Publishers B.V. (Biomedical Division): Amsterdam, The Netherlands, 1989; pp. 747–753. [Google Scholar]
- Jalali, S.; Aliabadi, M.; Mahdavinejad, M. Learning from Plants: A New Framework to Approach Water-Harvesting Design Concepts. Int. J. Build. Pathol. Adapt. 2021, 40, 405–421. [Google Scholar] [CrossRef]
- Esteso-Martínez, J.; Valladares, F.; Camarero, J.J.; Gil-Pelegrín, E. Crown Architecture and Leaf Habit Are Associated with Intrinsically Different Light-Harvesting Efficiencies in Quercus Seedlings from Contrasting Environments. Ann. For. Sci. 2006, 63, 511–518. [Google Scholar] [CrossRef]
- Jones, H.G.; Rotenberg, E. Energy, Radiation and Temperature Regulation in Plants. Encycl. Life Sci. 2001, 8, 1–7. [Google Scholar]
- Di Prisco, G.; Edwards, H.G.M.; Elster, J.; Huiskes, A.H.L. Life in Extreme Environments: Insights in Biological Capability; Cambridge University Press: Cambridge, UK, 2020; ISBN 1108580270. [Google Scholar]
- De Micco, V.; Aronne, G. Morpho-Anatomical Traits for Plant Adaptation to Drought. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–61. [Google Scholar]
- Grašič, M.; Dacar, M.; Gaberščik, A. Comparative Study of Temporal Changes in Pigments and Optical Properties in Sepals of Helleborus Odorus and H. Niger from Prebloom to Seed Production. Plants 2021, 11, 119. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Tracking Seasonal Changes of Leaf and Canopy Light Use Efficiency in a Phlomis Fruticosa Mediterranean Ecosystem Using Field Measurements and Multi-Angular Satellite Hyperspectral Imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 138–151. [Google Scholar] [CrossRef]
- Ladux, F.J.; Trentacoste, E.R.; Searles, P.S.; Rousseaux, M.C. Light Quality Environment and Photomorphological Responses of Young Olive Trees. Horticulturae 2021, 7, 369. [Google Scholar] [CrossRef]
- Sprugel, D.G.; Brooks, J.R.; Hinckley, T.M. Effects of Light on Shoot Geometry and Needle Morphology in Abies Amabilis. Tree Physiol. 1996, 16, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, N. Encyclopedia of House Plants; Taylor & Francis: Abingdon, UK, 1999; ISBN 1579581080. [Google Scholar]
- Baldini, E.; Facini, O.; Nerozzi, F.; Rossi, F.; Rotondi, A. Leaf Characteristics and Optical Properties of Different Woody Species. Trees 1997, 12, 73–81. [Google Scholar] [CrossRef]
- Mezghani, M.A.; Hassouna, G.; Ibtissem, L.; Labidi, F. Leaf Area Index and Light Distribution in Olive Tree Canopies. Int. J. Agron. Agric. Res. 2016, 8, 60–65. [Google Scholar]
- Papageorgiou, A.C.; Kostoudi, C.; Sorotos, I.; Varsamis, G.; Korakis, G.; Drouzas, A.D. Diversity in Needle Morphology and Genetic Markers in a Marginal Abies Cephalonica (Pinaceae) Population. Ann. For. Res. 2015, 58, 217–234. [Google Scholar] [CrossRef]
- Gentner, D. Structure-Mapping: A Theoretical Framework for Analogy. Cogn. Sci. 1983, 7, 155–170. [Google Scholar]
- Shi, X.; Wang, Y.; Li, M.; Wang, N.; Guan, P. Primary Structure of Stem and Leaf and Biological Development Characteristics of Secretary Canals in Fatsia Japonica. Guizhou Agric. Sci. 2009, 9, 43–45. [Google Scholar]
- Durai Prabhakaran, R.T.; Spear, M.J.; Curling, S.; Wootton-Beard, P.; Jones, P.; Donnison, I.; Ormondroyd, G.A. Plants and Architecture: The Role of Biology and Biomimetics in Materials Development for Buildings. Intell. Build. Int. 2019, 11, 178–211. [Google Scholar] [CrossRef]
- Nachtigall, W.; Pohl, G. Bau-Bionik: Natur-Analogien-Technik; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 3540889957. [Google Scholar]
- Speck, T.; Speck, O.; Beheshti, N.; McIntosh, A.C. Process Sequences in Biomimetic Research. Des. Nat. IV 2008, 114, 3–11. [Google Scholar]
- Badarnah Kadri, L. Towards the LIVING Envelope: Biomimetics for Building Envelope Adaptation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Charpentier, L.; Cruz, E.; Nenov, T.; Guidoux, K.; Ware, S. Pho’liage: Towards a Kinetic Biomimetic Thermoregulating Façade. In Bionics and Sustainable Design; Springer Nature: Singapore, 2022; pp. 367–401. [Google Scholar]
- Atzeri, A.; Cappelletti, F.; Gasparella, A. Internal versus External Shading Devices Performance in Office Buildings. Energy Procedia 2014, 45, 463–472. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y.; Yan, H.; Gu, Z.; Zhao, T.; Zhang, R.; Pan, B.; Dong, L.; Liu, M.; Jiang, L. Sunflower-Pith-Inspired Anisotropic Auxetic Mechanics from Dual-Gradient Cellular Structures. Matter 2023, 6, 1569–1584. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.; Tafrihi, E. Heat-Actuated Auxetic Facades. In Proceedings of the Facade Tectonics 2018 World Congress, Los Angeles, CA, USA, 12–13 March 2018; pp. 1–11. [Google Scholar]
- Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 1 January 2024).
- Sustainable Development Goal 11 (Sustainable Cities and Communities). Available online: https://www.un.org/sustainabledevelopment/cities/ (accessed on 1 January 2024).
- Aelenei, L.E.; Aelenei, D.; Romano, R.; Mazzucchelli, E.S.; Brzezicki, M.; Rico-Martinez, J.M. Case Studies: Adaptive Facade Network; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Vazquez, E.; Correa, D.; Poppinga, S. A Review of and Taxonomy for Elastic Kinetic Building Envelopes. J. Build. Eng. 2023, 82, 108227. [Google Scholar] [CrossRef]
- Sarkın, A.S.; Ekren, N.; Sağlam, Ş. A Review of Anti-Reflection and Self-Cleaning Coatings on Photovoltaic Panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Liang, H.; Wang, F.; Yang, L.; Cheng, Z.; Shuai, Y.; Tan, H. Progress in Full Spectrum Solar Energy Utilization by Spectral Beam Splitting Hybrid PV/T System. Renew. Sustain. Energy Rev. 2021, 141, 110785. [Google Scholar] [CrossRef]
- Dyson, A.; Stark, P.R.H.; Jensen, M.K. Integrated Concentrating (IC) Solar Façade System. In Proceedings of the DOE Solar Energy Technologies Program Review Meeting, Denver, CO, USA, 17–19 April 2007. [Google Scholar]
- Novelli, N.; Shultz, J.; Dyson, A. Development of a Modeling Strategy for Adaptive Multifunctional Solar Energy Building Envelope Systems. In Proceedings of the SpringSim (SimAUD), Norfolk, VA, USA, 25–29 March 2015; pp. 35–42. [Google Scholar]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Dewi, H.A.; Mathews, N.; Mhaisalkar, S.; Bruno, A. Colorful Perovskite Solar Cells: Progress, Strategies, and Potentials. J. Phys. Chem. Lett. 2021, 12, 1321–1329. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; van der Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a Circular Supply Chain for PV Modules: Review of Today’s Challenges in PV Recycling, Refurbishment and Re-certification. Prog. Photovolt. Res. Appl. 2020, 28, 454–464. [Google Scholar] [CrossRef]
- Patel, M.; Ghosh, S.; Park, J.E.; Song, J.; Kim, D.-W.; Kim, J. A Study of the Optical Properties of Wide Bandgap Oxides for a Transparent Photovoltaics Platform. J. Mater. Chem. C Mater. 2023, 11, 14559–14570. [Google Scholar] [CrossRef]
- Xue, Q.; Xia, R.; Brabec, C.J.; Yip, H.-L. Recent Advances in Semi-Transparent Polymer and Perovskite Solar Cells for Power Generating Window Applications. Energy Environ. Sci. 2018, 11, 1688–1709. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of Highly Transparent Photovoltaics for Distributed Applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Wan, F.; Fu, C.; Xu, C.-H.; Liang, F.-X.; Luo, L.-B. Progress in Ultraviolet Photodetectors Based on II–VI Group Compound Semiconductors. J. Mater. Chem. C Mater. 2022, 10, 12929–12946. [Google Scholar] [CrossRef]
PV Cells | Advantages | Disadvantages | Design Potentials for Integration with Bio-ASBEs |
---|---|---|---|
Crystalline silicon (c-Si) solar cells [41,44] |
|
| Crystalline silicon PVs’ integration with Bio-ASBEs would pose challenges due to their opaque, rigid, heavy nature. Nevertheless, depending on the design concept, their advantages can outweigh their disadvantages. |
Perovskite solar cells (PSCs) [49,51,58,61] |
|
| Perovskite cells demonstrate the capacity to integrate with Bio-ASBEs, aligning effectively with the adaptability demanded by Bio-ASBEs due to their flexible, printable, semi-transparent nature. |
Organic solar cells (OPV) [19,42,53,54,55,56,60] |
|
| The potential offered by integrating the lightweight, flexible, semi-transparent/transparent and reconfigurable attributes of OPVs with the adaptable features of Bio-ASBEs is highly promising. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali, S.; Nicoletti, E.; Badarnah, L. From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies. Sustainability 2024, 16, 1145. https://doi.org/10.3390/su16031145
Jalali S, Nicoletti E, Badarnah L. From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies. Sustainability. 2024; 16(3):1145. https://doi.org/10.3390/su16031145
Chicago/Turabian StyleJalali, Sara, Eleonora Nicoletti, and Lidia Badarnah. 2024. "From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies" Sustainability 16, no. 3: 1145. https://doi.org/10.3390/su16031145
APA StyleJalali, S., Nicoletti, E., & Badarnah, L. (2024). From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies. Sustainability, 16(3), 1145. https://doi.org/10.3390/su16031145