Role of Bioavailability in Compost Maturity During Aerobic Composting of Chicken Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Feedstocks and Reactor
2.2. Design of Experimental Treatment
2.3. Material Characteristic Analysis
2.4. Sampling and Data Analysis
2.5. Statistical Analyses
3. Results and Discussion
3.1. Analysis of Basic Properties of Raw Materials
3.2. Physicochemical Properties of Compost
3.3. Analysis of Compost Maturity
3.4. Bacterial Dynamics During Composting
3.5. Co-Occurrence Networks of Microbial and Environmental Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, Z.; Zhuang, M.; Hellegers, P.; Cui, Z.; Hoffland, E. Towards circular nitrogen use in the agri-food system at village and county level in China. Agric. Syst. 2023, 209, 103683. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Liu, L.; Liu, X.; Qiu, F.; Ma, X. Development and environmental impacts of China’s livestock and poultry breeding. J. Clean. Prod. 2022, 371, 133586. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, T.; Yuan, Z.; Tian, J.; Zhao, N. Spatial patterns in pollution discharges from livestock and poultry farm and the linkage between manure nutrients load and the carrying capacity of croplands in China. Sci. Total Environ. 2023, 901, 166006. [Google Scholar] [CrossRef] [PubMed]
- Pajura, R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis—A recent review. Sci. Total Environ. 2024, 912, 169221. [Google Scholar] [CrossRef]
- Li, H.; Tan, L.; Liu, W.; Li, X.; Zhang, D.; Xu, Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. Sci. Total Environ. 2023, 874, 162522. [Google Scholar] [CrossRef]
- Fu, T.; Shangguan, H.Y.; Wei, J.R.; Wu, J.X.; Tang, J.H.; Zeng, R.J.; Zhou, S.G. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting. J. Hazard. Mater. 2022, 426, 127846. [Google Scholar] [CrossRef]
- Waszkielis, K.M.; Wronowski, R.; Chlebus, W.; Białobrzewski, I.; Dach, J.; Pilarski, K.; Janczak, D. The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol. Eng. 2013, 61, 354–357. [Google Scholar] [CrossRef]
- Yamada, T.; Miyauchi, K.; Ueda, H.; Ueda, Y.; Sugawara, H.; Nakai, Y.; Endo, G. Composting Cattle Dung Wastes by Using a Hyperthermophilic Pre-treatment Process: Characterization by Physicochemical and Molecular Biological Analysis. J. Biosci. Bioeng. 2007, 104, 408–415. [Google Scholar] [CrossRef]
- Tang, J.; Li, X.; Zhao, W.; Wang, Y.; Cui, P.; Zeng, R.J.; Yu, L.; Zhou, S. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions. Bioresour. Technol. 2019, 279, 234–242. [Google Scholar] [CrossRef]
- Yu, C.; Li, M.; Zhang, B.; Xin, Y.; Tan, W.; Meng, F.; Hou, J.; He, X. Hydrothermal pretreatment contributes to accelerate maturity during the composting of lignocellulosic solid wastes. Bioresour. Technol. 2022, 346, 126587. [Google Scholar] [CrossRef]
- Chang, J.I.; Chen, Y.J. Effects of bulking agents on food waste composting. Bioresour. Technol. 2010, 101, 5917–5924. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.G.; Thuy, B.T.P.; Lin, C.; Vo, D.V.N.; Tran, H.T.; Bahari, M.B.; Le, V.G.; Vu, C.T. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere 2022, 300, 134514. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.Y.; Zhang, L.Y.; Liu, Y.W.; Li, X.Q.; Li, Z.J. Evaluation of composting parameters, technologies and maturity indexes for aerobic manure composting: A meta-analysis. Sci. Total Environ. 2023, 886, 163929. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, Y. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 2018, 248, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- Wang, D.; Mai, L.; Yu, Z.; Wang, K.; Meng, Z.; Wang, X.; Li, Q.; Lin, J.; Wu, D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. Bioresour. Technol. 2024, 391, 129947. [Google Scholar] [CrossRef]
- Jain, M.S.; Paul, S.; Kalamdhad, A.S. Utilization of Biochar as an amendment during lignocellulose waste composting: Impact on composting physics and Realization (probability) amongst physical properties. Process Saf. Environ. Prot. 2019, 121, 229–238. [Google Scholar] [CrossRef]
- Song, B.; Manu, M.K.; Li, D.; Wang, C.; Varjani, S.; Ladumor, N.; Michael, L.; Xu, Y.; Wong, J.W.C. Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Bioresour. Technol. 2021, 341, 125759. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Kulcu, R.; Yaldiz, O. Composting of goat manure and wheat straw using pine cones as a bulking agent. Bioresour. Technol. 2007, 98, 2700–2704. [Google Scholar] [CrossRef]
- Mai, L.; Yan, Y.H.; Lin, J.C.; Liu, H.; Yang, X.; Li, Q.F.; Wang, D.M. Effects of Compound Carbon Source Diets with Different Carbon to Nitrogen Ratios on Growth Performance and Body Nutrient Contents of Black Soldier Fly (Hermetia illucens) Larvae. Chin. J. Anim. Nutr. 2023, 35, 4028–4042. [Google Scholar] [CrossRef]
- Lin, J.; Mao, Y.; Mai, L.; Li, G.; Liu, H.; Peng, S.; Wang, D.; Li, Q.; Yu, Z.; Yuan, J.; et al. Accelerating the humification of mushroom waste by regulating nitrogen sources composition: Deciphering mechanism from bioavailability and molecular perspective. Chemosphere 2024, 349, 140816. [Google Scholar] [CrossRef]
- Ding, X.L.; Han, X.Z.; Liang, Y.; Qiao, Y.F.; Li, L.J.; Li, N. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil. Tillage Res. 2012, 122, 36–41. [Google Scholar] [CrossRef]
- Sheng, H.; Zhou, P.; Zhang, Y.; Kuzyakov, Y.; Zhou, Q.; Ge, T.; Wang, C. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil. Biol. Biochem. 2015, 88, 148–157. [Google Scholar] [CrossRef]
- Wu, J.; Shangguan, H.; Fu, T.; Chen, J.; Tang, J.; Zeng, R.J.; Ye, W.; Zhou, S. Alternating magnetic field mitigates N2O emission during the aerobic composting of chicken manure. J. Hazard. Mater. 2021, 406, 124329. [Google Scholar] [CrossRef]
- Jiang, T.; Ma, X.; Yang, J.; Tang, Q.; Yi, Z.; Chen, M.; Li, G. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting. Bioresour. Technol. 2016, 217, 219–226. [Google Scholar] [CrossRef]
- Shangguan, H.; Fu, T.; Wu, J.; Tang, J.; Zeng, R.J.; Zhou, S. Use of an in situ thermoelectric generator for electric field-assisted aerobic composting. Sci. Total Environ. 2020, 742, 140618. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation—Emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulén, B.; Kirchmann, H. Can Organic Materials Reduce Excess Nutrient Leaching from Manure-Rich Paddock Soils? J. Environ. Qual. 2017, 46, 105–112. [Google Scholar] [CrossRef]
- Choi, D.; Choi, O.Y.; Shin, H.J.; Chung, D.O.; Shin, D.Y. Tylosin production by Streptomyces fradiae using raw cornmeal in airlift bioreactor. J. Microbiol. Biotechnol. 2007, 17, 1071–1078. [Google Scholar]
- Yu, Z.; Tang, J.; Liao, H.; Liu, X.; Zhou, P.; Chen, Z.; Rensing, C.; Zhou, S. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour. Technol. 2018, 265, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, D.; Xie, D.; Wang, Y.; Sun, Y. Production of glycerol by fermentation using osmophilic yeast Candida krusei with different starchy substrates. Enzym. Microb. Technol. 2002, 30, 758–762. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Yang, L.; Yang, G.; Zeng, X.; Qiao, S. Different dietary starch patterns in low-protein diets: Effect on nitrogen efficiency, nutrient metabolism, and intestinal flora in growing pigs. J. Anim. Sci. Biotechnol. 2022, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Puyuelo, B.; Ponsá, S.; Gea, T.; Sánchez, A. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 2011, 85, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Wei, Y.; Zhang, Z.; Zhang, A.K.; Li, Y.; Li, J. Effects of different C/N ratios on the maturity and microbial quantity of composting with sesame meal and rice straw biochar. Biochar 2021, 3, 557–564. [Google Scholar] [CrossRef]
- Jacquin, C.; Lesage, G.; Traber, J.; Pronk, W.; Heran, M. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Res. 2017, 118, 82–92. [Google Scholar] [CrossRef]
- Mi, H.; Shen, C.; Ding, T.T.; Zheng, X.C.; Tang, J.H.; Lin, H.; Zhou, S.G. Identifying the role of array electrodes in improving the compost quality of food waste during electric field-assisted aerobic composting. Bioresour. Technol. 2023, 388, 129763. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, J.; Zhang, X.; Gao, X.; Yin, J.; Wang, G.; Li, J.; Li, G.; Cui, Z.; Yuan, J. Applicability and limitation of compost maturity evaluation indicators: A review. Biochem. Eng. J. 2024, 489, 151386. [Google Scholar] [CrossRef]
- He, X.; Xi, B.; Wei, Z.; Guo, X.; Li, M.; An, D.; Liu, H. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 2011, 82, 541–548. [Google Scholar] [CrossRef]
- Lin, H.; Sun, W.; Yu, Y.; Ding, Y.; Yang, Y.; Zhang, Z.; Ma, J. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. Sci. Total Environ. 2021, 788, 147830. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Shangguan, H.; Fu, T.; Mi, H.; Lin, H.; Huang, L.; Tang, J. Electric field-assisted aerobic co-composting of chicken manure and kitchen waste: Ammonia mitigation and maturation enhancement. Bioresour. Technol. 2024, 391, 129931. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Liu, X.; Sun, L.; He, X.; Wu, Z. Effects of two types nitrogen sources on humification processes and phosphorus dynamics during the aerobic composting of spent mushroom substrate. J. Environ. Manag. 2022, 317, 115453. [Google Scholar] [CrossRef]
- Deng, Y.; Fisher, A.B.; Fong, S.S. Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain. Appl. Microbiol. Biotechnol. 2015, 99, 8089–8100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Liang, B.; Li, J. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Appl. Soil. Ecol. 2017, 121, 82–89. [Google Scholar] [CrossRef]
- Giri, S.; Pati, B.R. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiol. Immunol. Hung. 2004, 51, 47–56. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Zhang, R.; Wei, L.; Cao, R.; Wang, L.; Lou, Z. Variations of nitrogen-metabolizing enzyme activity and microbial community under typical loading conditions in full-scale leachate anoxic/aerobic system. Bioresour. Technol. 2022, 351, 126946. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Olaniyan, O.T.; Wike, N.Y.; Adetunji, J.B.; Adetuyi, B.O.; Inobeme, A.; Ogundolie, F.A.; Akinbo, O.; Dauda, W.P. Chapter Thirteen—Effectiveness of evaporative coolant structures in reducing spoilage microorganisms. In Evaporative Coolers for the Postharvest Management of Fruits and Vegetables; Adetunji, C.O., Hefft, D.I., Mbuge, D.O., Workneh, T.S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 171–184. [Google Scholar]
- Huang, C.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Cheng, M.; Wan, J.; Hu, L.; Zhang, Y. Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. Bioresour. Technol. 2017, 243, 294–303. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Xu, Z.; Liu, Y.; Duan, H. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period. Bioresour. Technol. 2019, 293, 122075. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, C.; Peacock, C.L.; Sørensen, S.J.; Redmile-Gordon, M.A.; Xiao, K.-Q.; Gao, C.; Liu, J.; Huang, Q.; Li, Z.; et al. Cooperative microbial interactions drive spatial segregation in porous environments. Nat. Commun. 2023, 14, 4226. [Google Scholar] [CrossRef]
- Mohee, R.; Mudhoo, A. Analysis of the physical properties of an in-vessel composting matrix. Powder Technol. 2005, 155, 92–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Zhang, S.; Zheng, G.; Han, Z.; Wang, D.; Lin, H. Role of Bioavailability in Compost Maturity During Aerobic Composting of Chicken Manure. Sustainability 2024, 16, 11122. https://doi.org/10.3390/su162411122
Tang J, Zhang S, Zheng G, Han Z, Wang D, Lin H. Role of Bioavailability in Compost Maturity During Aerobic Composting of Chicken Manure. Sustainability. 2024; 16(24):11122. https://doi.org/10.3390/su162411122
Chicago/Turabian StyleTang, Jiahuan, Shuqun Zhang, Guannan Zheng, Zhuoya Han, Dingmei Wang, and Hao Lin. 2024. "Role of Bioavailability in Compost Maturity During Aerobic Composting of Chicken Manure" Sustainability 16, no. 24: 11122. https://doi.org/10.3390/su162411122
APA StyleTang, J., Zhang, S., Zheng, G., Han, Z., Wang, D., & Lin, H. (2024). Role of Bioavailability in Compost Maturity During Aerobic Composting of Chicken Manure. Sustainability, 16(24), 11122. https://doi.org/10.3390/su162411122