Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Area
2.2. Research Methods
2.2.1. Spatiotemporal Evolution of New Energy Vehicle Sales
- 1.
- Trend Analysis
- 2.
- Analysis of spatial differences in sales of NEV
- (1)
- Hotspot analysis
- (2)
- Spatial autocorrelation
- (3)
- Local spatial autocorrelation analysis
2.2.2. Analysis of Driving Factors of New Energy Vehicle Sales
3. Results
3.1. Temporal and Spatial Variation Characteristics of New Energy Vehicle Sales
3.1.1. Temporal Variation Characteristics of New Energy Vehicle Sales
3.1.2. Spatial Variation Characteristics of New Energy Vehicle Sales
3.2. Analysis of Factors Affecting New Energy Vehicle Sales
4. Discussion
4.1. Temporal and Spatial Distribution Characteristics of New Energy Vehicle Sales
4.2. Driving Factors of New Energy Vehicle Sales
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Meng, X.; Tian, J.; Xing, C.; Wang, C.; Wood, J. A Review of Transportation Carbon Emissions Research Using Bibliometric Analyses. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 878–899. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Li, H.; Liu, S.; Zhang, J.; Kong, Y. Systematic Review of Life Cycle Assessments on Carbon Emissions in the Transportation System. Environ. Impact Assess. Rev. 2024, 109, 107618. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Lv, Z.; He, T.; Zhao, J.; Wang, Y.; Gao, F.; Zhang, Z.; Liu, H. Impacts of Vehicle Emission on Air Quality and Human Health in China. Sci. Total Environ. 2022, 813, 152655. [Google Scholar] [CrossRef] [PubMed]
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse Gas Emissions and Reduction Strategies for the World’s Largest Greenhouse Gas Emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-Benefits of CO2 Emission Reduction from China’s Clean Air Actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward Carbon Neutrality in China: Strategies and Countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, Y.; Tan, R.R.; Li, Z.; Wang, S.; Wang, F.; Fang, K. Multi-Objective Energy Planning for China’s Dual Carbon Goals. Sustain. Prod. Consum. 2022, 34, 552–564. [Google Scholar] [CrossRef]
- Ma, H.; Balthasar, F.; Tait, N.; Riera-Palou, X.; Harrison, A. A New Comparison between the Life Cycle Greenhouse Gas Emissions of Battery Electric Vehicles and Internal Combustion Vehicles. Energy Policy 2012, 44, 160–173. [Google Scholar] [CrossRef]
- Su, C.-W.; Yuan, X.; Tao, R.; Umar, M. Can New Energy Vehicles Help to Achieve Carbon Neutrality Targets? J. Environ. Manag. 2021, 297, 113348. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Zhou, G.; Ou, X.; Zhang, X. Development of Electric Vehicles Use in China: A Study from the Perspective of Life-Cycle Energy Consumption and Greenhouse Gas Emissions. Energy Policy 2013, 59, 875–884. [Google Scholar] [CrossRef]
- Ma, J. Notice of the General Office of the State Council on Issuing the New Energy Vehicle Industry Development Plan (2021–2035)_Machinery Manufacturing and Heavy Industry_China Government Network. Available online: https://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm (accessed on 3 December 2024).
- Dua, R. Net-Zero Transport Dialogue: Emerging Developments and the Puzzles They Present. Energy Sustain. Dev. 2024, 82, 101516. [Google Scholar] [CrossRef]
- Martinez, N.; Terrazas-Santamaria, D. Beyond Nearshoring: The Political Economy of Mexico’s Emerging Electric Vehicle Industry. Energy Policy 2024, 195, 114385. [Google Scholar] [CrossRef]
- Haghani, M.; Sprei, F.; Kazemzadeh, K.; Shahhoseini, Z.; Aghaei, J. Trends in Electric Vehicles Research. Transp. Res. Part D Transp. Environ. 2023, 123, 103881. [Google Scholar] [CrossRef]
- Ji, Z.; Huang, X. Plug-in Electric Vehicle Charging Infrastructure Deployment of China towards 2020: Policies, Methodologies, and Challenges. Renew. Sustain. Energy Rev. 2018, 90, 710–727. [Google Scholar] [CrossRef]
- Kasri, A.; Ouari, K.; Belkhier, Y.; Bajaj, M.; Zaitsev, I. Optimizing Electric Vehicle Powertrains Peak Performance with Robust Predictive Direct Torque Control of Induction Motors: A Practical Approach and Experimental Validation. Sci. Rep. 2024, 14, 14977. [Google Scholar] [CrossRef]
- Zakaria, H.; Hamid, M.; Abdellatif, E.M.; Imane, A. Recent Advancements and Developments for Electric Vehicle Technology. In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; pp. 1–6. [Google Scholar]
- Koech, A.K.; Mwandila, G.; Mulolani, F. A Review of Improvements on Electric Vehicle Battery. Heliyon 2024, 10, e34806. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Electric Vehicles Charging Technology Review and Optimal Size Estimation. J. Electr. Eng. Technol. 2020, 15, 2539–2552. [Google Scholar] [CrossRef]
- Spearman Correlation—An Overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/mathematics/spearman-correlation (accessed on 13 November 2024).
- Hamilton, D.F.; Ghert, M. Interpreting Regression Models in Clinical Outcome Studies. Bone Jt. Res. 2015, 4, 152–153. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis–Ord’s Hot- and Cold-Spot Statistics as a Basis for Multivariate Spatial Clustering of Orchard Tree Data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Song, C.; Fang, L.; Xie, M.; Tang, Z.; Zhang, Y.; Tian, F.; Wang, X.; Lin, X.; Liu, Q.; Xu, S.; et al. Revealing Spatiotemporal Inequalities, Hotspots, and Determinants in Healthcare Resource Distribution: Insights from Hospital Beds Panel Data in 2308 Chinese Counties. BMC Public Health 2024, 24, 423. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A. Interpreting Moran Eigenvector Maps with the Getis-Ord Gi* Statistic. Prof. Geogr. 2021, 73, 447–463. [Google Scholar] [CrossRef]
- Getis, A. Spatial Autocorrelation. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 255–278. ISBN 978-3-642-03647-7. [Google Scholar]
- Mathur, M. Spatial Autocorrelation Analysis in Plant Population: An Overview. J. Appl. Nat. Sci. 2015, 7, 501–513. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, W.; Zhang, P.; Song, J. Multidimensional Spatial Autocorrelation Analysis and It’s Application Based on Improved Moran’s I. Earth Sci. Inform. 2023, 16, 3355–3368. [Google Scholar] [CrossRef]
- Mahato, R.K.; Htike, K.M.; Sornlorm, K.; Koro, A.B.; Kafle, A.; Sharma, V. A Spatial Autocorrelation Analysis of Road Traffic Accidents by Severity Using Moran’s I Spatial Statistics: A Study from Nepal 2019–2022. BMC Public Health 2024, 24, 3086. [Google Scholar] [CrossRef]
- Dong, Y.-H.; Peng, F.-L.; Li, H.; Men, Y.-Q. Spatial Autocorrelation and Spatial Heterogeneity of Underground Parking Space Development in Chinese Megacities Based on Multisource Open Data. Appl. Geogr. 2023, 153, 102897. [Google Scholar] [CrossRef]
- Chen, Y. Reconstruction and Normalization of LISA for Spatial Analysis. PLoS ONE 2024, 19, e0303456. [Google Scholar] [CrossRef]
- Chen, Y. An Analytical Process of Spatial Autocorrelation Functions Based on Moran’s Index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef]
- Guo, Q. Chinese Household Consumption: How Much Is Enough? China Financ. Econ. Rev. 2015, 3, 4. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F. Global Gridded GDP Data Set Consistent with the Shared Socioeconomic Pathways. Sci. Data 2022, 9, 221. [Google Scholar] [CrossRef]
- Parekh, S. Impact of Charging Infrastructure on Electric Vehicle Sales: An Analysis from Counties in 13 US States. Gettysbg. Econ. Rev. 2023, 12, 7. [Google Scholar]
- Kumar, R.R.; Chakraborty, A.; Mandal, P. Promoting Electric Vehicle Adoption: Who Should Invest in Charging Infrastructure? Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102295. [Google Scholar] [CrossRef]
- Varghese, A.M.; Menon, N.; Ermagun, A. Equitable Distribution of Electric Vehicle Charging Infrastructure: A Systematic Review. Renew. Sustain. Energy Rev. 2024, 206, 114825. [Google Scholar] [CrossRef]
- Weather in Northern China: Climate, Seasons, and Average Monthly Temperature. Available online: https://www.tripsavvy.com/weather-conditions-in-northern-china-1495471 (accessed on 13 November 2024).
- Frontiers|Subseasonal Reversal of Winter Temperature Over Northeast China in 2014/2015: Role of Arctic Sea Ice. Available online: https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.852673/full (accessed on 13 November 2024).
- Challenges and Development of Lithium-Ion Batteries for Low Temperature Environments. eTransportation 2022, 11, 100145. [CrossRef]
- Sun, B.; Qi, X.; Song, D.; Ruan, H. Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries. Energies 2023, 16, 7142. [Google Scholar] [CrossRef]
- Mukherjee, S.C.; Ryan, L. Factors Influencing Early Battery Electric Vehicle Adoption in Ireland. Renew. Sustain. Energy Rev. 2020, 118, 109504. [Google Scholar] [CrossRef]
- Corradi, C.; Sica, E.; Morone, P. What Drives Electric Vehicle Adoption? Insights from a Systematic Review on European Transport Actors and Behaviours. Energy Res. Soc. Sci. 2023, 95, 102908. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, J.; Hou, J.; Lyu, X. Development Potential Assessment for Wind and Photovoltaic Power Energy Resources in the Main Desert–Gobi–Wilderness Areas of China. Energies 2023, 16, 4559. [Google Scholar] [CrossRef]
- Mekky, M.F.; Collins, A.R. The Impact of State Policies on Electric Vehicle Adoption - A Panel Data Analysis. Renew. Sustain. Energy Rev. 2024, 191, 114014. [Google Scholar] [CrossRef]
Economic development and population | Gross Domestic Product, GDP |
Value-added of the secondary industry, VASI | |
Value-added of the tertiary industry, VATI | |
Proportion of urban population at the end of the year, PUPE | |
Population, POP | |
Residents’ consumption level | Per capita consumption expenditure of urban residents, PCEU |
Employment | Employees of state-owned units, ESOU |
Employees in other units, ESIOU | |
Total number of employed persons, TEP | |
Persons employed in urban collective units, PEUC | |
Infrastructure | The length of the city’s roads, LCR |
The area of the road, ACR | |
Generation, GNR |
Average Sales Volume | Regression Equations | R2 |
---|---|---|
Country | y = 2.69x – 3.82 | 0.79 |
Eastern | y = 5.05x – 6.44 | 0.80 |
Central | y = 2.6x – 4.07 | 0.77 |
Westward | y = 1.24x – 2.15 | 0.76 |
Northeast | y = 0.79x – 1.29 | 0.75 |
Proportion | Eastern | Central | Westward | Northeast |
---|---|---|---|---|
2016 | 72.54% | 17.22% | 8.08% | 2.16% |
2017 | 69.80% | 15.53% | 12.64% | 2.03% |
2018 | 67.57% | 16.88% | 13.07% | 2.48% |
2019 | 67.58% | 15.96% | 14.12% | 2.34% |
2020 | 66.16% | 16.77% | 14.55% | 2.53% |
2021 | 63.24% | 18.39% | 15.94% | 2.43% |
2022 | 60.98% | 18.67% | 17.47% | 2.88% |
average | 66.84% | 17.06% | 13.69% | 2.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, R.; Yang, K.; Peng, Z.; Pan, M.; Su, D.; Zhang, M.; Ma, L.; Ma, J.; Li, T. Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors. Sustainability 2024, 16, 11115. https://doi.org/10.3390/su162411115
Sun R, Yang K, Peng Z, Pan M, Su D, Zhang M, Ma L, Ma J, Li T. Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors. Sustainability. 2024; 16(24):11115. https://doi.org/10.3390/su162411115
Chicago/Turabian StyleSun, Run, Kun Yang, Zongqi Peng, Meie Pan, Danni Su, Mingfeng Zhang, Lusha Ma, Jingcong Ma, and Tao Li. 2024. "Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors" Sustainability 16, no. 24: 11115. https://doi.org/10.3390/su162411115
APA StyleSun, R., Yang, K., Peng, Z., Pan, M., Su, D., Zhang, M., Ma, L., Ma, J., & Li, T. (2024). Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors. Sustainability, 16(24), 11115. https://doi.org/10.3390/su162411115