Optimizing Productivity and Resource Use Efficiency Under a Finger Millet-Based Cropping System
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Location Description
2.2. Crop Management
2.3. Yield Measurement
2.4. Economic Analysis
- 1 USD ≈ 82.57 INR;
- 1 EURO ≈ 89.29 INR;
- 1 CNY ≈ 11.65 INR.
2.5. Intercropping Indices
2.5.1. Main Crop Grain Equivalent Yield
2.5.2. Land Equivalent Ratio (LER)
2.5.3. Area Time Equivalent Ratio (ATER)
2.5.4. Production Use Efficiency (PUE)
2.5.5. Land Utilization Efficiency (LUE)
2.5.6. Relative Value Total (RVT)
2.6. Energy Analysis
2.7. Carbon Footprint
2.8. Statistical Study
3. Results
3.1. Base and Companion Crop Yield
3.2. Main Crop Grain Equivalent Yield (MGEY)
3.3. Yield Attributes of Main and Companion Crop
3.4. Economics
3.5. Intercropping Indices
3.6. Energy Analysis
3.7. Indices of Carbon and Carbon Footprint
4. Discussion
Simple Linear and Multiple Regression Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sukanya, T.S.; Kumar, A.; Sathya, K.; Chaithra, C.; Narayanan, A.L.; Anand, M.R.; Kishore, K.; Shyam, M.; Nag, N.K. Nutricereals Role in Indian Agriculture, Food and Nutritional Security: A Review. Mysore J. Agric. Sci. 2023, 57, 1–10. [Google Scholar]
- Anonymous. Agricultural Statistics at a Glance; Directorate of Economics and Statistics, Government of India: New Delhi, India, 2023. [Google Scholar]
- Jan, R.; Saxena, A.; Jan, R.; Khanday, M.; Jan, R. Intercropping Indices and Yield Attributes of Maize and Black Cowpea under Various Planting Patterns. Bioscan 2016, 11, 1–5. [Google Scholar]
- Chavan, I.B.; Jagtap, D.N.; Mahadkar, U.V. Weed Control Efficiency and Yield of Finger Millet [Eleusine coracana (L.) Gaertn.] Influenced by Different Establishment Techniques, Levels, and Time of Application of Nitrogen. Farming Manag. 2017, 2, 108–113. [Google Scholar] [CrossRef]
- Maitra, S.; Ray, D.P. Enrichment of Biodiversity, Influence on Microbial Population Dynamics of Soil and Nutrient Utilization in Cereal-Legume Intercropping Systems: A Review. Int. J. Bioresour. Sci. 2019, 6, 11–19. [Google Scholar] [CrossRef]
- Kumar, R.M.; Girijesh, G.K. Yield Potential, Biological Feasibility, and Economic Viability of Maize (Zea mays L.) and Local Field Bean (Dolichos lablab L.) Intercropping System in the Southern Transitional Zone of Karnataka. Res. Environ. Life Sci. 2015, 8, 27–30. [Google Scholar]
- Sharma, N.K.; Singh, R.J.; Mandal, D.; Kumar, A.; Alam, N.M.; Keesstra, S. Increasing Farmer’s Income and Reducing Soil Erosion Using Intercropping in Rainfed Maize-Wheat Rotation of Himalaya, India. Agric. Ecosyst. Environ. 2017, 247, 43–53. [Google Scholar] [CrossRef]
- Cannon, N.D.; Kamalongo, D.M.; Conway, J.S. The Effect of Bi-Cropping Wheat (Triticum aestivum) and Beans (Vicia faba) on Forage Yield and Weed Competition. Biol. Agric. Hortic. 2020, 36, 1–15. [Google Scholar] [CrossRef]
- Chamkhi, I.; Cheto, S.; Geistlinger, J.; Zeroual, Y.; Kouisni, L.; Bargaz, A.; Ghoulam, C. Legume-Based Intercropping Systems Promote Beneficial Rhizobacterial Community and Crop Yield Under Stressing Conditions. Ind. Crops Prod. 2022, 183, 114958. [Google Scholar] [CrossRef]
- Rana, K.S.; Choudhary, A.K.; Sepat, S.; Bana, R.S.; Dass, A. Methodological and Analytical Agronomy; Springer: New Delhi, India, 2014; p. 276. [Google Scholar]
- Lal, R.B.; Ray, S. Economics of Different Cropping Intensities. Indian J. Agric. Sci. 1976, 46, 93–96. [Google Scholar]
- Willey, R.W. Intercropping: Its Importance and Research Needs, Competition and Yield Advantages. Field Crop Abstr. 1979, 32, 1–10. [Google Scholar]
- Heibseh, C.K. Interpretation of Yield Obtained in Crop Mixtures; Agronomical Abstract; American Society of Agronomy: Madison, WI, USA, 1978; p. 41. [Google Scholar]
- Mason, S.C.; Leihner, D.E.; Vorst, J.J. Cassava-Cowpea and Cassava-Peanut Intercropping. I. Yield and Land Use Efficiency 1. Agron. J. 1986, 78, 43–46. [Google Scholar] [CrossRef]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mittal, J.P.; Dhawan, K.C. Research Manual on Energy Requirements in Agricultural Sector; ICAR: New Delhi, India, 1988; pp. 20–23. [Google Scholar]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Kumar, B.; Rathore, N.S.; Jat, M.L.; Saharawat, Y.S.; Kuri, B.R. Energy Auditing of Long-Term Conservation Agriculture Based Irrigated Intensive Maize Systems in Semi-Arid Tropics of India. Energy 2018, 142, 289–302. [Google Scholar] [CrossRef]
- Campos, A.T.; Ferreira, W.A.; Yamaguchi, L.C.T.; Resende, H.; Almeida, F.M. Economic and Energy Balances of Maize Silage for Dairy Cattle. Eng. Rural 1998, 9, 1–20. [Google Scholar]
- Green, M.B. Energy in Pesticide Manufacture, Distribution and Use. In Energy in Plant Nutrition and Pest Control; Helsel, Z.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 165–177. [Google Scholar]
- Nassiri, M.S.; Singh, S. Study on Energy Use Efficiency for Paddy Crop Using Data Envelopment Analysis (DEA) Technique. Appl. Energy 2009, 86, 1320–1325. [Google Scholar] [CrossRef]
- Mandal, K.G.; Saha, K.P.; Ghosh, P.K.; Hati, K.M.; Bandyopadhyay, K.K. Bioenergy and Economic Analysis of Soybean-Based Crop Production Systems in Central India. Biomass Bioenergy 2002, 23, 33–45. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, M.S.; Kumar, R.; Meena, R.K.; Kumar, R.; Yadav, M.R.; Kushwaha, M.; Makarana, G.; Bhattacharjee, S.; Kashyap, S. Energy Budgeting and Carbon Footprint Estimation of Fodder Maize Varieties Sown Under Different Nutrient Management Practices in Indo-Gangetic Plains of India. Agronomy 2023, 13, 981. [Google Scholar] [CrossRef]
- Lal, R. Carbon Emission from Farm Operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G.A. Synthesis of Carbon Sequestration, Carbon Emissions, and Net Carbon Flux in Agriculture: Comparing Tillage Practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Deng, J.L. Grey Controlling System. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Basavalingaiah, K.; Paramesh, V.; Parajuli, R.; Girisha, H.C.; Shivaprasad, M.; Vidyashree, G.V.; Thoma, G.; Hanumanthappa, M.; Yogesh, G.S.; Misra, S.D.; et al. Energy Flow and Life Cycle Impact Assessment of Coffee-Pepper Production Systems: An Evaluation of Conventional, Integrated, and Organic Farms in India. Environ. Impact Assess. Rev. 2022, 92, 106687. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Zhang, X.; Tian, G. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China. Sustainability 2015, 7, 15772–15784. [Google Scholar] [CrossRef]
- Sukanya, T.S.; Kumar, A.; Sathya, K.; Narayanan, A.L.; Kishore, K.; Shyam, M.; Nag, N.K.; Chaithra, C. Millet Based Cropping Systems for Enhanced Productivity. In Genetic Improvement of Small Millets; Springer Nature: Singapore, 2024; pp. 63–86. [Google Scholar]
- Stomph, T.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Jensen, E.S.; et al. Designing Intercrops for High Yield, Yield Stability, and Efficient Use of Resources: Are There Principles? Adv. Agron. 2020, 160, 1–50. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-Farm Evaluation of Yield and Economic Benefit of Short-Term Maize-Legume Intercropping Systems Under Conservation Agriculture in Malawi. Field Crops Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Pappa, V.A.; Rees, R.M.; Walker, R.L.; Baddeley, J.A.; Watson, C.A. Legumes Intercropped with Spring Barley Contribute to Increased Biomass Production and Carryover Effects. J. Agric. Sci. 2012, 150, 584–594. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Rai, C.K.; Patnaik, N.M.; Verma, R.K.; Roy, P. Adoption of Sustainable Dryland Technologies for Improving Livelihood of Farmers in Developing Countries. In Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches; Springer Nature: Singapore, 2023; pp. 597–624. [Google Scholar]
- Sukanya, T.S.; Prabhakar; Krishne Gowda, K.T.; Swarna, R.; Hariprasanna, K.; Tonapi, V.A. Good Agronomic Practices for Higher Yield in Small Millets; ICAR-All India Coordinated Research Project on Small Millets, ICAR-Indian Institute of Millets Research: Hyderabad, India, 2022; ISBN 978-93-94673-11-3. [Google Scholar]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Karanja, N.N.; Gachene, C.K.K.; Raza, M.A.; Maitra, S.; Schulte-Geldermann, E. Revisiting Intercropping Indices with Respect to Potato-Legume Intercropping Systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Siddeswaran, K.; Ramaswamy, C.; Morachan, Y.B. Nutrient Uptake of Finger Millet as Influenced by Intercrops, Border Crops, and N Fertilization. Madras Agric. J. 1989, 76, 361–365. [Google Scholar]
- Singh, R.V.; Arya, M.P.S. Nitrogen Requirement of Finger Millet (Eleusine coracana L.) + Pulse Intercropping System. Indian J. Agron. 1999, 44, 47–50. [Google Scholar]
- Keba, W.; Tolemariam, T.; Mohammed, A. Evaluation of Grain/Seed Yield and Yield Components of Finger Millet and Three Vetch Species Intercropped at Various Seeding Ratios at Bako, Ethiopia. Adv. Agric. 2022, 2022, 1608499. [Google Scholar] [CrossRef]
- Manjunath, M.G.; Salakinkop, S.R. Growth and Yield of Soybean and Millets in Intercropping Systems. J. Farm Sci. 2017, 30, 349–353. [Google Scholar]
- Khashayar, R.; Hamid, R.M.; Mohammad, R.V. Effect of Intercropping on Resources Use, Weed Management and Forage Quality. Int. J. Plant Anim. Environ. Sci. 2014, 4, 706–713. [Google Scholar]
- Jakhar, P.; Adhikary, P.P.; Naik, B.S.; Madhu, M. Finger Millet-Groundnut Strip Cropping for Enhanced Productivity and Resource Conservation in Upland of Eastern Ghats of Odisha. Indian J. Agron. 2015, 60, 365–371. [Google Scholar] [CrossRef]
- Manoj, K.N.; Shekara, B.G.; Sridhara, S.; Mudalagiriyappa; Chikkarugi, N.M.; Gopakkali, P.; Jha, P.K.; Vara Prasad, P.V. Carbon Footprint Assessment and Energy Budgeting of Different Annual and Perennial Forage Cropping Systems: A Study from the Semi-Arid Region of Karnataka, India. Agronomy 2022, 12, 1783. [Google Scholar] [CrossRef]
- Rajanna, G.A.; Dass, A.; Singh, K.V.; Choudhary, A.K.; Paramesh, V.; Babu, S.; Upadhyay, P.K.; Sannagoudar, M.S.; Ajay, K.B.V.; Reddy, V. Energy and Carbon Budgeting in a Soybean–Wheat System in Different Tillage, Irrigation and Fertilizer Management Practices in South-Asian Semi-Arid Agroecology. Eur. J. Agron. 2023, 148, 126877. [Google Scholar] [CrossRef]
- Chaudhary, V.P.; Singh, K.K.; Pratibha, G.; Bhattacharyya, R.; Shamim, M.; Srinivas, I.; Patel, A. Energy Conservation and Greenhouse Gas Mitigation Under Different Production Systems in Rice Cultivation. Energy 2017, 130, 307–317. [Google Scholar] [CrossRef]
- Sanam, T.; Triveni, S.; Nerella, S.G.; Ningoji, S.N.; Desai, S. Correlation and Regression Models of Tomato Yield in Response to Plant Growth by Different Bacterial Inoculants and Inoculation Methods. Agron. J. 2021, 114, 452–460. [Google Scholar] [CrossRef]
Treatments | Grain Yield of Main Crop (kg/ha) | Straw Yield of Main Crop (kg/ha) | Main Crop Harvest Index (%) | Grain Yield of Inter-Crop (kg/ha) | MGEY (kg/ha) |
---|---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 1659 | 2666 | 38.57 | 241 | 2025 |
T2: Finger millet + Field bean (6:2) | 1417 | 2510 | 36.04 | 167 | 1671 |
T3: Finger millet + Horse gram (4:2) | 1964 | 3106 | 38.77 | 234 | 2230 |
T4: Finger millet + Horse gram (6:2) | 1610 | 2894 | 38.90 | 184 | 1820 |
T5: Finger millet + Groundnut (4:2) | 2292 | 3537 | 38.89 | 630 | 3065 |
T6: Finger millet + Groundnut (6:2) | 2166 | 3073 | 38.87 | 456 | 2727 |
T7: Finger millet + Niger (4:2) | 1486 | 2441 | 37.75 | 104 | 1680 |
T8: Finger millet + Niger (6:2) | 1806 | 2917 | 38.25 | 79 | 1955 |
T9: Sole crop of Finger millet | 2312 | 3726 | 38.44 | - | 2290 |
T10: Sole crop of Field bean | - | - | - | 587 | 893 |
T11: Sole crop of Horse gram | - | - | - | 425 | 484 |
T12: Sole crop of Groundnut | - | - | - | 999 | 1228 |
T13: Sole crop of Niger | - | - | - | 278 | 523 |
S. Em.± | 64.46 | 116.25 | 0.9 | 17.4 | 62.84 |
C.D. (5%) | 193.26 | 384.51 | 2.69 | 51.03 | 183.41 |
Treatments | Number of Productive Tillers/Hills in Base Crop | Number of Earheads/Hill | Number of Grains/Earhead | 1000 Seed Weight (g) |
---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 3.70 | 11.61 | 1767 | 2.90 |
T2: Finger millet + Field bean (6:2) | 2.62 | 8.81 | 1679 | 2.97 |
T3: Finger millet + Horse gram (4:2) | 3.85 | 12.47 | 1833 | 2.91 |
T4: Finger millet + Horse gram (6:2) | 3.66 | 11.13 | 1732 | 2.90 |
T5: Finger millet + Groundnut (4:2) | 4.19 | 13.83 | 1873 | 3.08 |
T6: Finger millet + Groundnut (6:2) | 4.14 | 13.43 | 1911 | 3.07 |
T7: Finger millet + Niger (4:2) | 3.42 | 10.46 | 1715 | 3.08 |
T8: Finger millet + Niger (6:2) | 3.81 | 11.96 | 1798 | 3.26 |
T9: Sole crop of Finger millet | 4.20 | 14.00 | 1984 | 3.00 |
T10: Sole crop of Field bean | - | - | - | - |
T11: Sole crop of Horse gram | - | - | - | - |
T12: Sole crop of Groundnut | - | - | - | - |
T13: Sole crop of Niger | - | - | - | - |
S. Em.± | 0.13 | 0.4 | 59.12 | 0.10 |
C.D. (5%) | 0.38 | 1.21 | 177.25 | 0.30 |
Treatments | Number of Branches/Plants | Number of Pods/Plant or Capitula/Plant | Number of Seeds/Pod or Seeds/Capitula |
---|---|---|---|
T1: Finger millet + Field bean (4:2) | 6.62 | 61.45 | 4.00 |
T2: Finger millet + Field bean (6:2) | 6.89 | 64.48 | 4.33 |
T3: Finger millet + Horse gram (4:2) | 2.99 | 38.34 | 4.33 |
T4: Finger millet + Horse gram (6:2) | 2.99 | 40.94 | 4.45 |
T5: Finger millet + Groundnut (4:2) | - | 30.33 | 2.98 |
T6: Finger millet + Groundnut (6:2) | - | 31.51 | 2.98 |
T7: Finger millet + Niger (4:2) | 10.43 | 76.57 | 11.05 |
T8: Finger millet + Niger (6:2) | 10.59 | 79.21 | 11.56 |
T9: Sole crop of Finger millet | - | - | - |
T10: Sole crop of Field bean | 7.83 | 72.15 | 4.74 |
T11: Sole crop of Horse gram | 3.31 | 45.21 | 4.60 |
T12: Sole crop of Groundnut | - | 34.16 | 3.38 |
T13: Sole crop of Niger | 11.34 | 84.28 | 12.08 |
S. Em.± | 0.31 | 2.20 | 0.27 |
C.D. (5%) | 0.92 | 6.45 | 0.81 |
Treatments | Gross Returns (Rs. ha−1) | Net Returns (Rs. ha−1) | BC Ratio | |
---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 77,476 | 41,214 | 2.15 | |
T2: Finger millet + Field bean (6:2) | 63,997 | 27,964 | 1.80 | |
T3: Finger millet + Horse gram (4:2) | 85,319 | 50,571 | 2.46 | |
T4: Finger millet + Horse gram (6:2) | 69,625 | 35,038 | 2.02 | |
T5: Finger millet + Groundnut (4:2) | 116,782 | 73,276 | 2.68 | |
T6: Finger millet + Groundnut (6:2) | 104,015 | 61,857 | 2.47 | |
T7: Finger millet + Niger (4:2) | 64,495 | 30,595 | 1.91 | |
T8: Finger millet + Niger (6:2) | 74,958 | 41,723 | 2.27 | |
T9: Sole crop of Finger millet | 87,790 | 56,844 | 2.97 | |
T10: Sole crop of Field bean | 33,609 | 2894 | 1.14 | |
T11: Sole crop of Horse gram | 18,060 | −4032 | 0.88 | |
T12: Sole crop of Groundnut | 47,593 | −1387 | 0.97 | |
T13: Sole crop of Niger | 26,716 | 5635 | 1.57 |
Treatments | LER | ATER | PUE | LUE (%) | RVT |
---|---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 1.14 | 1.04 | 10.06 | 108.99 | 0.92 |
T2: Finger millet + Field bean (6:2) | 0.91 | 0.80 | 8.63 | 85.47 | 0.77 |
T3: Finger millet + Horse gram (4:2) | 1.41 | 1.33 | 11.72 | 136.88 | 1.01 |
T4: Finger millet + Horse gram (6:2) | 1.14 | 1.06 | 9.45 | 109.68 | 0.82 |
T5: Finger millet + Groundnut (4:2) | 1.64 | 1.38 | 13.99 | 150.78 | 1.37 |
T6: Finger millet + Groundnut (6:2) | 1.41 | 1.14 | 12.70 | 127.22 | 1.21 |
T7: Finger millet + Niger (4:2) | 1.03 | 0.93 | 8.75 | 98.14 | 0.81 |
T8: Finger millet + Niger (6:2) | 1.08 | 1.00 | 10.06 | 104.09 | 0.90 |
T9: Sole crop of Finger millet | 1.00 | 1.00 | 25.83 | 100.00 | 0.00 |
T10: Sole crop of Field bean | 1.00 | 1.00 | 5.82 | 100.00 | 0.00 |
T11: Sole crop of Horse gram | 1.00 | 1.00 | 4.27 | 100.00 | 0.00 |
T12: Sole crop of Groundnut | 1.00 | 1.00 | 8.28 | 100.00 | 0.00 |
T13: Sole crop of Niger | 1.00 | 1.00 | 2.86 | 100.00 | 0.00 |
Treatments | Energy Input (MJ/ha) | Energy Output (MJ/ha) | Energy Efficiency | Net Energy Gain (MJ/ha) | Energy Profitability |
---|---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 12,359 | 56,883 | 4.61 | 44,523 | 3.61 |
T2: Finger millet + Field bean (6:2) | 12,347 | 59,932 | 4.86 | 47,584 | 3.86 |
T3: Finger millet + Horse gram (4:2) | 12,325 | 54,964 | 4.46 | 42,639 | 3.46 |
T4: Finger millet + Horse gram (6:2) | 12,300 | 61,011 | 4.97 | 48,711 | 3.97 |
T5: Finger millet + Groundnut (4:2) | 12,750 | 60,378 | 4.74 | 47,628 | 3.74 |
T6: Finger millet + Groundnut (6:2) | 12,656 | 62,279 | 4.93 | 49,623 | 4.93 |
T7: Finger millet + Niger (4:2) | 12,145 | 39,465 | 3.23 | 27,320 | 2.23 |
T8: Finger millet + Niger (6:2) | 12,172 | 43,988 | 3.61 | 31,816 | 2.61 |
T9: Sole crop of Finger millet | 12,204 | 72,432 | 5.95 | 60,227 | 4.95 |
T10: Sole crop of Field bean | 9318 | 24,572 | 2.63 | 15,254 | 1.63 |
T11: Sole crop of Horse gram | 5743 | 24,700 | 4.26 | 18,958 | 3.26 |
T12: Sole crop of Groundnut | 10,836 | 60,857 | 5.55 | 50,021 | 5.14 |
T13: Sole crop of Niger | 7340 | 14,477 | 2.26 | 7136 | 0.98 |
Treatments | Total Carbon Input (kg CE ha−1) | Total Carbon Output (kg CE ha−1) | Net Carbon Gain (kg CE ha−1) | Carbon Efficiency Ratio | Carbon Efficiency (kg−1 CE) |
---|---|---|---|---|---|
T1: Finger millet + Field bean (4:2) | 381 | 2009 | 1627 | 5.29 | 5.34 |
T2: Finger millet + Field bean (6:2) | 410 | 1801 | 1391 | 4.39 | 4.07 |
T3: Finger millet + Horse gram (4:2) | 329 | 2334 | 2004 | 7.48 | 7.14 |
T4: Finger millet + Horse gram (6:2) | 386 | 2063 | 1676 | 5.35 | 4.73 |
T5: Finger millet + Groundnut (4:2) | 389 | 2842 | 2453 | 7.38 | 7.93 |
T6: Finger millet + Groundnut (6:2) | 387 | 2506 | 2119 | 6.54 | 7.10 |
T7: Finger millet + Niger (4:2) | 378 | 1774 | 1395 | 4.73 | 4.49 |
T8: Finger millet + Niger (6:2) | 379 | 2113 | 1734 | 5.64 | 5.23 |
T9: Sole crop of Finger millet | 379 | 2647 | 2268 | 7.08 | 6.12 |
T10: Sole crop of Field bean | 255 | 258 | 3 | 1.01 | 3.50 |
T11: Sole crop of Horse gram | 105 | 187 | 82 | 1.78 | 4.61 |
T12: Sole crop of Groundnut | 277 | 440 | 163 | 1.59 | 4.43 |
T13: Sole crop of Niger | 189 | 122 | −66 | 0.65 | 2.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukanya, T.S.; Sneha, M.A.; Chaithra, C.; Ragimasalawada, M. Optimizing Productivity and Resource Use Efficiency Under a Finger Millet-Based Cropping System. Sustainability 2024, 16, 11046. https://doi.org/10.3390/su162411046
Sukanya TS, Sneha MA, Chaithra C, Ragimasalawada M. Optimizing Productivity and Resource Use Efficiency Under a Finger Millet-Based Cropping System. Sustainability. 2024; 16(24):11046. https://doi.org/10.3390/su162411046
Chicago/Turabian StyleSukanya, Thigalanahalli Shivalingaiah, Mangasamudram Anajaneyulu Sneha, Chandrappa Chaithra, and Madhusudhana Ragimasalawada. 2024. "Optimizing Productivity and Resource Use Efficiency Under a Finger Millet-Based Cropping System" Sustainability 16, no. 24: 11046. https://doi.org/10.3390/su162411046
APA StyleSukanya, T. S., Sneha, M. A., Chaithra, C., & Ragimasalawada, M. (2024). Optimizing Productivity and Resource Use Efficiency Under a Finger Millet-Based Cropping System. Sustainability, 16(24), 11046. https://doi.org/10.3390/su162411046