Rowing in the Same Direction Using MIX—A Tool to Initiate the Melding of Individual Disciplinary Experts into an Integrated Interdisciplinary Team
Abstract
:1. Introduction
2. Literature Context
3. MIX, a Tool to Transform Individuals into a Team
4. A Proof-of-Concept Example of a Final Shared Interdisciplinary Team Vision
5. Summary
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- NRC. National Research Council. Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Ewel, K. Natural resource management: The need for interdisciplinary collaboration. Ecosystems 2001, 4, 716–722. [Google Scholar] [CrossRef]
- Frodeman, R.; Klein, J.T.; Pacheco, R. (Eds.) The Oxford Handbook of Interdisciplinarity; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Bodmer, P.; Attermeyer, K.; Pastor, A.; Catalan, N. Collaborative projects: Unleashing early career scientists’ power. Trends Ecol. Evol. 2019, 34, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.L.B.; Pardini, R.; Viana, B.F.; El-Hani, C.N. Fostering inter- and transdisciplinarity in discipline-oriented universities to improve sustainability science and practice. Sustain. Sci. 2020, 15, 717–728. [Google Scholar] [CrossRef]
- Shrivastava, P.; Smith, M.S.; O’Brien, K.; Zsolnai, L. Transforming sustainability science to generate positive social and environmental change globally. One Earth 2020, 2, 329–340. [Google Scholar] [CrossRef]
- Blue, G.; Davidson, D. Advancing a transformative social contract for the environmental sciences: From public engagement to justice. Environ. Res. Lett. 2020, 15, 115008. [Google Scholar] [CrossRef]
- Marcoci, A.; Thresher, A.C.; Martens, N.C.; Galison, P.; Doeleman, S.; Johnson, M. Big STEM collaborations should include humanities and social science. Nat. Hum. Behav. 2023, 7, 1229–1230. [Google Scholar] [CrossRef]
- Akkerman, S.F.; Bakker, A. Learning at the boundary: An introduction. Int. J. Educ. Res. 2011, 50, 1–5. [Google Scholar] [CrossRef]
- Fam, D.; Clarke, E.; Freeth, R.; Derwort, P.; Klaniecki, K.; Kater-Wettstädt, L.; Juarez-Bourke, S.; Hilser, S.; Peukert, D.; Meyer, E.; et al. Interdisciplinary and transdisciplinary research and practice: Balancing expectations of the ‘old’ academy with the future model of univeristies as ‘problem solvers’. High. Educ. Q. 2020, 74, 19–34. [Google Scholar] [CrossRef]
- Cheruvelil, K.S.; Soranno, P.A.; Weathers, K.C.; Hanson, P.C.; Goring, S.J.; Filstrup, C.T.; Read, E.K. Creating and maintaining high-performing collaborative research teams: The importance of diversity and interpersonal skills. Front. Ecol. Environ. 2014, 12, 31–38. [Google Scholar] [CrossRef]
- Gibert, A.; Tozer, W.C.; Westoby, M. Teamwork, soft skills and research training. Trends Ecol. Evol. 2017, 32, 81–84. [Google Scholar] [CrossRef]
- Guimarães, M.H.; Pohl, C.; Bina, O.; Varanda, M. Who is doing inter- and transdisciplinary research, and why? An empirical study of motivations, attitudes, skills, and behaviours. Futures 2019, 112, 102441. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang DC, W.; Kirkham, M.B.; O’Connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- Schoolman, E.D.; Guest, J.S.; Bush, K.F.; Bell, A.R. How interdisciplinary is sustainability research? Analyzing the structure of an emerging scientific field. Sustain. Sci. 2012, 7, 67–80. [Google Scholar] [CrossRef]
- Brelsford, C.; Dumas, M.; Schlager, E.; Dermody, B.J.; Aiuvalasit, M.; Allen-Dumas, M.R.; Beecher, J.; Bhatia, U.; D’Odorico, P.; Garcia, M.; et al. Developing a sustainability science approach for water systems. Ecol. Soc. 2020, 25, 23. [Google Scholar] [CrossRef]
- Tobi, H.; Kampen, J.K. Research design: The methodology for interdisciplinary research framework. Qual. Quant. 2018, 52, 1209–1225. [Google Scholar] [CrossRef]
- Clark, S.G.; Palis, F.; Trompf, G.W.; Terway, T.M.; Wallace, R.L. Interdisciplinary problem framing for sustainability: Challenges, a framework, case studies. J. Sustain. For. 2017, 36, 516–534. [Google Scholar] [CrossRef]
- Campbell, L.M. Overcoming obstacles to interdisciplinary research. Conserv. Biol. 2005, 19, 574–577. [Google Scholar] [CrossRef]
- Begg, M.D.; Vaughan, R.D. Are biostatistics students prepared to succeed in the era of interdisciplinary science? (And how will we know?). Am. Stat. 2011, 65, 71–79. [Google Scholar] [CrossRef]
- Morse, W.C.; Nielsen-Pincus, M.; Wulfhorst, J.D. Bridges and barriers to developing and conducting interdisciplinary graduate-student team research. Ecol. Soc. 2011, 12, 8. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Tobi, H.; Ronteltap, A. When natural met social: A review of collaboration between the natural and social sciences. Interdiscip. Sci. Rev. 2011, 36, 341–358. [Google Scholar] [CrossRef]
- Hall, T.E.; O’Rourke, M. (Eds.) Responding to communication challenges in transdisciplinary sustainability science. In Transdisciplinary Sustainability Studies; Routledge: London, UK, 2014. [Google Scholar]
- Goring, S.J.; Weathers, K.C.; Dodds, W.K.; Soranno, P.A.; Sweet, L.C.; Cheruvelil, K.S.; Kominoski, J.S.; Rüegg, J.; Thorn, A.M.; Utz, R.M. Improving the culture of interdisciplinary collaboration in ecology by expanding measures of success. Front. Ecol. Environ. 2014, 12, 39–47. [Google Scholar] [CrossRef]
- Freeth, R.; Caniglia, G. Learning to collaborate while collaborating: Advancing interdiscplinary sustainability research. Sustain. Sci. 2020, 15, 247–261. [Google Scholar] [CrossRef]
- Mather, M.E.; Granco, G.; Bergtold, J.; Caldas, M.; Heier-Stamm, J.; Sanderson, M.; Sheshukov, A.; Daniels, M. RISE to interdisciplinary success: A widely-implementable, iterative, multi-step structured process for mastering team skills. BioScience 2023, 73, 891–905. [Google Scholar] [CrossRef]
- Sievanen, L.; Campbell, L.M.; Leslie, H.M. Challenges to interdisciplinary research in ecosystem-based management. Conserv. Biol. 2022, 26, 315–323. [Google Scholar] [CrossRef]
- Daniel, K.L.; McConnell, M.; Schuchardt, A.; Peffer, M.E. Challenges facing interdisciplinary researchers: Findings from a professional development workshop. PLoS ONE 2022, 17, e0267234. [Google Scholar] [CrossRef]
- MacCrea, D.; Matuszewski, H. A framework for interdisciplinary research. Chapter. In Strange Bedfellows: An Experiment in Student-Directed Interdisciplinary Research; de Ruiter, N., Wittingslow, R., Chiu, R., Eds.; University of Groningen Press: Groningen, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Hall, K.L.; Vogel, A.L.; Huang, G.C.; Serrano, K.J.; Rice, E.L.; Tsakraklides, S.P.; Fiore, S.M. The science of team science: A review of the empirical evidence and research gaps on collaboration in science. Am. Psychol. 2018, 73, 532–548. [Google Scholar] [CrossRef]
- Love, H.B.; Fosdick, B.K.; Cross, J.E.; Sutter, M.; Egan, D.; Tofany, E.; Fisher, E.R. Towards understanding the characteristics of successful and unsuccessful collaborations: A case-based team science study. Humanit. Soc. Sci. Commun. 2022, 9, 371. [Google Scholar] [CrossRef]
- Thompson, J.L. Building collective communication competence in interdisciplinary research teams. J. Appl. Commun. Res. 2009, 37, 278–297. [Google Scholar] [CrossRef]
- Salazar, M.R.; Lant, T.K.; Fiore, S.M.; Salas, E. Facilitating innovation in diverse science teams through integrative capacity. Small Group Res. 2012, 43, 527–558. [Google Scholar] [CrossRef]
- Begg, M.D.; Crumley, G.; Fair, A.M.; Martina, C.A.; McCormack, W.T.; Merchant, C.; Patino-Sutton, C.M.; Umans, J.G. Approaches to preparing young scholars for careers in interdisciplinary team science. J. Investig. Med. 2014, 62, 14–25. [Google Scholar] [CrossRef]
- Herz, N.; Dan, O.; Censor, N.; Bar-Haim, Y. Opinion: Authors overestimate their contribution to scientific work, demonstrating a strong bias. Proc. Natl. Acad. Sci. USA 2020, 117, 6282–6285. [Google Scholar] [CrossRef] [PubMed]
- Bisbey, T.M.; Wooten, K.C.; Campo, M.S.; Lant, T.K.; Salas, E. Implementing an evidence-based competency model for science team training and evaluation: TeamMAPPS. J. Clin. Transl. Sci. 2021, 5, e142. [Google Scholar] [CrossRef] [PubMed]
- Fiore, S.M.; Graesser, A.; Greiff, S. Collaborative problem-solving education for the twenty-first-century workforce. Nat. Hum. Behav. 2018, 2, 367–369. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Enhancing the Effectiveness of Team Science; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Morton, L.W.; Eigenbrode, S.D.; Martin, T.A. Architectures of adaptive integration in large collaborative projects. Ecol. Soc. 2015, 20, 5. [Google Scholar] [CrossRef]
- Zaggl, M.A.; Pottbacker, J. Facilitators and inhibitors for integrating expertise diversity in innovation teams: The case of plasmid exchange in molecular biology. Res. Policy 2021, 50, 104313. [Google Scholar] [CrossRef]
- Pennington, D.D. Collaborative, cross-disciplinary learning and co-emergent innovation in eScience teams. Earth Sci. Inform. 2011, 4, 55–68. [Google Scholar] [CrossRef]
- Pennington, D.D.; Simpson, G.L.; McConnell, M.S.; Fair, J.M.; Baker, R.J. transdisciplinary research, transformative learning, and transformative science. BioScience 2013, 63, 564–573. [Google Scholar] [CrossRef]
- Martin, V.Y. Four common problems in environmental social research undertaken by natural scientists. BioScience 2019, 70, 13–16. [Google Scholar] [CrossRef]
- Rolland, B.; Resnik, F.; Hohl, S.D.; Johnson, L.J.; Saha-Muldowney, M.; Mahoney, J. Applying the lessons of implementation science to maximize feasibility and usability in team science intervention development. J. Clin. Transl. Sci. 2021, 5, e197. [Google Scholar] [CrossRef]
- Sun, J.Z.; Yang, K.Z. The wicked problem of climate change: A new approach based on social mess and fragmentation. Sustainability 2016, 8, 1312. [Google Scholar] [CrossRef]
- DeFries, R.; Nagendra, H. Ecosystem management as a wicked problem. Science 2017, 356, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Walls, H.L. Wicked problems and a ‘wicked’ solution. Global Health 2018, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Wohlgezogen, F.; McCabe, A.; Osegowitsch, T.; Mol, J. The wicked problem of climate change and interdisciplinary research: Tracking management scholarship’s contribution. J. Manag. Organ. 2020, 26, 1048–1072. [Google Scholar] [CrossRef]
- Schipper, E.L.F.; Dubash, N.K.; Mulugetta, Y. Climate change research and the search for solutions: Rethinking interdisciplinarity. Clim. Chang. 2021, 168, 18. [Google Scholar] [CrossRef] [PubMed]
- Holden, J. Water Resources: An Integrated Approach, 2nd ed.; Routledge: London, UK, 2019. [Google Scholar]
- Falkenmark, M.; Lundqvist, J.; Klohn, W.; Postel, S.; Wallace, J.; Shuval, H.; Seckler, D.; Rockström, J. Water scarcity as a key factor behind global food insecurity: Round table discussion. Ambio 1998, 27, 148–154. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Caldas, M.; Mather, M.; Bergtold, J.; Daniels, M.; Granco, G.; Aistrup, J.; Haukos, D.; Sheshukov, A.; Sanderson, M.; Stamm, J.H. Understanding the Central Great Plains as a coupled climatic-hydrological-human system: Lessons learned in operationalizing interdisciplinary collaboration. In Collaboration Across Boundaries for Social-Ecological Systems Science–Experiences Around the World; Perz, S., Ed.; Palgrave MacMillan, University of Florida: Gainesville, FL, USA, 2019; pp. 265–294. [Google Scholar]
- Kim, M.K.; Douglas, M.M.; Pannell, D.; Setterfield, S.A.; Laborde, R.H.S.; Perrott, L.; Alvarez-Romera, J.G.; Beesley, L.; Canham, C.; Brecknell, A. When to use transdisciplinary approaches for environmental research. Front. Environ. Sci. 2022, 10, 840569. [Google Scholar] [CrossRef]
- Wei, C.A.; Burnside, W.R.; Che-Castaldo, J.P. Teaching socio-environmental synthesis with the case studies approach. J. Environ. Stud. Sci. 2015, 5, 42–49. [Google Scholar] [CrossRef]
- Sprain, L.; Thompson, W.M. Pedagogy for sustainability science: Case-based approaches for interdisciplinary instruction. Environ. Commun. 2012, 6, 532–550. [Google Scholar] [CrossRef]
- Kaddoura, M.A. Think pair share: A teaching learning strategy to enhance students’ critical thinking. Educ. Res. Q. 2013, 36, 3–24. [Google Scholar]
- Chang, W.L.; Benson, V. Jigsaw teaching method for collaboration on cloud platforms. Innov. Educ. Teach. Int. 2020, 59, 24–36. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Mcintyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.K.; Taylor, W.W.; Kinnison, M.T.; Sullivan, S.; Weber, M.J.; Melstrom, R.T.; Venturelli, P.A.; Wuellner, M.R.; Newman, R.M.; Hartman, K.J.; et al. Threats to freshwater fisheries in the United States: Perspectives and investments of state fisheries administrators and agricultural experiment station directors. Fisheries 2019, 44, 276–287. [Google Scholar] [CrossRef]
- He, F.Z.; Zarfl, C.; Bremerich, V.; David, J.N.; Hogan, Z.; Kalinkat, G.; Tockner, K.; Jaehnig, S. The global decline of freshwater megafauna. Glob. Chang. Biol. 2019, 25, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.A.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Hart, D.D.; Bell, K.P.; Lindenfeld, L.A.; Jain, S.; Johnson, T.R.; Ranco, D.; McGill, B. Strengthening the role of universities in addressing sustainability challenges: The Mitchell Center for Sustainability Solutions as an institutional experiment. Ecol. Soc. 2015, 20, 4. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef]
- Su, G.; Logez, M.; Xu, J.; Tao, S.; Villéger, S.; Brosse, S. Human impacts on global freshwater fish biodiversity. Science 2021, 371, 835–838. [Google Scholar] [CrossRef] [PubMed]
- WWF. Living Planet Report. 2022. Available online: https://livingplanet.panda.org/en-US/ (accessed on 1 September 2024).
- Costanza, R.; d’Arge, R.; de Groot, R. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Baron, J.L.; Poff, N.L.; Angermeier, P.L.; Dahm, C.N.; Gleick, P.H.; Hairston, N.G., Jr.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A. Meeting Ecological and Societal Needs for Freshwater. Ecol. Appl. 2002, 12, 1247–1260. [Google Scholar] [CrossRef]
- Wilson, M.A.; Carpenter, S.R. Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Moyle, P.B.; Leidy, R.A. Loss of biodiversity in aquatic ecosystems: Evidence from fish faunas. In Conservation Biology; Fiedler, P.L., Jain, S.K., Eds.; Springer: Boston, MA, USA, 1992. [Google Scholar] [CrossRef]
- Chovanec, A.; Hofer, R.; Schiemer, F. Chapter 18-Bioindicators. In Trace Metals and Other Contaminants in the Environment; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 639–676. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Reid, A.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson PT, J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kumar, S.; Kabir, M.; Zuhara, F.T.; Mehjabin, A.; Tasannum, N.; Hoang, A.T.; Kabir, Z.; Mofijur, M. Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environ. Res. 2022, 214, 113808. [Google Scholar] [CrossRef]
- Perkin, S. Is agriculture sucking fresh water dry? Crops account for 92% of fresh water used each year, according to new global analysis. Science 2012. [Google Scholar] [CrossRef]
- Mather, M.E.; Dettmers, J.M. Adaptive problem maps (APM): Connecting data dots to build increasingly informed and defensible environmental conservation decisions. J. Environ. Manag. 2022, 312, 114826. [Google Scholar] [CrossRef]
- Pulver, S.; Ulibarri, N.; Sobocinski, K.L.; Alexander, S.M.; Johnson, M.L.; McCord, P.F.; Dell’Angelo, J. Frontiers in socio-environmental research: Components, connections, scale, and context. Ecol. Soc. 2018, 23, 23. [Google Scholar] [CrossRef]
- Granco, G.J.; Stamm, J.L.H.; Bergtold, J.S.; Daniels, M.; Sanderson, M.; Sheshukov, A.; Mather, M.; Caldas, M.; Ramsey, S.; Lehter, R.; et al. Evaluating environmental change and behavioral decision-making for sustainability policy using an agent-based model: A case study for the Smoky-Hill Watershed, Kansas. Sci. Total Environ. 2019, 695, 133769. [Google Scholar] [CrossRef] [PubMed]
- Granco, G.; Caldas, M.; Bergtold, J.S.; Stamm, J.L.H.; Mather, M.; Sanderson, M.; Daniels, M.; Sheshukov, A.; Haukos, D.; Ramsey, S. Local environment and individual’s beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. J. Environ. Manag. 2022, 301, 113776. [Google Scholar] [CrossRef] [PubMed]
- Bergtold, J.S.; Caldas, M.M.; Ramsey, S.M.; Sanderson, M.R.; Granco, G.; Mather, M.E. The gap between experts, farmers and non-farmers on perceived environmental vulnerability and the influence of values and beliefs. J. Environ. Manag. 2022, 316, 115186. [Google Scholar] [CrossRef]
- Cressie, N.; Calder, C.A.; Clark, J.S.; Hoef, J.M.V.; Wikle, C.K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 2009, 19, 553–570. [Google Scholar] [CrossRef]
- Hampton, S.E.; Strasser, C.A.; Tewksbury, J.J.; Gram, W.K.; Budden, A.E.; Batcheller, A.L.; Duke, C.S.; Porter, J.H. Big data and the future of ecology. Front. Ecol. Environ. 2013, 11, 156–162. [Google Scholar] [CrossRef]
- Lee, K.N. Greed, scale mismatch, and learning. Ecol. Appl. 1993, 3, 560–564. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Soc. 2006, 11, 14. Available online: https://www.jstor.org/stable/26267802 (accessed on 1 September 2024). [CrossRef]
- Stevens, C.J.; Fraser, I.; Mitchley, J.; Thomas, M.B. Making ecological science policy-relevant: Issues of scale and disciplinary integration. Landsc. Ecol. 2007, 22, 799–809. [Google Scholar] [CrossRef]
- Nelson, K.S.; Burchfield, E.K. Landscape complexity and US crop production. Nat. Food 2021, 2, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Stoffers, T.; Buijse, A.D.; Geerling, G.W.; Jans, L.H.; Schoor, M.M.; Poos, J.J.; Nagelkerke, L.A.J. Freshwater fish biodiversity restoration in floodplain rivers requires connectivity and habitat heterogeneity at multiple spatial scales. Sci. Total Environ. 2022, 838, 156509. [Google Scholar] [CrossRef] [PubMed]
- Wall, T.U.; McNie, E.; Garfin, G.M. Use-inspired science: Making science usable by and useful to decision makers. Front. Ecol. Environ. 2017, 15, 551–559. [Google Scholar] [CrossRef]
- Cobourn, K.M.; Carey, C.C.; Boyle, K.J.; Duffy, C.; Dugan, H.A.; Farrell, K.J.; Fitchett, L.; Hanson, P.C.; Hart, J.A.; Henson, V.R.; et al. From concept to practice to policy: Modeling coupled natural and human systems in lake catchments. Ecosphere 2018, 9, e02209. [Google Scholar] [CrossRef]
- Hunter, D.J. Meeting the challenge of the “know-do” gap: Comment on CIHR Health System Impact Fellows: Reflections on ‘driving change’ within the health system. Int. J. Health Policy Manag. 2019, 8, 498. [Google Scholar] [CrossRef]
- Hjern, B.; Porter, D. Implementation structures: A new unit of administrative analysis. Organ. Stud. 1981, 2, 211–227. [Google Scholar] [CrossRef]
- Ostrom, E. A public service industry approach to the study of local government structure and reform. Policy Politics 1983, 11, 313–341. [Google Scholar] [CrossRef]
- Sabatier, P. Top-down and bottom-up models of policy implementation: A critical and suggested synthesis. J. Public Policy 1986, 6, 21–48. [Google Scholar] [CrossRef]
- Rhodes, R.A.W. Beyond Westminster and Whitehall; Unwin & Hyman: London, UK, 1988. [Google Scholar]
- Jordan, A.G. Sub-governments, policy communities, and networks. J. Theor. Politics 1990, 2, 319–338. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Gentry, S.; Milden, L.; Kelly, M.P. Why is translating research into policy so hard? How theory can help public health researchers achieve impact? Public Health 2020, 178, 90–96. [Google Scholar] [CrossRef]
- Macleod, M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Syntheses 2018, 195, 697–720. [Google Scholar] [CrossRef]
- Mather, M.E.; Smith, J.M.; Gerber, K.M.; Taylor, R.B.; Kennedy, C.G.; Hitchman, S.M.; Fencl, J.S.; Frank, H.M. Merging scientific silos: Integrating specialized approaches for thinking about and using spatial data that can provide new directions for persistent fisheries problems. Fisheries 2021, 46, 485–494. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Ungar, P.S.; Ziker, J.P.; Abdulmanova, S.; Celis, G.; Dixon, A.; Ehrich, D.; Fufachev, I.; Gilg, O.; Heskel, M.; et al. A Convergence Science Approach to Understanding the Changing Arctic. Earth’s Future 2024, 12, e2023EF004157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mather, M.E.; Bergtold, J.S.; Caldas, M.M.; Bernick, E.M.; Moore, T.L.; Granco, G.; Sheshukov, A.Y.; Ciampitti, I.A. Rowing in the Same Direction Using MIX—A Tool to Initiate the Melding of Individual Disciplinary Experts into an Integrated Interdisciplinary Team. Sustainability 2024, 16, 10625. https://doi.org/10.3390/su162310625
Mather ME, Bergtold JS, Caldas MM, Bernick EM, Moore TL, Granco G, Sheshukov AY, Ciampitti IA. Rowing in the Same Direction Using MIX—A Tool to Initiate the Melding of Individual Disciplinary Experts into an Integrated Interdisciplinary Team. Sustainability. 2024; 16(23):10625. https://doi.org/10.3390/su162310625
Chicago/Turabian StyleMather, Martha E., Jason S. Bergtold, Marcellus M. Caldas, Ethan M. Bernick, Trisha L. Moore, Gabriel Granco, Aleksey Y. Sheshukov, and Ignacio A. Ciampitti. 2024. "Rowing in the Same Direction Using MIX—A Tool to Initiate the Melding of Individual Disciplinary Experts into an Integrated Interdisciplinary Team" Sustainability 16, no. 23: 10625. https://doi.org/10.3390/su162310625
APA StyleMather, M. E., Bergtold, J. S., Caldas, M. M., Bernick, E. M., Moore, T. L., Granco, G., Sheshukov, A. Y., & Ciampitti, I. A. (2024). Rowing in the Same Direction Using MIX—A Tool to Initiate the Melding of Individual Disciplinary Experts into an Integrated Interdisciplinary Team. Sustainability, 16(23), 10625. https://doi.org/10.3390/su162310625