Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula
Abstract
:1. Introduction
2. Materials and Methods
- Initial evaluation of areas based on monthly wind speed data from dataset [26].
- Establishing area priorities considering a combination of all perspective using the Entropy–TOPSIS method.
- Clustering areas using the complete linkage method.
2.1. Initial Evaluation of Areas Based on Monthly Wind Speed Data from Dataset [26]
2.2. Determining Area Priorities for Each Perspective of Dataset Using the EntropyTOPSIS Method
2.3. Establishing Area Priorities Considering a Combination of All Perspective Using the EntropyTOPSIS Method
2.4. Clustering Areas Using the Complete Linkage Method
2.5. Sensitivity Analysis for EntropyTOPSIS [32,33]
3. Results
3.1. Initial Evaluation of Areas Based on Monthly Wind Speed Data from Dataset [26]
3.2. Determining Area Priorities for Each Perspective of Dataset Using the EntropyTOPSIS Method
3.3. Establishing Area Priorities Considering a Combination of All Perspective Using the EntropyTOPSIS Method
3.4. Clustering Areas Using the Complete Linkage Method
3.5. Sensitivity Analysis for EntropyTOPSIS [32,33]
- (1)
- At σ = 1 (For reference), wp1 = 0.2212 and wp2 = 0.7788, the grouping is as follows:
- (2)
- At σ = 0.7904, wp1 = 0.1749 and wp2 = 0.8251, the grouping is as follows:
- (3)
- At σ = 1.3438, wp1 = 0.2973 and wp2 = 0.7027, the grouping is as follows:
- (1)
- When σ = 0.9698, wp1 = 0.2146 and wp2 = 0.7854, the order of areas A15 and A25 in Group VI changes. Specifically, the order of area members in Group VI shifts from A21, A14, A19, A27, A25, A15, A20, A18, A16 to A21, A14, A19, A27, A15, A25, A20, A18, A16.
- (2)
- When σ = 1.0706, wp1 = 0.2369 and wp2 = 0.7631, the order of areas A7 and A12 in Group IV changes. The order in Group IV adjusts from A24, A26, A2, A5, A7, A12 to A24, A26, A2, A5, A12, A7.
- -
- Initially, the order changes from A21, A14, A19, A27, A25, A15, A20, A18, A16 to A21, A14, A19, A27, A25, A15, A20, A16, A18.
- -
- Subsequently, the order of areas changes again from A21, A14, A19, A27, A25, A15, A20, A16, A18 to A21, A19, A14, A27, A25, A15, A20, A16, A18.
4. Discussion
- (1)
- Generate dissimilarity matrix: the 28 × 28 dissimilarity matrix called the 28 × 28 initial matrix is created shown in Figure 4.
- (2)
- Apply complete linkage clustering: the clustering method is applied iteratively for 23 rounds with C.D. = 0.1218, resulting in the final clustering matrix as depicted in Figure 5.
- (3)
- Form clusters: the 28 areas were grouped into 6 clusters, as shown in Figure 6:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agriculture Landscape in Thailand. Available online: https://www.depa.or.th/storage/app/media/file/investment-bulletin.pdf (accessed on 1 July 2024).
- Department of Alternative Energy Development and Efficiency (DEDE). Available online: https://www.dede.go.th/ (accessed on 1 July 2024).
- Office of Agriculture Economics. Available online: https://www.oae.go.th/ (accessed on 1 July 2024).
- Agri-Map. Available online: https://www.ldd.go.th/ (accessed on 1 July 2024).
- Unchai, T.; Janyalertadum, A.; Erik Hold, A. Wind Energy Potential Assessment as Power Generation Source in Ubonratchathani Province, Thailand. Wind Eng. 2012, 36, 131–144. [Google Scholar] [CrossRef]
- Chingulpitak, S.; Wongwises, S. Critical Review of the Current Status of Wind Energy in Thailand. Renew. Sustain. Energy Rev. 2014, 31, 312–318. [Google Scholar] [CrossRef]
- Quan, P.; Leephakpreeda, T. Assessment of Wind Energy Potential for Selecting Wind Turbines: An Application to Thailand. Sustain. Energy Technol. Assess. 2015, 11, 17–26. [Google Scholar] [CrossRef]
- Prabkeao, C.; Tantrapiwat, A. Study on wind energy potential for agricultural water pumping system in the middle part of Thailand. In Proceedings of the ICEAST Conferences, Phuket, Thailand, 4–7 July 2018. [Google Scholar]
- Klongboonjit, S.; Kaitcharoenpol, T. Prioritization of Wind Energy Data with Analytical Hierarchy Process (AHP). Int. J. Intell. Eng. Syst. 2021, 14, 369–376. [Google Scholar]
- Klongboonjit, S.; Kaitcharoenpol, T. Quality Evaluation of Wind Energy Data with Complete Linkage Clustering. Int. J. Intell. Eng. Syst. 2022, 15, 456–464. [Google Scholar]
- Huang, J. Combining Entropy Weight and TOPSIS Method for Information System Selection. In Proceedings of the IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008. [Google Scholar]
- Li, X.; Wang, K.; Liu, L.; Xin, J.; Yang, H.; Gao, C. Application of the Entropy Weight and TOPSIS Method in Safety Evaluation of Coal Mines. Procedia Eng. 2011, 26, 2085–2091. [Google Scholar] [CrossRef]
- Zhengyuan, J.; XiaXia, Y. Application of Entropy Weight Method and TOPSIS Model in the Cold-chain Logistics and Distribution Center Location. Adv. Mater. Res. 2012, 569, 693–696. [Google Scholar]
- Jinxiang, F.; Lingwei, X.; Xingguan, M.; Jing, T.; Rongxin, Z.; Yuping, B.; Yulan, T.; Yunan, G. Application of Entropy Weight TOPSIS Method for Optimization of Wastewater Treatment Technology of Municipal Wastewater Treatment Plant. Nat. Environ. Pollut. Technol. 2013, 12, 285–287. [Google Scholar]
- Salehi, V.; Zarei, H.; Shirali, G.A.; Hajizadeh, K. An entropy-based TOPSIS approach for analyzing and assessing crisis management systems in petrochemical industries. J. Loss Prev. Process Ind. 2020, 67, 104241. [Google Scholar] [CrossRef]
- Qiu, Y.; Jia, S.; Liao, J.; Yang, X. Evaluation of Urban High-quality Development Level based on Entropy Weight-TOPSIS Two-step Method. J. Econ. Anal. 2022, 1, 50–65. [Google Scholar] [CrossRef]
- Fu, W.; Sun, J.; Lee, X. Research on the Openness of Digital Platforms Based on Entropy-Weighted TOPSIS: Evidence from China. Sustainability 2023, 15, 3322. [Google Scholar] [CrossRef]
- Wang, A.; An, Y.; Yu, S. Research on the Evaluation of Green Technology Renovation Measurement for Multi-Storey Houses in Severe old Regions Based on Entropy-Weight-TOPSIS. Sustainability 2023, 15, 9815. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Kizielewicz, B.; Sulabun, W. Advancing Individual Decision-Making: An Extension of the Characteristic Objects Method using Expected Solution Point. Inf. Sci. 2023, 647, 119456. [Google Scholar] [CrossRef]
- Wieckowski, J.; Watrobski, J.; Sulabun, W. Inaccuracies in Expert Judgment: Comparative Analysis of RANCOM and AHP Methods in Housing Location Selection Problem. IEEE Access 2024, 12, 142083–142100. [Google Scholar] [CrossRef]
- Wieckowski, J.; Watrobski, J.; Shkurina, A.; Sulabun, W. Adaptive Multi-Criteria Decision Making for Electric Vehicles: A Hybrid Approach Based on RANCOM and ESP-SPOTIS. Artif. Intell. Rev. 2024, 57, 270. [Google Scholar] [CrossRef]
- Wieckowski, J.; Sulabun, W. A New Sensitivity Analysis Method for Decision-Making with Multiple Parameters Modification. Inf. Sci. 2024, 678, 120902. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Sulabun, W. SITW Method: A New Approach to Re-Identifying Multi-Criteria Weights in Complex Decision Analysis. Sci. Oasis 2024, 1, 215–226. [Google Scholar] [CrossRef]
- JingJing, G.; Huamin, G.; Zhiquan, L.; Feiran, H.; Junwei, Z.; Xinghua, L.; Jianfeng, M. ICRA: An Intelligent Clustering Routing Approach for UAV Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2447–2460. [Google Scholar]
- Klongboonjit, S.; Kaitcharoenpol, T. Priority of Wind Energy in West Coast of Southern Thailand for Installing the Water Pumping Windmill System with Combining of Entropy Weight Method and TOPSIS. Energies 2023, 16, 7097. [Google Scholar] [CrossRef]
- Janjai, S. A Final Report of the Project: Development of Wind Resource Maps for Thailand; Phetkasem Printing Group: Nakhon Pathom, Thailand, 2010. [Google Scholar]
- Agricultural Area in Thailand 2022. Available online: https://webapp.ldd.go.th/lpd/node_modules/img/Download/zonmap/zonmap2/agri_zone_th.pdf (accessed on 1 July 2024).
- Rashidah, N.R.; Sabri, A.; Safiek, M. A Comparison between Single Linkage and Complete Linkage in Agglomerative Hierarchical Cluster Analysis for Identifying Tourists Segments. IIUM Eng. J. 2011, 12, 105–116. [Google Scholar] [CrossRef]
- Reinaldi, Y.; Ulinnuha, N.; Hartono, T.; Hafiyusholeh, M. Comparison of Single Linkage, Complete Linkage, and Average Linkage Methods on Community Welfare Analysis in Cities and Regencies in East Java. J. Mat. Stat. Komputas 2021, 18, 130–140. [Google Scholar] [CrossRef]
- Mamun, A.-A.; Aseltine, R.; Rajasekaran, S. Efficient Record Linkage Algorithms using Complete Linkage Clustering. PLoS ONE 2016, 11, e0154446. [Google Scholar] [CrossRef] [PubMed]
- Bulla-Cruz, L.; Lyons, L.; Darghan, E. Complete Linkage Clustering Analysis of Surrogate Measures for Road Safety Assessment in Roundabouts. Rev. Colomb. Estad.-Appl. Stat. 2021, 44, 91–121. [Google Scholar] [CrossRef]
- Triantaphyllou, E. A Sensitivity Analysis Approach for MCDM. In Multi-Criteria Decision Making Methods: A Comparative Study; Springer: Berlin/Heidelberg, Germany, 2000; pp. 131–175. [Google Scholar]
- Millek, J. The Robustness of TOPSIS Results Using Sensitivity Analysis Based on Weight Tuning. In IFMBE Proceeding: World Congress on Medical Physics and Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–86. [Google Scholar]
Area | Monthly Wind Speed/Agricultural Areas | ||||
---|---|---|---|---|---|
Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n | |
A1 | x1,1 | x1,1 | x1,1 | … | x1,1 |
A2 | x2,1 | x2,2 | x2,3 | … | x2,n |
A3 | x3,1 | x3,2 | x3,3 | … | x3,n |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
Am | xm,1 | xm,2 | xm,3 | … | xm,n |
Area | Monthly Wind Speed/Agricultural Areas | ||||
---|---|---|---|---|---|
Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n | |
A1 | r1,1 | r1,2 | r1,3 | … | r1,12 |
A2 | r2,1 | r2,2 | r2,3 | … | r2,12 |
A3 | r3,1 | r3,2 | r3,3 | … | r3,12 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
Am | rm,1 | rm,2 | rm,3 | … | rm,12 |
Area | Monthly Wind Speed/Agricultural Areas | ||||
---|---|---|---|---|---|
Attribute Weight (wj) | |||||
w1 | w2 | w3 | … | wn | |
Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n | |
A1 | x1,1 | x1,1 | x1,1 | … | x1,1 |
A2 | x2,1 | x2,2 | x2,3 | … | x2,n |
A3 | x3,1 | x3,2 | x3,3 | … | x3,n |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
Am | xm,1 | xm,2 | xm,3 | … | xm,n |
Area | Monthly Wind Speed/Agricultural Areas | ||||
---|---|---|---|---|---|
Attribute Weight (wj) | |||||
w1 | w2 | w3 | … | wn | |
Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n | |
A1 | b1,1 | b1,2 | b1,3 | … | b1,n |
A2 | b2,1 | b2,2 | b2,3 | … | b2,n |
A3 | b3,1 | b3,2 | b3,3 | … | b3,n |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
Am | bm,1 | bm,2 | bm,3 | … | bm,n |
Area | Monthly Wind Speed/Agricultural Areas | ||||
---|---|---|---|---|---|
Attribute Weight (wj) | |||||
w1 | w2 | w3 | … | wn | |
Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n | |
A1 | V1,1 | V1,2 | V1,3 | … | Vn,12 |
A2 | V2,1 | V2,2 | V2,3 | … | Vn,12 |
A3 | V3,1 | V3,2 | V3,3 | … | Vn,12 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
Am | Vm,1 | Vm,2 | Vm,3 | … | Vn,12 |
Vj+ | V1+ | V2+ | V3+ | … | Vn+ |
Vj− | V1− | V2− | V3− | … | Vn− |
Area | Monthly Wind Speed | Agricultural Areas |
---|---|---|
A1 | P1,1 | P2,1 |
A2 | P1,2 | P2,2 |
A3 | P1,3 | P2,3 |
︙ | ︙ | ︙ |
Am | P1,m | P2,m |
Area | Monthly Wind Speed | Agricultural Areas |
---|---|---|
A1 | C1,1 | C2,1 |
A2 | C1,2 | C2,2 |
A3 | C1,3 | C2,3 |
︙ | ︙ | ︙ |
Am | C1,m | C2,m |
Area | Perspective Weight (wpk) | |
---|---|---|
wp1 | wp2 | |
Monthly Wind Speed | Agricultural Areas | |
A1 | C1,1 | C2,1 |
A2 | C1,2 | C2,2 |
A3 | C1,3 | C2,3 |
︙ | ︙ | ︙ |
Am | C1,m | C2,m |
Area | A1 | A2 | A3 | … | Am |
---|---|---|---|---|---|
Pi | P1 | P2 | P3 | … | Pm |
Area | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
---|---|---|---|---|---|---|---|---|---|---|
Lat. (°N) | 8.19 | 8.38 | 8.52 | 8.31 | 8.03 | 7.47 | 7.76 | 7.81 | 7.73 | 7.85 |
Long. (°E) | 99.25 | 98.72 | 98.71 | 98.84 | 99.37 | 99.79 | 99.46 | 99.69 | 99.72 | 99.66 |
Area | A11 | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 | A20 |
Lat. (°N) | 7.87 | 7.81 | 7.54 | 7.60 | 8.42 | 8.61 | 8.82 | 8.55 | 10.05 | 10.13 |
Long. (°E) | 99.73 | 99.46 | 99.79 | 99.75 | 98.57 | 98.55 | 98.50 | 98.58 | 98.81 | 98.73 |
Area | A21 | A22 | A23 | A24 | A25 | A26 | A27 | A28 | ||
Lat. (°N) | 10.18 | 10.03 | 10.03 | 9.62 | 9.56 | 10.64 | 10.30 | 6.96 | ||
Long. (°E) | 98.78 | 98.85 | 98.88 | 98.62 | 98.68 | 98.85 | 98.85 | 99.99 |
Areas | Monthly Wind Speed (m/s) at the Height of 10 m | Average Wind Speed (m/s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
A1 | 4.63 | 4.56 | 4.33 | 4.29 | 4.69 | 4.75 | 4.78 | 4.95 | 4.93 | 4.39 | 4.05 | 4.36 | 4.56 |
A2 | 4.01 | 4.12 | 4.02 | 4.27 | 4.34 | 4.38 | 4.36 | 4.61 | 4.70 | 4.43 | 4.10 | 4.13 | 4.29 |
A3 | 4.20 | 4.18 | 3.98 | 4.02 | 4.17 | 4.23 | 4.25 | 4.36 | 4.36 | 4.06 | 4.01 | 4.39 | 4.18 |
A4 | 4.00 | 4.07 | 3.99 | 4.23 | 4.35 | 4.35 | 4.35 | 4.55 | 4.64 | 4.36 | 4.05 | 4.13 | 4.25 |
A5 | 5.17 | 5.04 | 4.74 | 4.26 | 4.36 | 4.40 | 4.44 | 4.59 | 4.58 | 4.19 | 4.24 | 4.85 | 4.57 |
A6 | 5.38 | 5.06 | 4.71 | 4.08 | 4.21 | 4.21 | 4.24 | 4.42 | 4.39 | 4.03 | 4.34 | 5.40 | 4.54 |
A7 | 5.02 | 4.84 | 4.45 | 4.00 | 4.01 | 3.99 | 4.05 | 4.23 | 4.29 | 4.00 | 4.12 | 4.89 | 4.32 |
A8 | 5.12 | 5.01 | 4.62 | 4.30 | 4.52 | 4.55 | 4.57 | 4.79 | 4.78 | 4.26 | 4.35 | 5.03 | 4.66 |
A9 | 5.58 | 5.41 | 4.92 | 4.23 | 4.31 | 4.38 | 4.36 | 4.67 | 4.64 | 4.08 | 4.48 | 5.39 | 4.70 |
A10 | 4.72 | 4.65 | 4.29 | 4.13 | 4.38 | 4.40 | 4.42 | 4.59 | 4.58 | 4.16 | 4.08 | 4.63 | 4.42 |
A11 | 6.42 | 6.23 | 5.67 | 5.02 | 5.32 | 5.39 | 5.4 | 5.69 | 5.67 | 4.97 | 5.3 | 6.33 | 5.62 |
A12 | 6.20 | 5.92 | 5.40 | 4.57 | 4.51 | 4.52 | 4.54 | 4.84 | 4.94 | 4.53 | 4.92 | 6.06 | 5.08 |
A13 | 6.77 | 6.47 | 5.90 | 4.82 | 4.80 | 4.79 | 4.80 | 5.08 | 5.09 | 4.61 | 5.28 | 6.64 | 5.42 |
A14 | 5.71 | 5.56 | 5.16 | 4.39 | 4.17 | 4.10 | 4.11 | 4.32 | 4.35 | 4.00 | 4.50 | 5.45 | 4.65 |
A15 | 4.57 | 4.55 | 4.25 | 4.19 | 4.18 | 4.19 | 4.26 | 4.48 | 4.54 | 4.54 | 4.51 | 4.75 | 4.42 |
A16 | 5.28 | 5.08 | 4.51 | 4.22 | 4.44 | 4.54 | 4.56 | 4.90 | 4.93 | 4.41 | 4.52 | 5.52 | 4.74 |
A17 | 4.91 | 4.77 | 4.33 | 4.03 | 4.00 | 4.00 | 4.04 | 4.16 | 4.14 | 3.96 | 4.16 | 4.85 | 4.27 |
A18 | 4.67 | 4.68 | 4.73 | 4.61 | 4.53 | 4.59 | 4.74 | 5.01 | 4.79 | 4.74 | 4.75 | 5.04 | 4.74 |
A19 | 6.15 | 6.03 | 5.48 | 4.67 | 4.51 | 4.61 | 4.58 | 4.91 | 4.89 | 4.21 | 4.81 | 5.83 | 5.06 |
A20 | 5.29 | 5.29 | 4.83 | 4.35 | 4.41 | 4.46 | 4.48 | 4.69 | 4.71 | 4.09 | 4.29 | 4.97 | 4.66 |
A21 | 6.10 | 6.04 | 5.51 | 4.70 | 4.31 | 4.25 | 4.26 | 4.57 | 4.69 | 4.17 | 4.80 | 5.70 | 4.92 |
A22 | 6.88 | 6.74 | 6.19 | 5.15 | 4.67 | 4.77 | 4.74 | 5.16 | 5.16 | 4.45 | 5.26 | 6.37 | 5.46 |
A23 | 6.56 | 6.43 | 5.96 | 5.08 | 4.69 | 4.79 | 4.75 | 5.21 | 5.28 | 4.58 | 5.20 | 6.15 | 5.39 |
A24 | 5.96 | 5.63 | 5.39 | 4.83 | 4.91 | 4.79 | 4.88 | 4.82 | 4.62 | 4.25 | 4.62 | 5.60 | 5.03 |
A25 | 5.52 | 5.29 | 4.84 | 4.14 | 4.09 | 4.19 | 4.18 | 4.44 | 4.47 | 3.96 | 4.39 | 5.33 | 4.57 |
A26 | 5.72 | 5.65 | 5.18 | 4.43 | 4.03 | 4.02 | 4.00 | 4.35 | 4.47 | 4.07 | 4.53 | 5.30 | 4.65 |
A27 | 5.35 | 5.36 | 5.00 | 4.45 | 4.14 | 4.10 | 4.09 | 4.42 | 4.52 | 4.15 | 4.47 | 5.01 | 4.59 |
A28 | 6.46 | 6.18 | 5.53 | 4.58 | 4.04 | 4.00 | 3.99 | 4.29 | 4.45 | 4.26 | 5.12 | 6.35 | 4.94 |
Areas | Agricultural Areas (rai) | Areas | Agricultural Areas (rai) | ||
---|---|---|---|---|---|
Prime Agricultural Area | Agricultural Area with High Potential | Prime Agricultural Area | Agricultural Area with High Potential | ||
A1 | 22,786 | 52,158 | A15 | 3633 | 2222 |
A2 | 9906 | 10,782 | A16 | 15 | 2 |
A3 | 32,089 | 7840 | A17 | 9653 | 6562 |
A4 | 26,450 | 19,311 | A18 | 2469 | 1202 |
A5 | 9845 | 9232 | A19 | 1770 | 35 |
A6 | 13,087 | 4966 | A20 | 1728 | 12 |
A7 | 5753 | 9226 | A21 | 3698 | 727 |
A8 | 7154 | 6343 | A22 | 2992 | 483 |
A9 | 9613 | 4012 | A23 | 964 | 1 |
A10 | 11,971 | 1536 | A24 | 7448 | 10,896 |
A11 | 385 | 1335 | A25 | 2786 | 774 |
A12 | 8949 | 7428 | A26 | 19,890 | 6616 |
A13 | 3155 | 563 | A27 | 5497 | 495 |
A14 | 3802 | 2371 | A28 | 18,934 | 19,704 |
The Weight Values (w1,j) for Data in Table 10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
W1,1 | W1,2 | W1,3 | W1,4 | W1,5 | W1,6 | W1,7 | W1,8 | W1,9 | W1,10 | W1,11 | W1,12 |
0.1920 | 0.1658 | 0.1353 | 0.0458 | 0.0406 | 0.0444 | 0.0448 | 0.0462 | 0.0409 | 0.0299 | 0.0675 | 0.1465 |
Summer Season | Rainy Season | Summer Season |
The Weight Values (w2,j) for Data in Table 11 | |
---|---|
Prime Agricultural Area | Agricultural Area with High Potential |
W2,1 | W2,2 |
0.3364 | 0.6636 |
Areas | Monthly Wind Speed (m/s) at the Height of 10 m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W1,1 | W1,2 | W1,3 | W1,4 | W1,5 | W1,6 | W1,7 | W1,8 | W1,9 | W1,10 | W1,11 | W1,12 | |
0.1920 | 0.1658 | 0.1353 | 0.0458 | 0.0406 | 0.0444 | 0.0448 | 0.0462 | 0.0409 | 0.0299 | 0.0675 | 0.1465 | |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
A1 | 4.63 | 4.56 | 4.33 | 4.29 | 4.69 | 4.75 | 4.78 | 4.95 | 4.93 | 4.39 | 4.05 | 4.36 |
A2 | 4.01 | 4.12 | 4.02 | 4.27 | 4.34 | 4.38 | 4.36 | 4.61 | 4.70 | 4.43 | 4.10 | 4.13 |
A3 | 4.20 | 4.18 | 3.98 | 4.02 | 4.17 | 4.23 | 4.25 | 4.36 | 4.36 | 4.06 | 4.01 | 4.39 |
A4 | 4.00 | 4.07 | 3.99 | 4.23 | 4.35 | 4.35 | 4.35 | 4.55 | 4.64 | 4.36 | 4.05 | 4.13 |
A5 | 5.17 | 5.04 | 4.74 | 4.26 | 4.36 | 4.40 | 4.44 | 4.59 | 4.58 | 4.19 | 4.24 | 4.85 |
A6 | 5.38 | 5.06 | 4.71 | 4.08 | 4.21 | 4.21 | 4.24 | 4.42 | 4.39 | 4.03 | 4.34 | 5.40 |
A7 | 5.02 | 4.84 | 4.45 | 4.00 | 4.01 | 3.99 | 4.05 | 4.23 | 4.29 | 4.00 | 4.12 | 4.89 |
A8 | 5.12 | 5.01 | 4.62 | 4.30 | 4.52 | 4.55 | 4.57 | 4.79 | 4.78 | 4.26 | 4.35 | 5.03 |
A9 | 5.58 | 5.41 | 4.92 | 4.23 | 4.31 | 4.38 | 4.36 | 4.67 | 4.64 | 4.08 | 4.48 | 5.39 |
A10 | 4.72 | 4.65 | 4.29 | 4.13 | 4.38 | 4.40 | 4.42 | 4.59 | 4.58 | 4.16 | 4.08 | 4.63 |
A11 | 6.42 | 6.23 | 5.67 | 5.02 | 5.32 | 5.39 | 5.4 | 5.69 | 5.67 | 4.97 | 5.3 | 6.33 |
A12 | 6.20 | 5.92 | 5.40 | 4.57 | 4.51 | 4.52 | 4.54 | 4.84 | 4.94 | 4.53 | 4.92 | 6.06 |
A13 | 6.77 | 6.47 | 5.90 | 4.82 | 4.80 | 4.79 | 4.80 | 5.08 | 5.09 | 4.61 | 5.28 | 6.64 |
A14 | 5.71 | 5.56 | 5.16 | 4.39 | 4.17 | 4.10 | 4.11 | 4.32 | 4.35 | 4.00 | 4.50 | 5.45 |
A15 | 4.57 | 4.55 | 4.25 | 4.19 | 4.18 | 4.19 | 4.26 | 4.48 | 4.54 | 4.54 | 4.51 | 4.75 |
A16 | 5.28 | 5.08 | 4.51 | 4.22 | 4.44 | 4.54 | 4.56 | 4.90 | 4.93 | 4.41 | 4.52 | 5.52 |
A17 | 4.91 | 4.77 | 4.33 | 4.03 | 4.00 | 4.00 | 4.04 | 4.16 | 4.14 | 3.96 | 4.16 | 4.85 |
A18 | 4.67 | 4.68 | 4.73 | 4.61 | 4.53 | 4.59 | 4.74 | 5.01 | 4.79 | 4.74 | 4.75 | 5.04 |
A19 | 6.15 | 6.03 | 5.48 | 4.67 | 4.51 | 4.61 | 4.58 | 4.91 | 4.89 | 4.21 | 4.81 | 5.83 |
A20 | 5.29 | 5.29 | 4.83 | 4.35 | 4.41 | 4.46 | 4.48 | 4.69 | 4.71 | 4.09 | 4.29 | 4.97 |
A21 | 6.10 | 6.04 | 5.51 | 4.70 | 4.31 | 4.25 | 4.26 | 4.57 | 4.69 | 4.17 | 4.80 | 5.70 |
A22 | 6.88 | 6.74 | 6.19 | 5.15 | 4.67 | 4.77 | 4.74 | 5.16 | 5.16 | 4.45 | 5.26 | 6.37 |
A23 | 6.56 | 6.43 | 5.96 | 5.08 | 4.69 | 4.79 | 4.75 | 5.21 | 5.28 | 4.58 | 5.20 | 6.15 |
A24 | 5.96 | 5.63 | 5.39 | 4.83 | 4.91 | 4.79 | 4.88 | 4.82 | 4.62 | 4.25 | 4.62 | 5.60 |
A25 | 5.52 | 5.29 | 4.84 | 4.14 | 4.09 | 4.19 | 4.18 | 4.44 | 4.47 | 3.96 | 4.39 | 5.33 |
A26 | 5.72 | 5.65 | 5.18 | 4.43 | 4.03 | 4.02 | 4.00 | 4.35 | 4.47 | 4.07 | 4.53 | 5.30 |
A27 | 5.35 | 5.36 | 5.00 | 4.45 | 4.14 | 4.10 | 4.09 | 4.42 | 4.52 | 4.15 | 4.47 | 5.01 |
A28 | 6.46 | 6.18 | 5.53 | 4.58 | 4.04 | 4.00 | 3.99 | 4.29 | 4.45 | 4.26 | 5.12 | 6.35 |
Areas | Agricultural Areas (rai) | Areas | Agricultural Areas (rai) | ||
---|---|---|---|---|---|
W3,1 | W3,2 | W3,1 | W3,2 | ||
0.3364 | 0.6636 | 0.3364 | 0.6636 | ||
Prime Agricultural Area | Agricultural Area with High Potential | Prime Agricultural Area | Agricultural Area with High Potential | ||
A1 | 22,786 | 52,158 | A15 | 3633 | 2222 |
A2 | 9906 | 10,782 | A16 | 15 | 2 |
A3 | 32,089 | 7840 | A17 | 9653 | 6562 |
A4 | 26,450 | 19,311 | A18 | 2469 | 1202 |
A5 | 9845 | 9232 | A19 | 1770 | 35 |
A6 | 13,087 | 4966 | A20 | 1728 | 12 |
A7 | 5753 | 9226 | A21 | 3698 | 727 |
A8 | 7154 | 6343 | A22 | 2992 | 483 |
A9 | 9613 | 4012 | A23 | 964 | 1 |
A10 | 11,971 | 1536 | A24 | 7448 | 10,896 |
A11 | 385 | 1335 | A25 | 2786 | 774 |
A12 | 8949 | 7428 | A26 | 19,890 | 6616 |
A13 | 3155 | 563 | A27 | 5497 | 495 |
A14 | 3802 | 2371 | A28 | 18,934 | 19,704 |
Areas | The Performance Scores (Pk,i) for Two Perspectives | Areas | The Performance Scores (Pk,i) for Two Perspectives | ||
---|---|---|---|---|---|
Monthly Wind Speed | Agricultural Areas | Monthly Wind Speed | Agricultural Areas | ||
A1 | 0.2099 | 0.9161 | A15 | 0.2016 | 0.0532 |
A2 | 0.0716 | 0.2178 | A16 | 0.4166 | 0.0000 |
A3 | 0.0741 | 0.2960 | A17 | 0.2622 | 0.1498 |
A4 | 0.0635 | 0.4193 | A18 | 0.3018 | 0.0321 |
A5 | 0.3583 | 0.1922 | A19 | 0.6983 | 0.0167 |
A6 | 0.4160 | 0.1497 | A20 | 0.4138 | 0.0163 |
A7 | 0.2930 | 0.1771 | A21 | 0.6712 | 0.0372 |
A8 | 0.3591 | 0.1340 | A22 | 0.9009 | 0.0295 |
A9 | 0.4927 | 0.1152 | A23 | 0.8484 | 0.0091 |
A10 | 0.2195 | 0.1114 | A24 | 0.6209 | 0.2111 |
A11 | 0.8330 | 0.0246 | A25 | 0.4566 | 0.0299 |
A12 | 0.7040 | 0.1594 | A26 | 0.5328 | 0.2122 |
A13 | 0.8857 | 0.0315 | A27 | 0.4341 | 0.0519 |
A14 | 0.5332 | 0.0563 | A28 | 0.7385 | 0.3995 |
Areas | The performance Scores (Pk,i) for Two Perspectives | Areas | The Performance Scores (Pk,i) for Two Perspectives | ||
---|---|---|---|---|---|
Wp1 | Wp2 | Wp1 | Wp2 | ||
0.2212 | 0.7788 | 0.2212 | 0.7788 | ||
Monthly Wind Speed | Agricultural Areas | Monthly Wind Speed | Agricultural Areas | ||
A1 | 0.2099 | 0.9161 | A15 | 0.2016 | 0.0532 |
A2 | 0.0716 | 0.2178 | A16 | 0.4166 | 0.0000 |
A3 | 0.0741 | 0.2960 | A17 | 0.2622 | 0.1498 |
A4 | 0.0635 | 0.4193 | A18 | 0.3018 | 0.0321 |
A5 | 0.3583 | 0.1922 | A19 | 0.6983 | 0.0167 |
A6 | 0.4160 | 0.1497 | A20 | 0.4138 | 0.0163 |
A7 | 0.2930 | 0.1771 | A21 | 0.6712 | 0.0372 |
A8 | 0.3591 | 0.1340 | A22 | 0.9009 | 0.0295 |
A9 | 0.4927 | 0.1152 | A23 | 0.8484 | 0.0091 |
A10 | 0.2195 | 0.1114 | A24 | 0.6209 | 0.2111 |
A11 | 0.8330 | 0.0246 | A25 | 0.4566 | 0.0299 |
A12 | 0.7040 | 0.1594 | A26 | 0.5328 | 0.2122 |
A13 | 0.8857 | 0.0315 | A27 | 0.4341 | 0.0519 |
A14 | 0.5332 | 0.0563 | A28 | 0.7385 | 0.3995 |
Area | A1 | A4 | A28 | A3 | A24 | A26 | A2 | A5 | A7 | A12 |
---|---|---|---|---|---|---|---|---|---|---|
Pi | 0.9114 | 0.4519 | 0.4416 | 0.3199 | 0.2401 | 0.2382 | 0.2357 | 0.2122 | 0.1945 | 0.1917 |
Area | A6 | A17 | A8 | A9 | A10 | A22 | A13 | A11 | A23 | A21 |
Pi | 0.1690 | 0.1647 | 0.1507 | 0.1373 | 0.1227 | 0.1121 | 0.1111 | 0.1029 | 0.1007 | 0.0898 |
Area | A14 | A19 | A27 | A25 | A15 | A20 | A18 | A16 | ||
Pi | 0.0876 | 0.0849 | 0.0753 | 0.0621 | 0.0607 | 0.0505 | 0.0476 | 0.0472 |
σ | Wp1 | Wp2 | Pairwise Reordering Within the Same Group | |||||
---|---|---|---|---|---|---|---|---|
Group I | Group II | Group III | Group IV | Group V | Group VI | |||
0.7904 | 0.1749 | 0.8251 | - | - | - | A2 ⟷ A26 A2 ⟷ A24 | - | A15 ⟷ A25 A14 ⟷ A21 A18 ⟷ A20 A19 ⟷ A27 |
0.8238 | 0.1822 | 0.8178 | - | - | - | A2 ⟷ A26 A2 ⟷ A24 | - | A15 ⟷ A25 A14 ⟷ A21 A18 ⟷ A20 A19 ⟷ A27 |
0.8239 | 0.1823 | 0.8177 | - | - | - | A2 ⟷ A26 | - | A15 ⟷ A25 A14 ⟷ A21 A18 ⟷ A20 A19 ⟷ A27 |
0.8691 | 0.1923 | 0.8077 | - | - | - | A2 ⟷ A26 | - | A15 ⟷ A25 A14 ⟷ A21 A18 ⟷ A20 |
0.8695 | 0.1927 | 0.8076 | - | - | - | - | - | A15 ⟷ A25 A14 ⟷ A21 A18 ⟷ A20 |
0.9281 | 0.2053 | 0.7947 | - | - | - | - | - | A15 ⟷ A25 A14 ⟷ A21 |
0.9698 | 0.2146 | 0.7854 | - | - | - | - | - | A15 ⟷ A25 |
1 | 0.2212 | 0.7788 | See Figure 6 for reference | |||||
1.0133 | 0.2242 | 0.7758 | - | - | - | - | - | A16 ⟷ A18 |
1.0664 | 0.2359 | 0.7641 | - | - | - | - | - | A16 ⟷ A18 A14 ⟷ A19 |
1.0706 | 0.2369 | 0.7631 | - | - | - | A7 ⟷ A12 | - | A16 ⟷ A18 A14 ⟷ A19 |
1.0896 | 0.2433 | 0.7567 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 | A16 ⟷ A18 A14 ⟷ A19 |
1.0999 | 0.2433 | 0.7566 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 | A16 ⟷ A18 A14 ⟷ A19 |
1.1767 | 0.2603 | 0.7369 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 | A16 ⟷ A18 A14 ⟷ A19 |
1.1897 | 0.2632 | 0.7368 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 | A16 ⟷ A18 A14 ⟷ A19 |
1.2047 | 0.2665 | 0.7335 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 |
1.2549 | 0.2776 | 0.7224 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 A15 ⟷ A16 |
1.2771 | 0.2825 | 0.7175 | - | - | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 A9 ⟷ A22 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 A15 ⟷ A16 |
1.2875 | 0.2848 | 0.7152 | - | A4 ⟷ A28 | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 A9 ⟷ A22 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 A15 ⟷ A16 |
1.2953 | 0.2866 | 0.7134 | - | A4 ⟷ A28 | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 A9 ⟷ A22 A9 ⟷ A13 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 A15 ⟷ A16 |
1.3438 | 0.2973 | 0.7027 | - | A4 ⟷ A28 | - | A7 ⟷ A12 | A10 ⟷ A22 A10 ⟷ A13 A10 ⟷ A11 A10 ⟷ A23 A9 ⟷ A22 A9 ⟷ A13 | A16 ⟷ A18 A14 ⟷ A19 A15 ⟷ A20 A15 ⟷ A16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klongboonjit, S.; Kiatcharoenpol, T. Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula. Sustainability 2024, 16, 10616. https://doi.org/10.3390/su162310616
Klongboonjit S, Kiatcharoenpol T. Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula. Sustainability. 2024; 16(23):10616. https://doi.org/10.3390/su162310616
Chicago/Turabian StyleKlongboonjit, Sakon, and Tossapol Kiatcharoenpol. 2024. "Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula" Sustainability 16, no. 23: 10616. https://doi.org/10.3390/su162310616
APA StyleKlongboonjit, S., & Kiatcharoenpol, T. (2024). Application of Two-Step Entropy–TOPSIS Method and Complete Linkage Clustering for Water-Pumping Windmill Investment on Thailand Peninsula. Sustainability, 16(23), 10616. https://doi.org/10.3390/su162310616