Can Internet Use Increase Rural Women’s Income? Evidence from Underdeveloped Areas of China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of Internet Use on Rural Women’s Income
2.2. The Mechanism of Internet Use Increasing Rural Women’s Income
3. Research Design
3.1. Data Sources
3.2. Variables
3.2.1. Explained Variables
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.2.4. Mechanism Variables
3.3. Model Setting
3.4. Descriptive Statistics
4. Empirical Results and Analysis
4.1. Baseline Estimation
4.2. Endogeneity
4.3. Robustness Tests
4.3.1. Change in Sample Range: Focusing on the Labor Force Samples
4.3.2. Substitution of the Explanatory Variable: Degree of Internet Use
4.3.3. Replacing the Test Model: Propensity Score Matching (PSM) Method
4.4. Heterogeneity Analysis
4.4.1. Heterogeneity of Internet Use Purposes
4.4.2. Heterogeneity of Income Level
4.4.3. Heterogeneity of Individual Characteristics
4.4.4. Heterogeneity of Family Characteristics
4.5. Mechanism Analysis
4.5.1. Adjustment of Labor Inputs
4.5.2. Enhancement of Capital Endowment
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Treatment Group | Control Group | Difference 1 |
---|---|---|---|
Explained Variables | |||
Labor income | 1.444 | 0.580 | 0.864 *** |
Wage income | 0.688 | 0.162 | 0.526 *** |
Business income | 0.756 | 0.418 | 0.338 *** |
Control Variables | |||
Age | 48.730 | 58.981 | −10.252 *** |
Education | 5.278 | 2.786 | 2.492 *** |
Health | 0.398 | 0.688 | −0.290 *** |
Marital status | 0.955 | 0.936 | 0.019 |
Party membership | 0.055 | 0.023 | 0.032 *** |
Household size | 4.928 | 4.924 | 0.004 |
Proportion of children | 0.194 | 0.163 | 0.031 *** |
Farm size | 6.906 | 6.450 | 0.456 |
Distance to market | 6.101 | 6.431 | −0.331 |
Poor household | 0.386 | 0.316 | 0.070 *** |
Regional economy | 0.889 | 0.850 | 0.039 *** |
Distance to the county | 38.611 | 37.272 | 1.339 |
Mechanism Variables | |||
Employment | 0.849 | 0.791 | 0.058 *** |
Agricultural employment | 0.542 | 0.660 | −0.119 *** |
Off-farm employment | 0.452 | 0.217 | 0.235 *** |
Agricultural working hours | 3.396 | 3.888 | −0.493 ** |
Off-farm working hours | 2.512 | 1.113 | 1.399 *** |
Social capital | 0.234 | 0.099 | 0.135 *** |
Human capital | 0.475 | 0.339 | 0.136 *** |
Variables | Before Matching (U) | Mean | Standard Deviation | Error Deviation | T-Test | ||
---|---|---|---|---|---|---|---|
After Matching (M) | Treatment Group | Control Group | (%) | (%) | t | p > |t| | |
Age | U | 48.702 | 58.962 | −103.2 | −19.29 | 0.000 | |
M | 48.968 | 48.353 | 1.8 | 98.2 | 0.39 | 0.694 | |
Education | U | 5.366 | 2.817 | 70.2 | 12.94 | 0.000 | |
M | 5.329 | 5.281 | 1.3 | 98.2 | 0.24 | 0.809 | |
Health | U | 0.393 | 0.688 | −42.0 | −7.83 | 0.000 | |
M | 0.394 | 0.400 | −0.9 | 97.8 | −0.19 | 0.849 | |
Marital status | U | 0.057 | 0.024 | 16.9 | 3.07 | 0.002 | |
M | 0.053 | 0.044 | 4.6 | 72.7 | 0.81 | 0.415 | |
Party membership | U | 0.954 | 0.935 | 8.2 | 1.53 | 0.126 | |
M | 0.956 | 0.944 | 5.1 | 38.3 | 1.03 | 0.305 | |
Household size | U | 4.928 | 4.916 | 0.7 | 0.13 | 0.893 | |
M | 4.935 | 4.971 | −2.0 | −181.9 | −0.44 | 0.663 | |
Proportion of children | U | 0.192 | 0.162 | 18.1 | 3.35 | 0.001 | |
M | 0.192 | 0.191 | 0.8 | 95.3 | 0.16 | 0.871 | |
Farm size | U | 6.983 | 6.476 | 6.7 | 1.23 | 0.219 | |
M | 6.997 | 6.866 | 1.7 | 74.1 | 0.33 | 0.740 | |
Distance to market | U | 6.047 | 6.439 | −4.6 | −0.88 | 0.379 | |
M | 6.055 | 6.497 | −5.3 | −13.1 | −1.19 | 0.233 | |
Poor household | U | 0.313 | 0.386 | −15.5 | −2.88 | 0.004 | |
M | 0.314 | 0.323 | −1.8 | 88.2 | −0.36 | 0.717 | |
Regional economy | U | 0.625 | 0.604 | 14.6 | 2.70 | 0.007 | |
M | 0.625 | 0.607 | 12.3 | 15.7 | 2.30 | 0.022 | |
Distance to the county | U | 38.384 | 37.128 | 4.4 | 0.80 | 0.422 | |
M | 38.335 | 37.402 | 3.2 | 25.8 | 0.63 | 0.530 |
References
- Duflo, E. Women Empowerment and Economic Development. J. Econ. Lit. 2012, 50, 1051–1079. [Google Scholar] [CrossRef]
- Shamier, C.; McKinnon, K.; Woodward, K. Social Relations, Gender and Empowerment in Economic Development: Flores, Nusa Tenggara Timur. Dev. Change 2021, 52, 1396–1417. [Google Scholar] [CrossRef]
- Baten, J.; de Pleijt, A.M. Female Autonomy Generated Successful Long-Term Human Capital Development: Evidence from 16th to 19th Century Europe. World Dev. 2022, 158, 105999. [Google Scholar] [CrossRef]
- Allendorf, K. Do Women’s Land Rights Promote Empowerment and Child Health in Nepal? World Dev. 2007, 35, 1975–1988. [Google Scholar] [CrossRef] [PubMed]
- Quisumbing, A.; Meinzen-Dick, R.; Malapit, H. Women’s Empowerment and Gender Equality in South Asian Agriculture: Measuring Progress Using the Project-Level Women’s Empowerment in Agriculture Index (pro-WEAI) in Bangladesh and India. World Dev. 2022, 151, 105396. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Ibanez, M.; Khan, S.; Sahoo, S. Does Women’s Economic Empowerment Promote Human Development in Low- and Middle-Income Countries? A Meta-Analysis. World Dev. 2024, 178, 106588. [Google Scholar] [CrossRef]
- The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2016.
- Goldin, C. The Quiet Revolution That Transformed Women’s Employment, Education, and Family. Am. Econ. Rev. 2006, 96, 1–21. [Google Scholar] [CrossRef]
- Dang, H.-A.H.; Cuong, V.N. Gender Inequality during the COVID-19 Pandemic: Income, Expenditure, Savings, and Job Loss. World Dev. 2021, 140, 105296. [Google Scholar] [CrossRef] [PubMed]
- Yavorsky, J.E.; Kamp Dush, C.M.; Schoppe-Sullivan, S.J. The Production of Inequality: The Gender Division of Labor Across the Transition to Parenthood. J. Marriage Fam. 2015, 77, 662–679. [Google Scholar] [CrossRef]
- Fuwa, N.; Ito, S.; Kubo, K.; Kurosaki, T.; Sawada, Y. Introduction to a Study of Intrahousehold Resource Allocation and Gender Discrimination in Rural Andhra Pradesh, India. Dev. Econ. 2006, 44, 375–397. [Google Scholar] [CrossRef]
- Becker, G.S. A Treatise on the Family: Enlarged Edition; Harvard University Press: Cambridge, MA, USA, 1991; ISBN 978-0-674-90698-3. [Google Scholar]
- Bradshaw, S.; Chant, S.; Linneker, B. Challenges and Changes in Gendered Poverty: The Feminization, De-Feminization, and Re-Feminization of Poverty in Latin America. Fem. Econ. 2019, 25, 119–144. [Google Scholar] [CrossRef]
- Howcroft, D.; Rubery, J. Gender Equality Prospects and the Fourth Industrial Revolution. In Work in the Digital Age: Challenges of the Fourth Industrial Revolution; Rowman & Littlefield International: Lanham, MD, USA, 2018; pp. 63–74. [Google Scholar]
- Kusumawardhani, N.; Pramana, R.; Saputri, N.S.; Suryadarma, D. Heterogeneous Impact of Internet Availability on Female Labor Market Outcomes in an Emerging Economy: Evidence from Indonesia. World Dev. 2023, 164, 106182. [Google Scholar] [CrossRef]
- Bloom, N.; Liang, J.; Roberts, J.; Ying, Z.J. Does Working from Home Work? Evidence from a Chinese Experiment. Q. J. Econ. 2015, 130, 165–218. [Google Scholar] [CrossRef]
- Dettling, L.J. Broadband in the Labor Market: The Impact of Residential High-Speed Internet on Married Women’s Labor Force Participation. ILR Rev. 2017, 70, 451–482. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Liu, R. E-Commerce Development and Women’s Family Empowerment: Evidence from China. Appl. Econ. Lett. 2024, 1–5. [Google Scholar] [CrossRef]
- Dlodlo, N. Access to ICT Education for Girls and Women in Rural South Africa: A Case Study. Technol. Soc. 2009, 31, 168–175. [Google Scholar] [CrossRef]
- Melhem, S.; Morrell, C.; Tandon, N. Information and Communication Technologies for Women’s Socioeconomic Empowerment; World Bank Publications: Washington, DC, USA, 2009; ISBN 978-0-8213-8134-2. [Google Scholar]
- Wang, W.; Zhang, S. The Impact of Internet Use on Rural Women’s Off-Farm Work Participation: Empirical Evidence from China. Sustainability 2022, 14, 16972. [Google Scholar] [CrossRef]
- The Information Office of the State Council of PRC Poverty Alleviation: China’s Experience and Contribution. Available online: https://www.gov.cn/zhengce/2021-04/06/content_5597952.htm (accessed on 14 November 2024).
- Zheng, Y.; Zhu, T.; Jia, W. Does Internet Use Promote the Adoption of Agricultural Technology? Evidence from 1 449 Farm Households in 14 Chinese Provinces. J. Integr. Agric. 2022, 21, 282–292. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, D.; Yu, L.; Yang, H. Influence of a New Agricultural Technology Extension Mode on Farmers’ Technology Adoption Behavior in China. J. Rural Stud. 2020, 76, 173–183. [Google Scholar] [CrossRef]
- Li, X.; Guo, H.; Jin, S.; Ma, W.; Zeng, Y. Do Farmers Gain Internet Dividends from E-Commerce Adoption? Evidence from China. Food Policy 2021, 101, 102024. [Google Scholar] [CrossRef]
- Ma, W.; Grafton, R.Q.; Renwick, A. Smartphone Use and Income Growth in Rural China: Empirical Results and Policy Implications. Electron Commer Res 2020, 20, 713–736. [Google Scholar] [CrossRef]
- Fang, L.; Quan, Y.; Mao, H.; Chen, S. The Impact of Information Communication Technology Adoption on Rural Labourers’ off-Farm Employment: An Analysis Based on China Family Panel Studies. Appl. Econ. 2023, 56, 7861–7865. [Google Scholar] [CrossRef]
- Li, C.; Sha, Z.; Sun, T. Rural Households’ Internet Use on Common Prosperity: Evidence from the Chinese Social Survey. Soc. Indic. Res. 2023, 170, 797–823. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Internet Use Help Reduce Rural Cropland Abandonment? Evidence from China. Land Use Pol. 2019, 89, 104243. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Zhang, S.; Osabuohien, E.; Ihtisham, M. Influence of Mobile Phone and Internet Technology on Income of Rural Farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technol. Soc. 2022, 68, 101866. [Google Scholar] [CrossRef]
- Nie, P.; Peng, X.; Luo, T. Internet Use and Fertility Behavior among Reproductive-Age Women in China. China Econ. Rev. 2023, 77, 101903. [Google Scholar] [CrossRef]
- Daud, S.N.M.; Ahmad, A.H. Financial Inclusion, Economic Growth and the Role of Digital Technology. Financ. Res. Lett. 2023, 53, 103602. [Google Scholar] [CrossRef]
- Making Innovation and Technology Work for Women; UN WOMEN: New York, NY, USA, 2017.
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet Use on Economic Well-Being of Rural Households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Leng, X. Digital Revolution and Rural Family Income: Evidence from China. J. Rural Stud. 2022, 94, 336–343. [Google Scholar] [CrossRef]
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Chandio, A.A.; Gokmenoglu, K.K.; Khan, I.; Ahmad, F.; Jiang, Y. Does Internet Technology Usage Improve Food Production? Recent Evidence from Major Rice-Producing Provinces of China. Comput. Electron. Agric. 2023, 211, 108053. [Google Scholar] [CrossRef]
- Wang, Y.; Sandner, J. Like a “Frog in a Well”? An Ethnographic Study of Chinese Rural Women’s Social Media Practices through the WeChat Platform. Chin. J. Commun. 2019, 12, 324–339. [Google Scholar] [CrossRef]
- Di Vaio, A.; Hassan, R.; Palladino, R. Blockchain Technology and Gender Equality: A Systematic Literature Review. Int. J. Inf. Manag. 2023, 68, 102517. [Google Scholar] [CrossRef]
- Di Vaio, A.; Zaffar, A.; Balsalobre-Lorente, D.; Garofalo, A. Decarbonization Technology Responsibility to Gender Equality in the Shipping Industry: A Systematic Literature Review and New Avenues Ahead. J. Shipp. Trade 2023, 8, 9. [Google Scholar] [CrossRef]
- Viollaz, M.; Winkler, H. Does the Internet Reduce Gender Gaps? The Case of Jordan. J. Dev. Stud. 2022, 58, 436–453. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Boansi, D.; Horlu, G.S.A.; Owusu, V. Adoption and Intensity of Agricultural Mechanization and Their Impact on Non-Farm Employment of Rural Women. World Dev. 2024, 173, 106434. [Google Scholar] [CrossRef]
- Wellman, B.; Quan-Haase, A.; Witte, J.; Hampton, K. Does the Internet Increase, Decrease, or Supplement Social Capital? Social Networks, Participation, and Community Commitment. Am. Behav. Sci. 2001, 45, 436–455. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W. Social Capital’s Role in Mitigating Economic Vulnerability: Understanding the Impact of Income Disparities on Farmers’ Livelihoods. World Dev. 2024, 177, 106515. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, W.; Huang, Y.; Yang, J. The Effect of Fast Internet on Employment: Evidence from a Large Broadband Expansion Program in China. China World Econ. 2022, 30, 100–134. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Gong, J.; Xu, J. Technology Empowerment: A Path to Poverty Alleviation for Chinese Women from the Perspective of Development Communication. Telecommun. Policy 2022, 46, 102328. [Google Scholar] [CrossRef]
- Scheerder, A.; van Deursen, A.; van Dijk, J. Determinants of Internet Skills, Uses and Outcomes. A Systematic Review of the Second- and Third-Level Digital Divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Nie, F.; Bi, J.; Zhang, X. Study on China’s Food Security Status. Agric. Agric. Sci. Procedia 2010, 1, 301–310. [Google Scholar] [CrossRef]
- Lyubing, F.; Lijun, Z.; Xianguo, Y. The Impact of Internet Use on Entrepreneurial Behavior and Income: Evidence from Chinese Rural Households. J. Asian Econ. 2024, 93, 101752. [Google Scholar] [CrossRef]
- Bonis-Profumo, G.; Stacey, N.; Brimblecombe, J. Measuring Women’s Empowerment in Agriculture, Food Production, and Child and Maternal Dietary Diversity in Timor-Leste. Food Policy 2021, 102, 102102. [Google Scholar] [CrossRef]
- Han, X.; Zhang, H.; Zhu, W. The Impact of Digital Finance on Women’s Bargaining Power: Evidence from China. China Econ. Rev. 2023, 80, 102007. [Google Scholar] [CrossRef]
- Ye, B.; Zhao, Y. Women Hold up Half the Sky? Gender Identity and the Wife’s Labor Market Performance in China. China Econ. Rev. 2018, 47, 116–141. [Google Scholar] [CrossRef]
- Ma, G.; Yang, E. Social Networks, Informal Finance and Entrepreneurship. Econ. Res. J. 2011, 46, 83–94. [Google Scholar]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Political Econ. 1962, 70, 9–49. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Can Mobile Phones Improve Gender Equality and Nutrition? Panel Data Evidence from Farm Households in Uganda. Food Policy 2017, 73, 95–103. [Google Scholar] [CrossRef]
- Chari, A.; Liu, E.M.; Wang, S.-Y.; Wang, Y. Property Rights, Land Misallocation, and Agricultural Efficiency in China. Rev. Econ. Stud. 2021, 88, 1831–1862. [Google Scholar] [CrossRef]
- Lio, M.C.; Liu, M.C. ICT and Agricultural Productivity: Evidence from Cross-Country Data. Agric. Econ. 2006, 34, 221–228. [Google Scholar] [CrossRef]
- Zhou, X.; Cui, Y.; Zhang, S. Internet Use and Rural Residents’ Income Growth. China Agric. Econ. Rev. 2020, 12, 315–327. [Google Scholar] [CrossRef]
- Fang, S.; Zhu, P. Exploring the Impact of the Internet on Income Inequality in Rural Households. Systems Eng. Theory Pract. 2024, 44, 1450–1467. [Google Scholar]
- Hossain, M.; Samad, H. Mobile Phones, Household Welfare, and Women’s Empowerment: Evidence from Rural off-Grid Regions of Bangladesh. Inform. Technol. Dev. 2021, 27, 191–207. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Cai, Y.; Zhang, J. Effect of Individual Digitalization on Income Growth and Distribution:Evidence from the China Household Digital Economy Survey. China Ind. Econ. 2023, 10, 23–41. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, H. Does ICT Change Household Decision-Making Power of the Left-behind Women? A Case from China. Technol. Forecast. Soc. Change 2021, 166, 120604. [Google Scholar] [CrossRef]
- Novo-Corti, I.; Varela-Candamio, L.; Teresa Garcia-Alvarez, M. Breaking the Walls of Social Exclusion of Women Rural by Means of ICTs: The Case of “digital Divides” in Galician. Comput. Hum. Behav. 2014, 30, 497–507. [Google Scholar] [CrossRef]
- Ma, W.; Qiu, H.; Rahut, D.B. Rural Development in the Digital Age: Does Information and Communication Technology Adoption Contribute to Credit Access and Income Growth in Rural China? Rev. Dev. Econ. 2023, 27, 1421–1444. [Google Scholar] [CrossRef]
- Cook, S.; Dong, X. Harsh Choices: Chinese Women’s Paid Work and Unpaid Care Responsibilities under Economic Reform. Dev. Change 2011, 42, 947–965. [Google Scholar] [CrossRef]
Variable | Definition | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Explained Variables | |||||
Labor income | Total labor income (CNY 10,000) | 1.053 | 1.977 | −1.685 | 19.343 |
Wage income | Annual income from hired labor (CNY 10,000) | 0.450 | 1.142 | 0 | 10 |
Business income | Annual net income from agricultural and non-agricultural business (CNY 10,000) | 0.603 | 1.566 | −1.685 | 12.458 |
Explanatory Variables | |||||
Internet use | Whether the hostess uses the Internet: yes = 1, no = 0 | 0.548 | 0.498 | 0 | 1 |
Degree of Internet use | Total number of participations in 11 major Internet activities | 1.979 | 2.152 | 0 | 8 |
Online socialization | Whether the hostess uses the Internet for social activities: yes = 1, no = 0 | 0.516 | 0.500 | 0 | 1 |
Online entertainment | Whether the hostess uses the Internet for entertainment activities: yes = 1, no = 0 | 0.455 | 0.498 | 0 | 1 |
Online business | Whether the hostess uses the Internet for business activities: yes = 1, no = 0 | 0.393 | 0.489 | 0 | 1 |
Online learning | Whether the hostess uses the Internet for learning activities: yes = 1, no = 0 | 0.201 | 0.401 | 0 | 1 |
Control Variables | |||||
Age | Age of hostess (years) | 53.367 | 11.103 | 23 | 86 |
Education | Schooling years of hostess (years) | 4.151 | 3.872 | 0 | 16 |
Health | Health status of hostess: 0 = healthy; 1 = having a chronic disease; 2 = completely incapacitated due to illness | 0.529 | 0.712 | 0 | 2 |
Marital status | Whether married: yes = 1, no = 0 | 0.947 | 0.225 | 0 | 1 |
Party membership | Whether the hostess is a member of CPC: yes = 1, no = 0 | 0.041 | 0.198 | 0 | 1 |
Household size | Number of family members | 4.926 | 1.753 | 1 | 14 |
Proportion of children | Proportion of family members aged 0–16 years (%) | 0.180 | 0.170 | 0 | 0.714 |
Farm size | Total cultivated area in 2020 (mu) | 6.700 | 7.574 | 0 | 100 |
Distance to market | Distance from the respondent’s home to the nearest market (km) | 6.250 | 8.155 | 0 | 200 |
Poor household | Whether the household has ever been registered a poor household: yes = 1, no = 0 | 0.348 | 0.476 | 0 | 1 |
Regional economy | Annual per capita income of the village where the respondent is located (CNY 10,000) | 0.871 | 0.254 | 0.100 | 1.520 |
Distance to the county | Distance from the respondent’s village to the county government (km) | 38.004 | 28.900 | 0 | 126 |
Mechanism Variables | |||||
Employment | Whether the hostess participates in employment: yes = 1, no = 0 | 0.823 | 0.382 | 0 | 1 |
Agricultural employment | Whether the hostess participates in agricultural employment: yes = 1, no = 0 | 0.595 | 0.491 | 0 | 1 |
Off-farm employment | Whether the hostess participates in off-farm employment: yes = 1, no = 0 | 0.346 | 0.476 | 0 | 1 |
Agricultural working hours | Average daily working hours in agriculture (hour) | 3.619 | 4.401 | 0 | 16 |
Off-farm working hours | Average daily working hours in off-farm employment (h) | 1.879 | 3.264 | 0 | 16 |
Social capital | Whether the hostess receives skills training: yes = 1, no = 0 | 0.173 | 0.379 | 0 | 1 |
Human capital | Family’s annual expenditure on social relationships (CNY 10,000) | 0.414 | 0.594 | 0 | 5 |
Labor Income | Wage Income | Business Income | |
---|---|---|---|
(1) | (2) | (3) | |
Internet use | 0.263 *** | 0.152 *** | 0.145 *** |
(0.043) | (0.032) | (0.038) | |
Age | −0.008 *** | −0.007 *** | −0.001 |
(0.002) | (0.002) | (0.002) | |
Education | 0.007 | 0.014 *** | −0.005 |
(0.007) | (0.005) | (0.006) | |
Health | −0.133 *** | −0.107 *** | −0.046 ** |
(0.028) | (0.020) | (0.022) | |
Marital status | 0.174 * | 0.354 *** | −0.122 * |
(0.088) | (0.088) | (0.071) | |
Party membership | 0.053 | −0.046 | 0.059 |
(0.100) | (0.066) | (0.078) | |
Household size | −0.036 *** | −0.013 | −0.025 ** |
(0.014) | (0.010) | (0.012) | |
Number of children | 0.110 | −0.108 | 0.234 * |
(0.160) | (0.117) | (0.135) | |
Farm size | 0.017 *** | −0.004 * | 0.022 *** |
(0.004) | (0.002) | (0.003) | |
Distance to market | −0.003 | −0.000 | −0.004 * |
(0.005) | (0.004) | (0.002) | |
Poor household | −0.068 * | −0.047 | −0.016 |
(0.040) | (0.030) | (0.038) | |
Regional economy | 0.135 | 0.091 | 0.093 |
(0.148) | (0.118) | (0.138) | |
Distance to the county | −0.000 | −0.001 ** | 0.001 |
(0.001) | (0.001) | (0.001) | |
Provincial dummies | YES | YES | YES |
Constant | 0.966 *** | 0.802 *** | 0.267 * |
(0.159) | (0.123) | (0.141) | |
Obs | 1384 | 1384 | 1384 |
R2 | 0.160 | 0.146 | 0.139 |
Internet Use | Labor Income | Wage Income | Business Income | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Internet use | 0.360 ** | 0.188 ** | 0.262 | |
(0.176) | (0.094) | (0.200) | ||
Internet penetration rate | 0.748 *** | |||
(0.045) | ||||
Control variables | YES | YES | YES | YES |
Constant | 0.997 *** | 0.804 *** | 0.748 *** | 0.092 |
(0.104) | (0.276) | (0.193) | (0.279) | |
Obs | 1384 | 1384 | 1384 | 1384 |
R2 | 0.333 | 0.157 | 0.145 | 0.134 |
Labor Income | Wage Income | Business Income | ||||
---|---|---|---|---|---|---|
Aged 16–55 | Aged 16–65 | Aged 16–55 | Aged 16–65 | Aged 16–55 | Aged 16–65 | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Internet use | 0.265 *** | 0.268 *** | 0.171 *** | 0.154 *** | 0.131 *** | 0.147 *** |
(0.059) | (0.045) | (0.046) | (0.034) | (0.048) | (0.041) | |
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 0.816 ** | 1.031 *** | 0.764 *** | 0.900 *** | 0.138 | 0.253 |
(0.345) | (0.208) | (0.251) | (0.152) | (0.267) | (0.172) | |
Obs | 808 | 1169 | 808 | 1169 | 808 | 1169 |
R2 | 0.120 | 0.136 | 0.146 | 0.143 | 0.125 | 0.128 |
Labor Income | Wage Income | Business Income | |
---|---|---|---|
(1) | (2) | (3) | |
Degree of Internet use | 0.074 *** | 0.043 *** | 0.044 *** |
(0.012) | (0.009) | (0.010) | |
Control variables | YES | YES | YES |
Constant | 0.924 *** | 0.773 *** | 0.223 |
(0.168) | (0.127) | (0.152) | |
Obs | 1384 | 1384 | 1384 |
R2 | 0.169 | 0.152 | 0.145 |
Matching Methods | Differences | Standard Error | T-Value |
---|---|---|---|
Radius matching (caliper = 0.01) | 0.297 *** | 0.051 | 5.69 |
Kernel matching (bandwidth = 0.05) | 0.294 *** | 0.051 | 5.75 |
Nearest neighbor matching (1:5) | 0.309 *** | 0.055 | 5.25 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Online socialization | 0.223 *** | |||
(0.046) | ||||
Online entertainment | 0.209 *** | |||
(0.043) | ||||
Online business | 0.253 *** | |||
(0.048) | ||||
Online learning | 0.296 *** | |||
(0.061) | ||||
Control variables | YES | YES | YES | YES |
Constant | 0.973 *** | 0.962 *** | 1.024 *** | 1.253 *** |
(0.163) | (0.160) | (0.171) | (0.173) | |
Obs | 1384 | 1384 | 1384 | 1384 |
R2 | 0.160 | 0.166 | 0.159 | 0.151 |
0.1 Quartile | 0.25 Quartile | 0.5 Quartile | 0.75 Quartile | 0.9 Quartile | |
---|---|---|---|---|---|
Internet use | 0.025 * | 0.029 ** | 0.132 ** | 0.379 *** | 0.553 *** |
(0.014) | (0.014) | (0.052) | (0.088) | (0.121) | |
Control variables | YES | YES | YES | YES | YES |
Constant | −0.048 | 0.008 | 0.568 *** | 1.808 *** | 2.504 *** |
(0.059) | (0.040) | (0.195) | (0.326) | (0.511) | |
Obs | 1384 | 1384 | 1384 | 1384 | 1384 |
Labor Income | Wage Income | Business Income | |||||||
---|---|---|---|---|---|---|---|---|---|
Young Group | Middle-Aged Group | Elderly Group | Young Group | Middle-Aged Group | Elderly Group | Young Group | Middle-Aged Group | Elderly Group | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Internet use | 0.406 *** | 0.171 *** | 0.196 ** | 0.258 *** | 0.075 * | 0.166 ** | 0.189 * | 0.120 ** | 0.054 |
(0.127) | (0.059) | (0.088) | (0.086) | (0.041) | (0.065) | (0.097) | (0.051) | (0.065) | |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Constant | 0.007 | 1.862 *** | −0.243 | 0.288 | 1.505 *** | −0.291 | −0.360 | 0.651 * | 0.094 |
(0.647) | (0.394) | (0.409) | (0.490) | (0.355) | (0.271) | (0.537) | (0.359) | (0.344) | |
Obs | 286 | 708 | 390 | 286 | 708 | 390 | 286 | 708 | 390 |
R2 | 0.134 | 0.148 | 0.143 | 0.153 | 0.144 | 0.094 | 0.119 | 0.157 | 0.154 |
Difference in coefficients between groups | (1)–(2) | (2)–(3) | (1)–(3) | (4)–(5) | (5)–(6) | (4)–(6) | (7)–(8) | (8)–(9) | (7)–(9) |
0.235 | −0.024 | 0.210 | 0.183 | −0.091 | 0.092 | 0.069 | 0.066 | 0.135 | |
p values | 0.123 | 0.822 | 0.194 | 0.160 | 0.237 | 0.408 | 0.587 | 0.433 | 0.298 |
Labor Income | Wage Income | Business Income | ||||
---|---|---|---|---|---|---|
Low-Educated Group | Highly Educated Group | Low-Educated Group | Highly Educated Group | Low-Educated Group | Highly Educated Group | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Internet use | 0.239 *** | 0.483 *** | 0.138 *** | 0.319 *** | 0.122 *** | 0.253 ** |
(0.049) | (0.133) | (0.034) | (0.106) | (0.041) | (0.098) | |
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 0.992 *** | 0.368 | 0.785 *** | 0.255 | 0.332 * | 0.073 |
(0.189) | (0.549) | (0.136) | (0.446) | (0.170) | (0.471) | |
Obs | 1097 | 287 | 1097 | 287 | 1097 | 287 |
R2 | 0.169 | 0.188 | 0.104 | 0.169 | 0.177 | 0.078 |
Difference in coefficients between groups | −0.244 * | −0.181 * | −0.131 * | |||
p values | 0.065 | 0.087 | 0.075 |
Labor Income | Wage Income | Business Income | ||||
---|---|---|---|---|---|---|
No Preschoolers | With Preschoolers | No Preschoolers | With Preschoolers | No Preschoolers | With Preschoolers | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Internet use | 0.329 *** | 0.133 | 0.173 *** | 0.113 ** | 0.191 *** | 0.042 |
(0.057) | (0.082) | (0.043) | (0.048) | (0.046) | (0.077) | |
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 0.996 *** | 0.776 ** | 0.899 *** | 0.495 ** | 0.206 | 0.385 |
(0.194) | (0.353) | (0.164) | (0.221) | (0.153) | (0.291) | |
Obs | 971 | 413 | 971 | 413 | 971 | 413 |
R2 | 0.197 | 0.146 | 0.172 | 0.136 | 0.182 | 0.103 |
Difference in coefficients between groups | 0.196 * | 0.060 | 0.149 * | |||
p values | 0.054 | 0.367 | 0.088 |
Employment Participation | Working Hours | ||||
---|---|---|---|---|---|
Employment | Agricultural Employment | Off-Farm Employment | Agricultural Working Hours | Off-Farm Working Hours | |
(1) | (2) | (3) | (4) | (5) | |
Internet use | 0.130 | 0.061 | 0.289 *** | −0.395 *** | 0.578 *** |
(0.091) | (0.080) | (0.089) | (0.134) | (0.188) | |
Control variables | YES | YES | YES | YES | YES |
Constant | 1.271 *** | −1.444 *** | 1.555 *** | 3.516 *** | 5.890 *** |
(0.377) | (0.349) | (0.353) | (1.058) | (0.759) | |
Obs | 1384 | 1384 | 1384 | 1384 | 1384 |
Pseudo R2/R2 | 0.102 | 0.110 | 0.150 | 0.093 | 0.135 |
Social Capital | Human Capital | |
---|---|---|
(1) | (2) | |
Internet use | 0.055 *** | 0.378 *** |
(0.018) | (0.103) | |
Control variables | YES | YES |
Constant | 0.375 *** | −1.492 *** |
(0.090) | (0.422) | |
Obs | 1384 | 1384 |
Pseudo R2/R2 | 0.136 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Maru, A.; Yang, C.; Guo, H. Can Internet Use Increase Rural Women’s Income? Evidence from Underdeveloped Areas of China. Sustainability 2024, 16, 10546. https://doi.org/10.3390/su162310546
Zhang Q, Maru A, Yang C, Guo H. Can Internet Use Increase Rural Women’s Income? Evidence from Underdeveloped Areas of China. Sustainability. 2024; 16(23):10546. https://doi.org/10.3390/su162310546
Chicago/Turabian StyleZhang, Qianqian, Apurv Maru, Chengji Yang, and Hongdong Guo. 2024. "Can Internet Use Increase Rural Women’s Income? Evidence from Underdeveloped Areas of China" Sustainability 16, no. 23: 10546. https://doi.org/10.3390/su162310546
APA StyleZhang, Q., Maru, A., Yang, C., & Guo, H. (2024). Can Internet Use Increase Rural Women’s Income? Evidence from Underdeveloped Areas of China. Sustainability, 16(23), 10546. https://doi.org/10.3390/su162310546