Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review
Abstract
:1. Introduction
1.1. Marine Renewable Energy Devices
1.2. Polymer Composites in MRE Devices
- Tidal Currents: these drive the rotation that generates energy.
- Rotation: this leads to pressure variations caused by depth changes of up to 20 m.
- Waves: these impact underwater structures, particularly in shallow areas.
2. Hygrothermal Aging and Property Degradation
2.1. Impact of Hygrothermal Aging
2.2. Degradation Mechanism of Polymer Composites by Hygrothermal Aging
- Diffusion and Absorption of WaterOver time, moisture seeps into polymer composites exposed to seawater, penetrating fiber/matrix interfaces, microvoids, and cracks. This process leads to plasticization, which reduces mechanical properties like stiffness and strength. Degradation is exacerbated by elevated temperatures in hydrothermal conditions, which accelerate water diffusion. At higher temperatures, water molecules can penetrate the polymer matrix more deeply, altering the material’s characteristics more significantly [81].
- Matrix Plasticization and SwellingAs water is absorbed into the composite, the polymer matrix may swell, increasing the distance between polymer chains. This plasticization effect softens and makes the material more flexible, negatively impacting mechanical performance [86]. It results from a reduced cross-link density and increased chain mobility. Hydrothermal aging often lowers the matrix’s glass transition temperature (Tg), decreasing thermal stability and stiffness at lower temperatures.
- Polymer Chain HydrolysisEster bonds in the polymer matrix may undergo hydrolysis when exposed to seawater and elevated temperatures, particularly in thermoset resins like epoxy. This chemical degradation breaks down the polymer backbone, weakening the composite structure and causing embrittlement [98]. Hydrothermal conditions accelerate hydrolytic degradation, which increases embrittlement and reduces molecular weight more rapidly.
- Leaching of Additives and FillersOver time, exposure to seawater can lead to the leaching of plasticizers, fillers, and additives, altering the properties of the composite. This leaching effect can degrade mechanical, thermal, and surface properties, leading to increased surface roughness and reduced durability [76].
- Degradation of the Fiber/Matrix InterfaceWater intrusion damages the fiber/matrix interface, reducing interfacial adhesion and causing debonding. This decrease in load transfer efficiency can harm mechanical properties like tensile and flexural strength [60]. Due to ion interaction between glass and water, glass fibers in composites may deteriorate in seawater, resulting in surface pitting and strength loss.
- Delamination and MicrocrackingThermal expansion and water absorption mismatches between the fibers and matrix may lead to the formation of microcracks within the matrix. These microcracks can propagate over time, causing delamination, further water intrusion, and accelerated degradation [96]. Hydrothermal aging increases the likelihood of microcracking due to cyclical stresses from thermal expansion and contraction, as well as differential swelling between the fiber and matrix.
- Osmotic Blistering and oxidationSalt and other solutes may become trapped within the composite when seawater infiltrates. Osmosis can cause pressure buildup in these areas under hydrothermal conditions, potentially resulting in blistering or swelling. This phenomenon may further erode the structure and create pathways for additional water intrusion. Oxidation can occur in the polymer matrix if oxygen is present, such as in surface or shallow marine applications, especially at elevated temperatures [99]. This oxidation of polymer chains can lead to further embrittlement and reduce the composite’s lifespan.
3. Recycling Technologies and Their Properties After Recycling
3.1. Mechanical Recycling of Polymer Composites
3.2. Chemical Recycling of Polymer Composites
3.3. Thermal Recycling of Polymer Composites
Recycling Method | Advantages | Disadvantages | TRL | Reuse and Application | References |
---|---|---|---|---|---|
Mechanical | High efficiency and throughput. | Lower-quality recyclates, high material waste (up to 40%), and limited large-scale applications. | Glass fiber: 9 Carbon fiber: 6/7 | Composites with recycled short-fibers, random-oriented, and concrete-reinforced with crushed CFRP [M30-61,62] [M30-63–68] | [166,167] |
Chemical Recycling (Solvolysis and Supercritical Fluid Methods) | Recovers full-length fibers and uses low-risk solvents. | High energy consumption, large solvent volumes, and decreased quality of carbon fibers. | 5/6 | Composites reinforced with recycled fibers, fuel gas | [168] |
Thermal Recycling—(Pyrolysis, Microwave Pyrolysis, Fluidized Bed) | By-products used as energy or chemicals, scalable, and lower fiber damage. | Oxidation residue on fibers, strength loss, reduced fiber quality. | Pyrolysis: 9 Microwave: 4/5 | Liquid fuels, pyrolytic gas/oil, composites with short recycled fibers, electromagnetic shielding, high-modulus composites | [166] |
4. Research on Recycling Degraded MRE Structures
4.1. Reuse and Recycling of Composite Structures
4.2. Reuse of Recycled Fibers and Matrix
4.3. Economic Cost Analysis of Recycling the Composite
5. Knowledge Gaps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newell, R.G.; Raimi, D. Global Energy Outlook Comparison Methods: 2020 Update. Resources for the Future. 2020. Available online: https://media.rff.org/documents/Global_Energy_Outlook_Comparison_Methods_2020.pdf (accessed on 15 August 2024).
- Wang, J.; Azam, W. Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geosci. Front. 2024, 15, 101757. [Google Scholar] [CrossRef]
- ETIPWind. How Wind Is Going Circular-Blade Recycling. European Technology and Innovation Platform on Wind Energy. 2019. Available online: https://etipwind.eu/files/reports/ETIPWind-How-wind-is-going-circular-blade-recycling.pdf (accessed on 10 August 2024).
- Sánchez, R.G.; Pehlken, A.; Lewandowski, M. On the Sustainability of Wind Energy Regarding Material Usage. Acta Tech. Corviniensis-Bull. Eng. 2014, 7, 69. [Google Scholar]
- Musial, W.; Spitsen, P.; Duffy, P.; Beiter, P.; Shields, M.; Mulas Hernando, D.; Hammond, R.; Marquis, M.; King, J.; Sathish, S. Offshore Wind Market Report: 2023 Edition; NREL/TP-5000-87232; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. Available online: https://www.osti.gov/biblio/2001112 (accessed on 25 November 2024).
- Gold, R. Thousands of Old Wind Turbine Blades Pile Up in West Texas. The Wall Street Journal, 24 August 2023. Available online: https://www.texasmonthly.com/news-politics/sweetwater-wind-turbine-blades-dump/ (accessed on 10 October 2024).
- Simpson, K. Most Used Wind Turbine Blades End Up in Landfills. Colorado Is Part of the Push to Make the Industry Greener. Colorado Sun, 26 February 2020. Available online: https://coloradosun.com/2020/02/26/wind-turbine-blades-colorado-landfills/ (accessed on 10 October 2024).
- Jacoby, M. How Can Companies Recycle Wind Turbine Blades? Chemical & Engineering News, 8 August 2023. Available online: https://cen.acs.org/environment/recycling/companies-recycle-wind-turbine-blades/100/i27 (accessed on 10 October 2024).
- U.S. Energy Information Administration (EIA). Annual Energy Outlook 2018 with Projections to 2050. J. Phys. A Math. Theor. 2018, 44, 1–64. [Google Scholar]
- Bose, B.K. Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Newhouse, K.J. An Acoustic Emission and Hygrothermal Aging Study of Fiber Reinforced Polymer Composites. Ph.D. Thesis, Montana State University-Bozeman, College of Engineering, Bozeman, MT, USA, 2019. [Google Scholar]
- Beiter, P.; Musial, W.; Smith, A.; Kilcher, L.; Damiani, R.; Maness, M.; Sirnivas, S.; Stehly, T.; Gevorgian, V.; Mooney, M.; et al. A Spatial-Economic Cost-Reduction Pathway Analysis for US Offshore Wind Energy Development from 2015–2030; NREL/TP-6A20-66579; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. Available online: https://www.osti.gov/biblio/1324526 (accessed on 25 November 2024).
- U.S.DOE. Offshore Wind Initiatives at the US Department of Energy; DOE/EE-1486; US Department of Energy (USDOE): Washington, DC, USA, 2016.
- Jenne, D.S.; Yu, Y.H.; Neary, V. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models; NREL/CP-5000-64013; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015. Available online: https://www.osti.gov/biblio/1215196 (accessed on 25 November 2024).
- Eia, U.S. Levelized cost and levelized avoided cost of new generation resources in the annual energy outlook. Tech. Rep. 2016. Available online: https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf (accessed on 10 August 2024).
- Haas, K.A.; Fritz, H.M.; French, S.P.; Smith, B.T.; Neary, V. Assessment of Energy Production Potential from Tidal Streams in the United States; Georgia Institute of Technology: Atlanta, GA, USA, 2011. [Google Scholar]
- Jacobson, P.T.; Hagerman, G.; Scott, G. Mapping and Assessment of the United States Ocean Wave Energy Resource; DOE/GO/18173-1; Electric Power Research Institute: Palo Alto, CA, USA, 2011. Available online: https://www.osti.gov/biblio/1060943 (accessed on 25 November 2024).
- U.S.DOE. Workshop on Materials & Manufacturing for Marine Energy Technologies (Summary Report: 5 October 2021); DOE/GO-102022-5709; USDOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2022. Available online: https://www.osti.gov/biblio/1867991 (accessed on 25 November 2024).
- Gonzalez-Montijo, M.; Murray, R.; Beach, R.; Murdy, P.; Neary, V.S.; Kim, D.; Wosnik, M. Design, Manufacture, and Testing of an Open-Source Benchmark Composite Hydrokinetic Turbine Blade; NREL/CP-5000-86367; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023; Volume 15. Available online: https://www.osti.gov/biblio/1999998 (accessed on 25 November 2024).
- Satrio, D.; Musabikha, S.; Junianto, S.; Prifiharni, S.; Kusumastuti, R.; Nikitasari, A.; Priyotomo, G. The Advantages and Challenges of Carbon Fiber Reinforced Polymers for Tidal Current Turbine Systems—An Overview. IOP Conf. Ser. Earth Environ. Sci. 2024, 1298, 012029. [Google Scholar] [CrossRef]
- Murdy, P.; Dolson, J.; Miller, D.; Hughes, S.; Beach, R. Leveraging the Advantages of Additive Manufacturing to Produce Advanced Hybrid Composite Structures for Marine Energy Systems. Appl. Sci. 2021, 11, 1336. [Google Scholar] [CrossRef]
- PNNL. Tethys Engineering. Reference Model. Available online: https://openei.org/wiki/PRIMRE/Signature_Projects/Reference_Model (accessed on 20 November 2024).
- Frej, H.B.H.; Léger, R.; Perrin, D.; Ienny, P.; Gérard, P.; Devaux, J.F. Recovery and Reuse of Carbon Fibre and Acrylic Resin from Thermoplastic Composites Used in Marine Application. Resour. Conserv. Recycl. 2021, 173, 105705. [Google Scholar] [CrossRef]
- Zhou, Z. Modeling and Power Control of a Marine Current Turbine System with Energy Storage Devices. Ph.D. Thesis, Université de Bretagne Occidentale-Brest, Brest, France, 2014. [Google Scholar]
- Marsh, G. Tidal Turbines Harness the Power of the Sea. Reinf. Plast. 2004, 48, 44–47. [Google Scholar] [CrossRef]
- Murray, R.E.; Simms, A.; Bharath, A.; Beach, R.; Murphy, M.; Kilcher, L.; Scholbrock, A. Toward the Instrumentation and Data Acquisition of a Tidal Turbine in Real Site Conditions. Energies 2023, 16, 1255. [Google Scholar] [CrossRef]
- Li, Y.; Calışal, S.M. Modeling of Twin-Turbine Systems with Vertical Axis Tidal Current Turbines: Part I—Power Output. Ocean. Eng. 2010, 37, 627–637. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W. Tidal Current Energy Harvesting Technologies: A Review of Current Status and Life Cycle Assessment. Renew. Sustain. Energy Rev. 2023, 179, 113269. [Google Scholar] [CrossRef]
- Ocean Energy Europe. Sabella. Available online: https://www.oceanenergy-europe.eu/annual/sabella (accessed on 10 October 2024).
- Qiu, H.; Feng, K.; Gapeeva, A.; Meurisch, K.; Kaps, S.; Li, X.; Yu, L.; Mishra, Y.K.; Adelung, R.; Baum, M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog. Polym. Sci. 2022, 127, 101516. [Google Scholar] [CrossRef]
- Walker, S.R.; Thies, P.R. A Life Cycle Assessment Comparison of Materials for a Tidal Stream Turbine Blade. Appl. Energy 2022, 309, 118353. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Hernandez-Sanchez, B.A.; Nicholas, J.; Gunawan, B.; Miller, D.A.; Bonheyo, G.T.; Presuel-Moreno, F.; Hughes, S. Evaluation of Composite Materials for Wave and Current Energy Technologies; SAND2019-10368C; Sandia National Lab.: Albuquerque, NM, USA, 2019.
- World Class Renewable Energy Floating Offshore Power Plant Combining Wave and Wind Energy. Available online: https://www.wavedragon.com (accessed on 10 August 2024).
- Marsh, G. Wave and Tidal Power—An Emerging New Market for Composites. Reinf. Plast. 2009, 53, 20–24. [Google Scholar] [CrossRef]
- Chawdhary, S.; Angelidis, D.; Colby, J.; Corren, D.; Shen, L.; Sotiropoulos, F. Multiresolution Large-Eddy Simulation of an Array of Hydrokinetic Turbines in a Field-Scale River: The Roosevelt Island Tidal Energy Project in New York City. Water Resour. Res. 2018, 54, 10–188. [Google Scholar] [CrossRef]
- Murdy, P.; Lusty, A.; Murray, R.; Hughes, S.; Beach, R. Post-Deployment Characterization of Glass Fiber-Reinforced Thermoset and Thermoplastic Composite Tidal Turbine Blades; NREL/CP-5700-88548; National Renewable Energy Laboratory: Golden, CO, USA, 2024.
- Munaweera Thanthirige, T.R.; Goggins, J.; Flanagan, M.; Finnegan, W. A State-of-the-Art Review of Structural Testing of Tidal Turbine Blades. Energies 2023, 16, 4061. [Google Scholar] [CrossRef]
- Dubon, S.L.; Cuthill, F.; Vogel, C.; Brádaigh, C.Ó.; McCarthy, E.D. A Full-Scale Composite Tidal Blade Fatigue Test Using Single and Multiple Actuators. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108140. [Google Scholar] [CrossRef]
- Islam, A.K.M.K.; Bhuyan, S.; Chowdhury, F.A. Advanced Composite Pelton Wheel Design and Study Its Performance for Pico/Micro Hydro Power Plant Application. Int. J. Eng. Innov. Technol. 2013, 2, 126–132. [Google Scholar]
- Güllüoğlu, A.M.; Bendeş, O.; Yılmaz, B.; Yıldız, A. Investigation of Manufacturing of a Pelton Turbine Runner of Composite Material on a 3D Printer. Gazi Univ. J. Sci. Part A Eng. Innov. 2021, 8, 24–34. [Google Scholar]
- Li, H.; Zhou, D.; Martinez, J.J.; Deng, Z.D.; Johnson, K.I.; Westman, M.P. Design and Performance of Composite Runner Blades for Ultra Low Head Turbines. Renew. Energy 2019, 132, 1280–1289. [Google Scholar] [CrossRef]
- MeyGen Tidal Stream Array. Available online: https://saerenewables.com/tidal-stream/meygen/ (accessed on 12 November 2024).
- CRIMSON Project. Available online: https://crimsonproject.eu/ (accessed on 12 November 2024).
- Chen, H.; Tang, T.; Ait-Ahmed, N.; Benbouzid, M.E.H.; Machmoum, M.; Zaim, M.E.H. Attraction, Challenge, and Current Status of Marine Current Energy. IEEE Access 2018, 6, 12665–12685. [Google Scholar] [CrossRef]
- Oller Aramayo, S.A.; Nallim, L.G.; Oller Martínez, S.H.; Martínez García, J. A River Bed Hydrokinetic Turbine: A Laminated Composite Material Rotor Design. 2017. Available online: https://upcommons.upc.edu/handle/2117/107264 (accessed on 25 November 2024).
- Peng, Y.; Hu, C.; Chen, R. Study on Cemented-Rockfill Dam in Hydropower Station Construction. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- De La Torre, O.; Moore, D.; Gavigan, D.; Goggins, J. Accelerated Life Testing Study of a Novel Tidal Turbine Blade Attachment. Int. J. Fatigue 2018, 114, 226–237. [Google Scholar] [CrossRef]
- Summerscales, J. Durability of Composites in the Marine Environment. In Durability of Composites in a Marine Environment; Springer: Dordrecht, The Netherlands, 2013; pp. 1–13. [Google Scholar]
- Ghorbel, I.; Akele, N.; Thominette, F.; Spiteri, P.; Verdu, J. Hydrolytic Aging of Polycarbonate. II. Hydrolysis Kinetics, Effect of Static Stresses. J. Appl. Polym. Sci. 1995, 55, 173–179. [Google Scholar] [CrossRef]
- Colin, X.; Verdu, J. Humid Ageing of Organic Matrix Composites. In Durability of Composites in a Marine Environment; Springer: Dordrecht, The Netherlands, 2013; pp. 47–114. [Google Scholar]
- Derrien, K.; Gilormini, P. The Effect of Moisture-Induced Swelling on the Absorption Capacity of Transversely Isotropic Elastic Polymer–Matrix Composites. Int. J. Solids Struct. 2009, 46, 1547–1553. [Google Scholar] [CrossRef]
- Vassilopoulos, A.P.; Manshadi, B.D.; Keller, T. Influence of the Constant Life Diagram Formulation on the Fatigue Life Prediction of Composite Materials. Int. J. Fatigue 2010, 32, 659–673. [Google Scholar] [CrossRef]
- Post, N.L.; Case, S.W.; Lesko, J.J. Modeling the Variable Amplitude Fatigue of Composite Materials: A Review and Evaluation of the State of the Art for Spectrum Loading. Int. J. Fatigue 2008, 30, 2064–2086. [Google Scholar] [CrossRef]
- Passipoularidis, V.A.; Philippidis, T.P. A Study of Factors Affecting Life Prediction of Composites under Spectrum Loading. Int. J. Fatigue 2009, 31, 408–417. [Google Scholar] [CrossRef]
- Qian, P.Y.; Xu, Y.; Fusetani, N. Natural Products as Antifouling Compounds: Recent Progress and Future Perspectives. Biofouling 2009, 26, 223–234. [Google Scholar] [CrossRef]
- Bhagat, R.B. Cavitation Erosion of Composites—A Materials Perspective. J. Mater. Sci. Lett. 1987, 6, 1473–1475. [Google Scholar] [CrossRef]
- Davies, P.; Rajapakse, Y.D.; Verdu, J. (Eds.) Durability of Composites in a Marine Environment; Springer: Dordrecht, The Netherlands, 2014; Volume 208. [Google Scholar]
- Mamalis, D.; Floreani, C.; Brádaigh, C.M. Influence of Hygrothermal Ageing on the Mechanical Properties of Unidirectional Carbon Fibre Reinforced Powder Epoxy Composites. Compos. Part B Eng. 2021, 225, 109281. [Google Scholar] [CrossRef]
- Kumar, V.; Elen, M.; Sushmita, K.; Overman, N.R.; Nickerson, E.; Murdy, P.; Presuel-Moreno, F.; Fifield, L.S. Hygrothermal Aging and Recycling Effects on Mechanical and Thermal Properties of Recyclable Thermoplastic Glass Fiber Composites. Polym. Compos. 2024, 16, 1234. [Google Scholar] [CrossRef]
- Falkowicz, K.; Ferdynus, M.; Rozylo, P. Experimental and Numerical Analysis of Stability and Failure of Compressed Composite Plates. Compos. Struct. 2021, 263, 113657. [Google Scholar] [CrossRef]
- Das, P.P.; Vadlamudi, V.; Raihan, R. Dielectric State Variables as Qualitative Indicators of Moisture Absorption-Caused Mechanical Property Degradation in GFRP Composite Structures. Compos. Part C Open Access 2022, 9, 100295. [Google Scholar] [CrossRef]
- Tual, N.; Carrere, N.; Davies, P.; Bonnemains, T.; Lolive, E. Characterization of Sea Water Ageing Effects on Mechanical Properties of Carbon/Epoxy Composites for Tidal Turbine Blades. Compos. Part A Appl. Sci. Manuf. 2015, 78, 380–389. [Google Scholar] [CrossRef]
- Curto, M.; Le Gall, M.; Catarino, A.I.; Niu, Z.; Davies, P.; Everaert, G.; Dhakal, H.N. Long-Term Durability and Ecotoxicity of Biocomposites in Marine Environments: A Review. RSC Adv. 2021, 11, 32917–32941. [Google Scholar] [CrossRef]
- de Zeeuw, C.; de Freitas, S.T.; Zarouchas, D.; Schilling, M.; Fernandes, R.L.; Portella, P.D.; Niebergall, U. Creep Behaviour of Steel Bonded Joints under Hygrothermal Conditions. Int. J. Adhes. Adhes. 2019, 91, 54–63. [Google Scholar] [CrossRef]
- Ye, J.Y.; Zhang, L.W. Damage Evolution of Polymer-Matrix Multiphase Composites under Coupled Moisture Effects. Comput. Methods Appl. Mech. Eng. 2022, 388, 114213. [Google Scholar] [CrossRef]
- Boubakri, A.; Elleuch, K.; Guermazi, N.; Ayedi, H.F. Investigations on Hygrothermal Aging of Thermoplastic Polyurethane Material. Mater. Des. 2009, 30, 3958–3965. [Google Scholar] [CrossRef]
- Gkikas, G.; Douka, D.D.; Barkoula, N.M.; Paipetis, A.S. Nano-Enhanced Composite Materials under Thermal Shock and Environmental Degradation: A Durability Study. Compos. Part B Eng. 2015, 70, 206–214. [Google Scholar] [CrossRef]
- Yang, Y.; Xian, G.; Li, H.; Sui, L. Thermal Aging of an Anhydride-Cured Epoxy Resin. Polym. Degrad. Stab. 2015, 118, 111–119. [Google Scholar] [CrossRef]
- Firdosh, S.; Murthy, H.N.; Pal, R.; Angadi, G.; Raghavendra, N.; Krishna, M. Durability of GFRP Nanocomposites Subjected to Hygrothermal Ageing. Compos. Part B Eng. 2015, 69, 443–451. [Google Scholar] [CrossRef]
- Park, Y.B.; Kweon, J.H.; Choi, J.H. Failure Characteristics of Carbon/BMI-Nomex Sandwich Joints in Various Hygrothermal Conditions. Compos. Part B Eng. 2014, 60, 213–221. [Google Scholar] [CrossRef]
- Oumeziane, Y.A.; Moissette, S.; Bart, M.; Lanos, C. Influence of Temperature on Sorption Process in Hemp Concrete. Constr. Build. Mater. 2016, 106, 600–607. [Google Scholar] [CrossRef]
- Lassila, L.V.J.; Nohrström, T.; Vallittu, P.K. The Influence of Short-Term Water Storage on the Flexural Properties of Unidirectional Glass Fiber-Reinforced Composites. Biomaterials 2002, 23, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Rabby, M.M.; Vadlamudi, V.; Raihan, R. Moisture content prediction in polymer composites using machine learning techniques. Polymers 2022, 14, 4403. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal Effects of Epoxy Resin. Part II: Variations of Glass Transition Temperature. Polymer 1999, 40, 5513–5522. [Google Scholar] [CrossRef]
- Grammatikos, S.A.; Evernden, M.; Mitchels, J.; Zafari, B.; Mottram, J.T.; Papanicolaou, G.C. On the Response to Hygrothermal Aging of Pultruded FRPs Used in the Civil Engineering Sector. Mater. Des. 2016, 96, 283–295. [Google Scholar] [CrossRef]
- Subramaniyan, S.P.; Prabhakar, P. Moisture-Driven Degradation Mechanisms in the Viscoelastic Properties of TPU-Based Syntactic Foams. Polymers 2023, 218, 110547. [Google Scholar] [CrossRef]
- Bezzou, A.; Péron, M.; Casari, P.; Singery, V.; Ponsolle, D.; Jacquemin, F. Characterization of Microcracking of NCF Composites under Accelerated Hygrothermal Cycles: Influence of the Stitching Yarn and the Style of Biaxial NCF. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106507. [Google Scholar] [CrossRef]
- Erkliğ, A.; Oğuz, Z.A.; Doğan, N.F. Effect of Distilled Water Aging Condition on Tensile Properties of Glass-Epoxy Composites. In Proceedings of the Conference: 6th International Multidiciplinary Studies Congress, Gaziantep, Turkey, 26 April 2019; Available online: https://www.researchgate.net/publication/332910543_Effect_of_Distilled_Water_Aging_Condition_On_Tensile_Properties_of_Glass-Epoxy_Composites (accessed on 15 August 2024).
- Mansouri, L.; Djebbar, A.; Khatir, S.; Wahab, M.A. Effect of Hygrothermal Aging in Distilled and Saline Water on the Mechanical Behaviour of Mixed Short Fibre/Woven Composites. Compos. Struct. 2019, 207, 816–825. [Google Scholar] [CrossRef]
- Yong, D.U.; Yu’e, M.A.; Wenbo, S.U.N.; Zhenhai, W.A.N.G. Effect of hygrothermal aging on moisture diffusion and tensile behavior of CFRP composite laminates. Chin. J. Aeronaut. 2023, 36, 382–392. [Google Scholar]
- Xiaoquan, C.; Baig, Y.; Zhonghai, L. Effects of hygrothermal environmental conditions on compressive strength of CFRP stitched laminates. J. Reinf. Plast. Compos. 2011, 30, 110–122. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N.M. Indentation characterization of glass/epoxy and carbon/epoxy composite samples aged in artificial salt water at elevated temperature. Polym. Test. 2022, 110, 107588. [Google Scholar] [CrossRef]
- Nandagopal, R.A.; Boay, C.G.; Narasimalu, S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material. Compos. Struct. 2020, 236, 111876. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, S. Experimental investigation on compressive properties of three-dimensional five-directional braided composites in the hygrothermal environment. Sci. Eng. Compos. Mater. 2022, 29, 287–298. [Google Scholar] [CrossRef]
- Yang, S.; Liu, W.; Fang, Y.; Huo, R. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites. J. Mater. Sci. 2019, 54, 2102–2121. [Google Scholar] [CrossRef]
- Wong, T.C.; Broutman, L.J. Moisture diffusion in epoxy resins Part I. Non-Fickian sorption processes. Polym. Eng. Sci. 1985, 25, 521–528. [Google Scholar] [CrossRef]
- Diamant, Y.; Marom, G.; Broutman, L.J. The effect of network structure on moisture absorption of epoxy resins. J. Appl. Polym. Sci. 1981, 26, 3015–3025. [Google Scholar] [CrossRef]
- Guermazi, N.; Tarjem, A.B.; Ksouri, I.; Ayedi, H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B Eng. 2016, 85, 294–304. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Xian, G.; Li, C. Effect of immersion in water or alkali solution on the structures and properties of epoxy resin. Polymers 2021, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Gobikannan, T.; Portela, A.; Haldar, A.K.; Nash, N.H.; Bachour, C.; Manolakis, I.; Comer, A.J. Flexural properties and failure mechanisms of infusible thermoplastic- and thermosetting-based composite materials for marine applications. Compos. Struct. 2021, 273, 114276. [Google Scholar] [CrossRef]
- Bel Haj Frej, H.; Léger, R.; Perrin, D.; Ienny, P. Effect of aging temperature on a thermoset-like novel acrylic thermoplastic composite for marine vessels. J. Compos. Mater. 2021, 55, 2673–2691. [Google Scholar] [CrossRef]
- Niu, Y.F.; Wang, D.D.; Yao, J.W. Investigation of the performances for CFRP composites exposed to different aging environment at nano-scale. Polym. Test. 2022, 116, 107771. [Google Scholar] [CrossRef]
- Le Guen-Geffroy, A.; Le Gac, P.Y.; Habert, B.; Davies, P. Physical ageing of epoxy in a wet environment: Coupling between plasticization and physical ageing. Polym. Degrad. Stab. 2019, 168, 108947. [Google Scholar] [CrossRef]
- Bian, L.; Xiao, J.; Zeng, J.; Xing, S. Effects of seawater immersion on water absorption and mechanical properties of GFRP composites. J. Compos. Mater. 2012, 46, 3151–3162. [Google Scholar] [CrossRef]
- Shan, M.; Zhao, L.; Hong, H.; Liu, F.; Zhang, J. A progressive fatigue damage model for composite structures in hygrothermal environments. Int. J. Fatigue 2018, 111, 299–307. [Google Scholar] [CrossRef]
- Alam, P.; Robert, C.; Brádaigh, C.M.Ó. Tidal turbine blade composites—A review on the effects of hygrothermal aging on the properties of CFRP. Compos. Part B Eng. 2018, 149, 248–259. [Google Scholar] [CrossRef]
- Bel Haj Frej, H.; Léger, R.; Perrin, D.; Ienny, P. A novel thermoplastic composite for marine applications: Comparison of the effects of aging on mechanical properties and diffusion mechanisms. Appl. Compos. Mater. 2021, 28, 899–922. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, Y.; Chen, P.; Wang, G.; Min, H.; Fang, W. Prediction of long-term tensile properties of glass fiber reinforced composites under acid-base and salt environments. Polymers 2022, 14, 3031. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Liu, Y.; Mosallam, A.; Zhang, Y.; Wang, C. Hygrothermal aging effects on flexural behavior of pultruded glass fiber reinforced polymer laminates in bridge applications. Constr. Build. Mater. 2016, 127, 237–247. [Google Scholar] [CrossRef]
- Li, J.; Fan, W.; Liu, T.; Yuan, L.; Xue, L.; Dang, W.; Meng, J. The Temperature Effect on the Inter-Laminar Shear Properties and Failure Mechanism of 3D Orthogonal Woven Composites. Text. Res. J. 2020, 90, 2806–2817. [Google Scholar] [CrossRef]
- Mazumdar, S.; Karthikeyan, D.; Pichler, D.; Benevento, M.; Frassine, R. State of the Composites Industry Report for 2017. Compos. Manuf. Mag. 2017, 2, 1. [Google Scholar]
- Slawsky, L. Seasonal Variations of Wind Farm Impacts on Land Surface Temperature and Vegetation over Northern Illinois. Ph.D. Thesis, State University of New York at Albany, Albany, NY, USA, 2014. [Google Scholar]
- Arias, F. Assessment of Present/Future Decommissioned Wind Blade Fiber-Reinforced Composite Material in the United States; Independent Study; Department of Civil Engineering, City College of New York: New York, NY, USA, 2016. [Google Scholar]
- Jacob, A. Composites Can Be Recycled. Reinf. Plast. 2011, 55, 45–46. [Google Scholar] [CrossRef]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling Glass Fiber Thermoplastic Composites from Wind Turbine Blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent Advances in Carbon-Fiber-Reinforced Thermoplastic Composites: A Review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Correia, J.R.; Almeida, N.M.; Figueira, J.R. Recycling of FRP Composites: Reusing Fine GFRP Waste in Concrete Mixtures. J. Clean. Prod. 2011, 19, 1745–1753. [Google Scholar] [CrossRef]
- Fox, T. Recycling Wind Turbine Blade Composite Material as Aggregate in Concrete. Master’s Thesis, Iowa State University, Ames, IA, USA, 2016. [Google Scholar]
- Larsen, K. Recycling Wind Turbine Blades. Renew. Energy Focus. 2009, 9, 70–73. [Google Scholar] [CrossRef]
- Papadakis, N.; Ramírez, C.; Reynolds, N. Designing Composite Wind Turbine Blades for Disposal, Recycling or Reuse. In Management, Recycling and Reuse of Waste Composites; Woodhead Publishing: Sawston, UK, 2010; pp. 443–457. [Google Scholar]
- Ribeiro, M.C.S.; Meira-Castro, A.C.; Silva, F.G.; Santos, J.; Meixedo, J.P.; Fiúza, A.; Dinis, M.L.; Alvim, M.R. Re-Use Assessment of Thermoset Composite Wastes as Aggregate and Filler Replacement for Concrete-Polymer Composite Materials: A Case Study Regarding GFRP Pultrusion Wastes. Resour. Conserv. Recycl. 2015, 104, 417–426. [Google Scholar] [CrossRef]
- Mamanpush, S.H.; Li, H.; Englund, K.; Tabatabaei, A.T. Recycled Wind Turbine Blades as a Feedstock for Second Generation Composites. Waste Manag. 2018, 76, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, R.; McKechnie, J. Environmental and Financial Performance of Mechanical Recycling of Carbon Fibre Reinforced Polymers and Comparison with Conventional Disposal Routes. J. Clean. Prod. 2016, 127, 451–460. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Greco, S.; Tosto, C.; Cicala, G. LCA and LCC of a Chemical Recycling Process of Waste CF-Thermoset Composites for the Production of Novel CF-Thermoplastic Composites. Open Loop and Closed Loop Scenarios. J. Clean. Prod. 2021, 304, 127158. [Google Scholar] [CrossRef]
- Kiss, P.; Stadlbauer, W.; Burgstaller, C.; Stadler, H.; Fehringer, S.; Haeuserer, F.; Archodoulaki, V.M. In-House Recycling of Carbon-and Glass Fibre-Reinforced Thermoplastic Composite Laminate Waste into High-Performance Sheet Materials. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106110. [Google Scholar] [CrossRef]
- Nayak, K.C.; Deshmukh, P.R.; Pandey, A.K.; Vemula, P.; Date, P.P. Microstructural, Physical and Mechanical Characterization of Grinding Sludge Based Aluminium Metal Matrix Composite. Mater. Sci. Eng. A 2020, 773, 138895. [Google Scholar] [CrossRef]
- Qazi, H.; Lin, R.; Jayaraman, K. Fibre Structure Preservation in Composite Recycling Using Thermolysis Process. Resour. Conserv. Recycl. 2021, 169, 105482. [Google Scholar] [CrossRef]
- Dong, A.V.; Azzaro-Pantel, C.; Boix, M. A Multi-Period Optimisation Approach for Deployment and Optimal Design of an Aerospace CFRP Waste Management Supply Chain. Waste Manag. 2019, 95, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.A.V.; Azzaro-Pantel, C.; Cadene, A.L. Economic and Environmental Assessment of Recovery and Disposal Pathways for CFRP Waste Management. Resour. Conserv. Recycl. 2018, 133, 63–75. [Google Scholar] [CrossRef]
- Li, X.; Shonkwiler, S.; McMains, S. Detection of resin-rich areas for statistical analysis of fiber-reinforced polymer composites. Compos. Part B Eng. 2021, 225, 109252. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, Z.; Li, W.; Li, Y.; Tam, V.W. Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr. Build. Mater. 2019, 226, 139–151. [Google Scholar] [CrossRef]
- Van de Werken, N.; Reese, M.S.; Taha, M.R.; Tehrani, M. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2019, 119, 38–47. [Google Scholar] [CrossRef]
- Colucci, G.; Ostrovskaya, O.; Frache, A.; Martorana, B.; Badini, C. The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. J. Appl. Polym. Sci. 2015, 132, 29. [Google Scholar] [CrossRef]
- Pietroluongo, M.; Padovano, E.; Frache, A.; Badini, C. Mechanical recycling of an end-of-life automotive composite component. Sustain. Mater. Technol. 2020, 23, e00143. [Google Scholar] [CrossRef]
- Stan, F.; Stanciu, N.V.; Fetecau, C.; Sandu, I.L. Mechanical recycling of low-density polyethylene/carbon nanotube composites and its effect on material properties. J. Manuf. Sci. Eng. 2019, 141, 091004. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, Q.; Li, X.Y.; Yang, K.K.; Wang, Y.Z. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system. J. Reinf. Plast. Compos. 2014, 33, 2106–2114. [Google Scholar] [CrossRef]
- Sharma, K.; Khilari, V.; Chaudhary, B.U.; Jogi, A.B.; Pandit, A.B.; Kale, R.D. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Manag. 2020, 107, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, T.; Arao, Y.; Kayaki, Y.; Kuwata, S.; Kubouchi, M. Analysis of nitric acid decomposition of epoxy resin network structures for chemical recycling. Polym. Degrad. Stab. 2021, 186, 109537. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Wong, K.H. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Compos. Part A Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Huang, Y.C.; Huang, Y.H.; Chen, L.Y.; Dai, C.A.; Dai, S.A.; Chen, Y.H.; Wu, C.H.; Jeng, R.J. Robust thermoplastic polyurethane elastomers prepared from recycling polycarbonate. Polymer 2021, 212, 123296. [Google Scholar] [CrossRef]
- Bakshi, P.; Pappu, A.; Bharti, D.K.; Patidar, R. Accelerated weathering performance of injection moulded PP and LDPE composites reinforced with calcium rich waste resources. Polym. Degrad. Stab. 2021, 192, 109694. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Yang, Q.; Deng, T.; Wang, Y.; Yang, Y.; Jia, S.; Qin, Z.; Hou, X. Chemical recycling of unsaturated polyester resin and its composites via selective cleavage of the ester bond. Green Chem. 2015, 17, 4527–4532. [Google Scholar] [CrossRef]
- Morin, C.; Loppinet-Serani, A.; Cansell, F.; Aymonier, C. Near-and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art. J. Supercrit. Fluids 2012, 66, 232–240. [Google Scholar] [CrossRef]
- Mattsson, C.; André, A.; Juntikka, M.; Tränkle, T.; Sott, R. Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012013. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, M.; Li, Y.; Xiong, Y.; Wu, C. Recycling and Degradation of Polyamides. Molecules 2024, 29, 1742. [Google Scholar] [CrossRef]
- Ügdüler, S.; Van Geem, K.M.; Denolf, R.; Roosen, M.; Mys, N.; Ragaert, K.; De Meester, S. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem. 2020, 22, 5376–5394. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Xu, N.; Shen, Y.; Lu, F.; Liu, Y.; Huang, Y.; Hu, Z. Recycling of carbon fibers from unsaturated polyester composites via a hydrolysis-oxidation synergistic catalytic strategy. Compos. Sci. Technol. 2021, 203, 108589. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Guo, X.; Liu, C.; Liu, T.; Xin, J.; Zhang, J. Mild Chemical Recycling of Aerospace Fiber/Epoxy Composite Wastes and Utilization of the Decomposed Resin. Polym. Degrad. Stab. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Zhao, Q.; An, L.; Li, C.; Zhang, L.; Jiang, J.; Li, Y. Environment-Friendly Recycling of CFRP Composites via Gentle Solvent System at Atmospheric Pressure. Compos. Sci. Technol. 2022, 224, 109461. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, G.; Chen, X.; Gao, X.; Guo, Q.; Xu, C.; Zhou, L. On the Successful Chemical Recycling of Carbon Fiber/Epoxy Resin Composites under the Mild Condition. Compos. Sci. Technol. 2017, 151, 243–251. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, M.; Liu, C.; Mahmoodi, R.; Li, Q.; Ghandehari Ferdowsi, M.R.; Naebe, M. A Sustainable Approach to the Low-Cost Recycling of Waste Glass Fibres Composites towards Circular Economy. Sustainability 2020, 12, 641. [Google Scholar] [CrossRef]
- Pickering, S.J.; Kelly, R.M.; Kennerley, J.R.; Rudd, C.D.; Fenwick, N.J. A Fluidised-Bed Process for the Recovery of Glass Fibres from Scrap Thermoset Composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Walker, G.S.; Wong, K.H.; Rudd, C.D. Surface Characterisation of Carbon Fibre Recycled Using Fluidised Bed. Appl. Surf. Sci. 2008, 254, 2588–2593. [Google Scholar] [CrossRef]
- Sisti, L.; Totaro, G.; Vannini, M.; Giorgini, L.; Ligi, S.; Celli, A. Bio-Based PA11/Graphene Nanocomposites Prepared by in Situ Polymerization. J. Nanosci. Nanotechnol. 2018, 18, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchetti, L.; Benelli, T.; D’Angelo, E.; Leonardi, C.; Zattini, G.; Giorgini, L. Validation of Carbon Fibers Recycling by Pyro-Gasification: The Influence of Oxidation Conditions to Obtain Clean Fibers and Promote Fiber/Matrix Adhesion in Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2018, 112, 504–514. [Google Scholar] [CrossRef]
- Giorgini, L.; Benelli, T.; Mazzocchetti, L.; Leonardi, C.; Zattini, G.; Minak, G.; Dolcini, E.; Cavazzoni, M.; Montanari, I.; Tosi, C. Recovery of Carbon Fibers from Cured and Uncured Carbon Fiber Reinforced Composites Wastes and Their Use as Feedstock for a New Composite Production. Polym. Compos. 2015, 36, 1084–1095. [Google Scholar] [CrossRef]
- Borjan, D.; Knez, Ž.; Knez, M. Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials 2021, 14, 4191. [Google Scholar] [CrossRef]
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polym. Rev. 2020, 60, 359–388. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Mao, C.; Ren, X.; Feng, P. Influence of Ta2O5 on the Micromorphology and High-Temperature Oxidation Resistance of MoSi2-Based Composite Coating for Protecting Niobium. Mater. Charact. 2021, 179, 111328. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Du, Q.; Song, J.; Tsang, D.C. A Novel Electrochemical Modification Combined with One-Step Pyrolysis for Preparation of Sustainable Thorn-Like Iron-Based Biochar Composites. Bioresour. Technol. 2019, 274, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Giorcelli, M.; Savi, P.; Khan, A.; Tagliaferro, A. Analysis of Biochar with Different Pyrolysis Temperatures Used as Filler in Epoxy Resin Composites. Biomass Bioenergy 2019, 122, 466–471. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef]
- Alvarez, M.L.; Gascó, G.; Palacios, T.; Paz-Ferreiro, J.; Méndez, A. Fe Oxides-Biochar Composites Produced by Hydrothermal Carbonization and Pyrolysis of Biomass Waste. J. Anal. Appl. Pyrolysis 2020, 151, 104893. [Google Scholar] [CrossRef]
- David, F.; Tagliaferri, V.; Trovalusci, F. CFRP Laminates with Recycled Carbon Fiber: Resin Infusion and Mechanical Characterisation. Mater. Sci. Forum 2021, 1046, 111–117. [Google Scholar] [CrossRef]
- Feih, S.; Mouritz, A.P.; Case, S.W. Determining the Mechanism Controlling Glass Fibre Strength Loss during Thermal Recycling of Waste Composites. Compos. Part A Appl. Sci. Manuf. 2015, 76, 255–261. [Google Scholar] [CrossRef]
- Meng, F.; Cui, Y.; Pickering, S.; McKechnie, J. From Aviation to Aviation: Environmental and Financial Viability of Closed-Loop Recycling of Carbon Fibre Composite. Compos. Part B Eng. 2020, 200, 108362. [Google Scholar] [CrossRef]
- Biswas, S.; Mohapatra, S.S.; Kumari, U.; Meikap, B.C.; Sen, T.K. Batch and continuous closed circuit semi-fluidized bed operation: Removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents. J. Environ. Chem. Eng. 2020, 8, 103637. [Google Scholar] [CrossRef]
- Tomczak, K.; Jakubowski, J.; Kotwica, Ł. Enhanced autogenous self-healing of cement-based composites with mechanically activated fluidized-bed combustion fly ash. Constr. Build. Mater. 2021, 300, 124028. [Google Scholar] [CrossRef]
- Vijay, N.; Rajkumara, V.; Bhattacharjee, P. Assessment of composite waste disposal in aerospace industries. Procedia Environ. Sci. 2016, 35, 563–570. [Google Scholar] [CrossRef]
- Pender, K.; Yang, L. Investigation of catalyzed thermal recycling for glass fiber-reinforced epoxy using fluidized bed process. Polym. Compos. 2019, 40, 3510–3519. [Google Scholar] [CrossRef]
- Fraisse, A.; Beauson, J.; Brøndsted, P.; Madsen, B. Thermal recycling and re-manufacturing of glass fibre thermosetting composites. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012020. [Google Scholar] [CrossRef]
- Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-recycling following a pyrolysis route: Process optimization and potentials. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef]
- Karuppannan Gopalraj, S.; Kärki, T. A study to investigate the mechanical properties of recycled carbon fibre/glass fibre-reinforced epoxy composites using a novel thermal recycling process. Processes 2020, 8, 954. [Google Scholar] [CrossRef]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Bech, J.I. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 390–399. [Google Scholar] [CrossRef]
- Howarth, J.; Mareddy, S.S.; Mativenga, P.T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. J. Clean. Prod. 2014, 81, 46–50. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- Otheguy, M.E.; Gibson, A.G.; Findon, E.; Cripps, R.M.; Mendoza, A.O.; Castro, M.A. Recycling of end-of-life thermoplastic composite boats. Plast. Rubber Compos. 2009, 38, 406–411. [Google Scholar] [CrossRef]
- Elen, M.; Kumar, V. Prolonging the Life cycle of Thermoplastic Tidal Turbines Through Recycling; PNNL-36799; Pacific Northwest National Laboratory: Richland, WA, USA, 2024.
- Arena, U. Process and Technological Aspects of Municipal Solid Waste Gasification: A Review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Dissanayake, N.P.J.; Summerscales, J. Life cycle assessment for natural fibre composites. In Green Composites from Natural Resources; Thakur, V.K., Ed.; Taylor and Francis Group LLC: Boca Raton, FL, USA, 2013; ISBN 978-1-4665-7069-6. [Google Scholar]
- Azapagic, A.; Perdan, S.; Clift, R. Sustainable Development in Practice: Case Studies for Engineers and Scientists; Wiley: New York, NY, USA, 2004; ISBN 0-470-85609-2. [Google Scholar]
- British Standards Institution. Framework for the Assessment of the Sustainable Use of Materials. Guidance. BS, 8905. 2011. Available online: https://knowledge.bsigroup.com/products/framework-for-the-assessment-of-the-sustainable-use-of-materials-guidance (accessed on 25 November 2024).
- Singh, M.; Summerscales, J.; Wittamore, K. Disposal of composite boats and other marine composites. In Management, Recycling and Reuse of Waste Composites; Goodship, V., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 495–519. ISBN 978-1-84569-462-3. [Google Scholar]
- Afrinaldi, B.; Yuliati, F.; Judawisastra, H.; Asri, L.A. Self-Healing Polymers Designed for Underwater Applications. Adv. Polym. Technol. 2023, 2023, 6614326. [Google Scholar] [CrossRef]
- WindEurope; Cefic; EuCIA. Accelerating Wind Turbine Blade Circularity. White Paper. May 2020. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Accelerating-wind-turbine-blade-circularity.pdf (accessed on 10 August 2024).
- Wong, K.H.; Turner, T.A.; Pickering, S.J.; Warrior, N.A. The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre. SAE Int. J. Aerosp. 2010, 2, 225–231. [Google Scholar] [CrossRef]
- Longana, M.L.; Yu, H.; Jalavand, M.; Wisnom, M.R.; Potter, K.D. Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon-glass hybrids. Compos. Sci. Technol. 2017, 143, 13–21. [Google Scholar] [CrossRef]
- Oliveux, G.; Bailleul, J.-L.; Gillet, A.; Mantaux, O.; Leeke, G.A. Recovery and reuse of discontinuous carbon fibres by solvolysis: Realignment and properties of remanufactured materials. Compos. Sci. Technol. 2017, 139, 99–108. [Google Scholar] [CrossRef]
- Gebhardt, M. Towards a Closed Loop Recycling of Room Temperature Infusible Thermoplastic CFRPs. Ph.D. Thesis, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany, 2022. [Google Scholar]
- Shuaib, N.A.; Mativenga, P.T. Energy Demand in Mechanical Recycling of Glass Fibre Reinforced Thermoset Plastic Composites. J. Clean. Prod. 2016, 120, 198–206. [Google Scholar] [CrossRef]
- Keoleian, G.A.; Blanchard, S.; Reppe, P. Life-Cycle Energy, Costs, and Strategies for Improving a Single-Family House. J. Ind. Ecol. 2000, 4, 135–156. [Google Scholar] [CrossRef]
- Murray, R.E.; Jenne, S.; Snowberg, D.; Berry, D.; Cousins, D. Techno-Economic Analysis of a Megawatt-Scale Thermoplastic Resin Wind Turbine Blade. Renew. Energy 2019, 131, 111–119. [Google Scholar] [CrossRef]
Materials | Application | Critical Information | References |
---|---|---|---|
Composite structure design | Wave Dragon, Denmark | Wave energy converter | [34] |
KevlarTM and rubber composite | Archimedes, AWS Ocean Energy, UK. | wave swing system | [35] |
Three thermoset composite blades | RITE project, NY, USA | Tidal turbines | [36] |
Thermoplastic Elium composite blades | RITE project, NY, USA | Tidal turbines | [37] |
Carbon/epoxy blades | Sabella, Ushant Island, Brittany | 500 kW turbine demonstrator | [38] |
Composite (carbon and glass) blades | DeepGen Tidal Project, Tidal Generation Limited | 500 kW tidal turbine | [39] |
Kevlar™ 49 and chopped glass fibers in an epoxy matrix | Pelton turbine | 22 buckets | [40] |
Carbon + thermoplastic (3D printed) | Pelton turbine buckets | 200 EUR composite vs. 300 EUR metal bucket | [41] |
CF-reinforced thermoplastic | Small propeller-type turbine | Replacing stainless steel blades, similar peak efficiency; higher blade bending increases hydraulic head. | [42] |
Composite blades | MeyGen project | Involves four 1.5 MW turbines | [43] |
Recycled CF foils | CRIMSON project | Reduces capital and operating expenditures by 33% and 66%, respectively; | [44] |
GF composite (10 m long blades) | HS1000 Tidal power station by ANDRITZ Hydro | Installed near Hammerfest, Norway; | [45] |
Carbon composite (11 m diameter) | SeaFlow tidal prototype | First sea trials in 2003, involved a 300 kW capacity; | [46,47] |
GF composite tidal turbine blades | OpenHydro turbine | 11 m diameter structure; interest in shrouds and other components; | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elen, M.; Kumar, V.; Fifield, L.S. Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review. Sustainability 2024, 16, 10515. https://doi.org/10.3390/su162310515
Elen M, Kumar V, Fifield LS. Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review. Sustainability. 2024; 16(23):10515. https://doi.org/10.3390/su162310515
Chicago/Turabian StyleElen, Muthu, Vishal Kumar, and Leonard S. Fifield. 2024. "Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review" Sustainability 16, no. 23: 10515. https://doi.org/10.3390/su162310515
APA StyleElen, M., Kumar, V., & Fifield, L. S. (2024). Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review. Sustainability, 16(23), 10515. https://doi.org/10.3390/su162310515