Prediction Study of Pollutants in Artificial Wetlands Enhanced by Electromagnetic Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Data
2.2. Data Normalization
2.3. Input Feature Parameter Selection
2.4. Construction of the Model
2.4.1. BP Neural Network
2.4.2. Particle Swarm Optimization Algorithm to Improve the BP Model
2.4.3. Convolutional Neural Networks (CNN)
2.4.4. Random Forest (RF)
2.5. Indicators for Model Evaluation
3. Results and Analyses
3.1. Input Feature Selection
3.2. Analysis of Different Model Prediction Results
3.3. Analysis of Evaluation Results of Different Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yang, L.; Xu, K.; Bei, K.; Zheng, X.; Lu, S.; An, N.; Zhao, J.; Jin, Z. Application of constructed wetlands in treating rural sewage from source separation with high-influent nitrogen load: A review. World J. Microbiol. Biotechnol. 2021, 37, 138. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Sun, Y.S.; Yao, Q.; Chen, F.; Liang, C.; Yang, T.Y. Review on the application of constructed wetland technology in industrial wastewater treatment. Water Wastewater Eng. 2021, 57, 509–516. [Google Scholar]
- Xiong, L.; Ma, R.; Yin, F.; Fu, C.; Peng, L.; Liu, Y.; Lu, X.; Li, C. Simulation and optimisation of magnetic and experimental study of magnetic field coupling constructed wetland. Environ. Technol. 2024, 45, 5083–5103. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Jiang, L.; Zhu, X.; Gong, R. Advances in surface water environment numerical models. Water Resour. Prot. 2019, 35, 1–8. [Google Scholar]
- Chen, L.; Liu, Q.; Wang, L.; Zhao, J.; Wang, W. Data-driven Prediction on Performance Indicators in Process Industry: A Survey. Acta Autom. Sin. 2017, 43, 944–954. [Google Scholar]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Hassan, W.H.; Hussein, H.; Alshammari, M.H.; Jalal, H.K.; Rasheed, S.E. Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results Eng. 2022, 13, 100353. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Ruan, S.; Shi, L. A parallel integrated learning technique of improved particle swarm optimization and BP neural network and its application. Sci. Rep. 2022, 12, 19325. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Dai, F. Effluent water quality prediction model based on artificial neural network for wastewater treatment. Water Wastewater Eng. 2020, 56, 990–994. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Croce, D.; Rossini, D.; Basili, R. Explaining non-linear classifier decisions within kernel-based deep architectures. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Brussels, Belgium, 1 November 2018; pp. 16–24. [Google Scholar]
- Zhao, H.; Liu, F.; Li, L.; Luo, C. A novel softplus linear unit for deep convolutional neural networks. Appl. Intell. 2018, 48, 1707–1720. [Google Scholar] [CrossRef]
- Ye, B.; Cao, X.; Liu, H.; Wang, Y.; Tang, B.; Chen, C.; Chen, Q. Water chemical oxygen demand prediction model based on the CNN and ultraviolet-visible spectroscopy. Front. Environ. Sci. 2022, 10, 1027693. [Google Scholar] [CrossRef]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water 2020, 12, 169. [Google Scholar] [CrossRef]
- Derot, J.; Yajima, H.; Jacquet, S. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Harmful Algae 2020, 99, 101906. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Liu, X.; Lu, D.; Zhang, A.; Liu, Q.; Jiang, G. Data-driven machine learning in environmental pollution: Gains and problems. Environ. Sci. Technol. 2022, 56, 2124–2133. [Google Scholar] [CrossRef]
- He, J.; Liu, N.; Han, M.; Chen, Y. Research on danjiang water quality prediction based on improved artificial bee colony algorithm and optimized BP neural network. Sci. Program. 2021, 2021, 3688300. [Google Scholar] [CrossRef]
- He, Y.; Gong, Z.; Zheng, Y.; Zhang, Y. Inland reservoir water quality inversion and eutrophication evaluation using BP neural network and remote sensing imagery: A case study of Dashahe reservoir. Water 2021, 13, 2844. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Lu, G.; Xu, D.; Meng, Y. Dynamic evolution analysis of desertification images based on BP neural network. Comput. Intell. Neurosci. 2022, 2022, 5645535. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xu, Z.; Yu, Y.; Xu, H.; Gao, K. Application of a hybrid optimized BP network model to estimate water quality parameters of Beihai Lake in Beijing. Appl. Sci. 2019, 9, 1863. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Application of particle swarm optimization to water management: An introduction and overview. Environ. Monit. Assess. 2020, 192, 281. [Google Scholar] [CrossRef] [PubMed]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-quality classification of inland lakes using Landsat8 images by convolutional neural networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Meng, Y.; Xiong, Y.; Guo, H.; Zhang, Y.; Zhao, Z.; Jiang, X. A Sing Building Seismic Damage Assessment Method Based on Improved Genetic Algorithm Optimized BP Neural Network. Earthq. Res. China 2023, 39, 785–794. [Google Scholar]
- Zhang, B.; Li, J.; Shen, Q.; Wu, Y.; Zhang, F.; Wang, S. Key Technologies and Systems of Surface Water Environment Monitoring by Remote Sensing. Environ. Monit. China 2019, 35, 1–9. [Google Scholar] [CrossRef]
- Basha, S.H.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 2019, 378, 112–119. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef]
- Olmedilla, M.; Martínez-Torres, M.R.; Toral, S. Prediction and modelling online reviews helpfulness using 1D Convolutional Neural Networks. Expert Syst. Appl. 2022, 198, 116787. [Google Scholar] [CrossRef]
- Nicodemus, K.K.; Malley, J.D.; Strobl, C.; Ziegler, A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinform. 2010, 11, 110. [Google Scholar] [CrossRef]
Sampling Number | NH4+-N Raw Water Concentration (mg/L) | VFCW | EM-VFCW |
---|---|---|---|
1 | 58.72 | 45.56 | 32.09 |
2 | 53.03 | 40.32 | 30.85 |
3 | 57.33 | 49.17 | 32.97 |
4 | 59.50 | 43.42 | 31.38 |
5 | 67.19 | 47.81 | 34.01 |
6 | 55.42 | 42.57 | 31.71 |
7 | 44.92 | 39.31 | 27.72 |
8 | 56.40 | 41.72 | 32.68 |
9 | 35.35 | 30.85 | 18.95 |
10 | 47.19 | 33.51 | 24.11 |
NH4+-N Raw Water Concentration | COD Raw Water Concentration | Treatment Time | Magnetic Field Strength | Oxygen Supply Time | Electric Field Strength | DO | PH | Temp | NH4+-N Effluent Concentration |
---|---|---|---|---|---|---|---|---|---|
33.13 | 281.92 | 24 | 3 | 0 | 5 | 2.88 | 7.53 | 25.26 | 20.54 |
49.87 | 442.75 | 24 | 3 | 0 | 5 | 3.33 | 7.51 | 20.01 | 25.45 |
13.66 | 295.00 | 24 | 3 | 0 | 5 | 3.13 | 7.53 | 19.16 | 26.81 |
38.39 | 201.08 | 48 | 3 | 0 | 5 | 3.19 | 7.94 | 20.05 | 25.69 |
39.74 | 163.58 | 48 | 3 | 0 | 5 | 3.06 | 8.06 | 19.88 | 10.54 |
26.75 | 150.75 | 48 | 3 | 0 | 5 | 2.73 | 7.57 | 18.96 | 18.73 |
25.87 | 169.17 | 72 | 3 | 0 | 10 | 2.73 | 7.79 | 19.92 | 9.19 |
23.12 | 193.39 | 72 | 3 | 0 | 10 | 2.54 | 7.55 | 22.27 | 6.73 |
30.23 | 168.39 | 72 | 3 | 0 | 10 | 2.47 | 7.74 | 17.65 | 7.07 |
62.27 | 233.16 | 144 | 8 | 0 | 10 | 2.95 | 7.76 | 21.83 | 25.72 |
82.95 | 424 | 144 | 8 | 0 | 10 | 2.79 | 7.91 | 21.57 | 27.8 |
58.72 | 288.166 | 144 | 8 | 0 | 10 | 2.78 | 7.81 | 21.35 | 32.0 |
47.16 | 237.33 | 24 | 8 | 24 | 10 | 2.76 | 7.71 | 22.2 | 10.9 |
56.88 | 295.50 | 24 | 8 | 24 | 10 | 2.81 | 7.63 | 20.81 | 23.17 |
58.92 | 333.00 | 24 | 8 | 24 | 10 | 3.11 | 7.92 | 21.97 | 22.82 |
31.26 | 236.67 | 48 | 8 | 48 | 10 | 2.96 | 8 | 23.21 | 0.27 |
28.79 | 225.00 | 48 | 8 | 48 | 10 | 2.61 | 7.2 | 21.65 | 0.37 |
21.79 | 42.43 | 48 | 8 | 48 | 10 | 2.85 | 7.18 | 21.74 | 0.04 |
19.54 | 91.00 | 72 | 8 | 72 | 10 | 3.15 | 7.19 | 23.57 | 3.87 |
10.92 | 48.78 | 72 | 8 | 72 | 10 | 3.91 | 7.22 | 23.66 | 0.05 |
31.26 | 236.67 | 72 | 8 | 72 | 10 | 2.94 | 6.42 | 24.58 | 0.21 |
49.87 | 442.75 | 144 | 3 | 0 | 15 | 3.17 | 6.73 | 24.76 | 11.2 |
21.79 | 42.43 | 144 | 3 | 0 | 15 | 3.07 | 7.12 | 21.18 | 7.42 |
25.99 | 127.75 | 144 | 3 | 0 | 15 | 3.11 | 7.13 | 21.38 | 7.95 |
58.92 | 333.00 | 72 | 0 | 0 | 15 | 3.58 | 7.13 | 21.82 | 43.37 |
63.81 | 413.00 | 72 | 0 | 0 | 15 | 3.72 | 7.16 | 22.17 | 49.12 |
73.51 | 382.75 | 72 | 0 | 0 | 15 | 3.82 | 7.37 | 21.16 | 55.93 |
57.33 | 319.58 | 72 | 10 | 0 | 0 | 3.78 | 7.34 | 21.02 | 38.65 |
59.50 | 246.91 | 72 | 10 | 0 | 0 | 3.71 | 7.55 | 18.42 | 42.78 |
55.42 | 151.91 | 72 | 10 | 0 | 0 | 3.13 | 7.31 | 17.96 | 33.64 |
Model | (R2) | (RMSE) | (MAE) | |||
---|---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | |
BP | 0.9119 | 0.8930 | 3.2657 | 4.2922 | 3.4863 | 4.1478 |
PSO-BP | 0.9330 | 0.9263 | 3.4021 | 3.4327 | 3.2911 | 3.7068 |
CNN | 0.9437 | 0.9306 | 3.4113 | 3.4992 | 2.9175 | 3.6347 |
RF | 0.9649 | 0.9446 | 2.3486 | 2.4328 | 2.3676 | 3.0943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Ma, R.; Liu, Y.; Xiong, L.; Luo, H. Prediction Study of Pollutants in Artificial Wetlands Enhanced by Electromagnetic Fields. Sustainability 2024, 16, 10327. https://doi.org/10.3390/su162310327
Yin F, Ma R, Liu Y, Xiong L, Luo H. Prediction Study of Pollutants in Artificial Wetlands Enhanced by Electromagnetic Fields. Sustainability. 2024; 16(23):10327. https://doi.org/10.3390/su162310327
Chicago/Turabian StyleYin, Fajin, Rong Ma, Yungen Liu, Liechao Xiong, and Hu Luo. 2024. "Prediction Study of Pollutants in Artificial Wetlands Enhanced by Electromagnetic Fields" Sustainability 16, no. 23: 10327. https://doi.org/10.3390/su162310327
APA StyleYin, F., Ma, R., Liu, Y., Xiong, L., & Luo, H. (2024). Prediction Study of Pollutants in Artificial Wetlands Enhanced by Electromagnetic Fields. Sustainability, 16(23), 10327. https://doi.org/10.3390/su162310327