Sustainable Nitrogen Management in Rice Farming: Spatial Patterns of Nitrogen Availability and Implications for Community-Level Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling Design
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Distribution of Available Nitrogen
3.2. Spatial Patterns of Available Nitrogen
3.3. Model Selection and Comparison
3.4. Effects of Soil Properties on Available Nitrogen
3.4.1. Organic Matter and Nitrogen Components
3.4.2. Soil Chemical Properties
3.4.3. Physical Properties
3.4.4. Total Effects and Model Performance
4. Discussion
4.1. Spatial Autocorrelation of Available Nitrogen
4.2. Spatial Interaction in Available Nitrogen
4.3. Implication for Sustainable Agriculture
4.4. Use of Outsourced Soil Analysis Data
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.T.M.A.; Kennedy, I.R. Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems. Commun. Soil Sci. Plant Anal. 2005, 36, 1625–1639. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New Technologies Reduce Greenhouse Gas Emissions from Nitrogenous Fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G.; Peng, S.; Olk, D.C.; Ladha, J.K.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for Increased Nitrogen-Use Efficiency from Improved Resource Management in Irrigated Rice Systems. Field Crops Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- De Datta, S.K. Nitrogen Transformations in Wetland Rice Ecosystems; Springer: Berlin/Heidelberg, Germany, 1995; Volume 42. [Google Scholar]
- Stanford, G.; Smith, S.J. Nitrogen Mineralization Potentials of Soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Ros, G.H.; Temminghoff, E.J.M.; Hoffland, E. Nitrogen Mineralization: A Review and Meta-Analysis of the Predictive Value of Soil Tests. Eur. J. Soil Sci. 2011, 62, 162–173. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Willer, H.; Lernod, J. The World of Organic Agriculture Statistics and Trends 2019; IFOAM: Bonn, Germany, 2019; ISBN 9783037361184. [Google Scholar]
- Greenland, D.J. Physical Aspects of Soil Management for Rice-Based Cropping Systems. In Soil Physics and Rice; International Rice Research Institute: Laguna, Philippines, 1985; pp. 1–16. ISBN 9711041464. [Google Scholar]
- Sekiya, N.; Oizumi, N.; Kessy, T.T.; Fimbo, K.M.J.; Tomitaka, M.; Katsura, K.; Araki, H. Importance of Market-Oriented Research for Rice Production in Tanzania. A Review. Agron. Sustain. Dev. 2020, 40, 7. [Google Scholar] [CrossRef]
- Ashiq, W.; Vasava, H.; Cheema, M.; Dunfield, K.; Daggupati, P.; Biswas, A. Interactive Role of Topography and Best Management Practices on N2O Emissions from Agricultural Landscape. Soil Tillage Res. 2021, 212, 105063. [Google Scholar] [CrossRef]
- Florinsky, I.V.; McMahon, S.; Burton, D.L. Topographic Control of Soil Microbial Activity: A Case Study of Denitrifiers. Geoderma 2004, 119, 33–53. [Google Scholar] [CrossRef]
- Johnson, F.E.; Lerch, R.N.; Motavalli, P.P.; Veum, K.S.; Scharf, P.C. Spatial Variability of Denitrification Enzyme Activity and Actual Denitrification Emissions on Missouri Claypan Soils. Soil Sci. Soc. Am. J. 2022, 86, 1582–1596. [Google Scholar] [CrossRef]
- Lv, W.; Liu, Y.; Du, J.; Tang, L.; Zhang, B.; Liu, Q.; Cui, X.; Xue, K.; Wang, Y. Microtopography Mediates the Community Assembly of Soil Prokaryotes on the Local-Site Scale. Catena 2023, 222, 106815. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Xu, X.; Kardol, P.; Hu, D. Microtopography-Induced Ecohydrological Effects Alter Plant Community Structure. Geoderma 2020, 362, 114119. [Google Scholar] [CrossRef]
- Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Bivand, R.; Millo, G.; Piras, G. A Review of Software for Spatial Econometrics in R. Mathematics 2021, 9, 1276. [Google Scholar] [CrossRef]
- Gumpertz, M.L.; Graham, J.M.; Ristaino, J.B. Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence. J. Agric. Biol. Environ. Stat. 1997, 2, 131–156. [Google Scholar] [CrossRef]
- Liu, Z.; Griffin, T.W.; Kirkpatrick, T.L.; Monfort, W.S. Spatial Econometric Approaches to Developing Site-Specific Nematode Management Strategies in Cotton Production. Precis. Agric. 2015, 16, 587–600. [Google Scholar] [CrossRef]
- Sekiya, N.; Nakajima, T.; Oizumi, N.; Kurosawa, C.; Tibanyendela, N.; Peter, M.A.; Tomitaka, M.; Natsuaki, K.T. Agronomic Practices Preventing Local Outbreaks of Rice Yellow Mottle Virus Disease Revealed by Spatial Autoregressive Analysis. Agron. Sustain. Dev. 2022, 42, 15. [Google Scholar] [CrossRef]
- Anselin, L. Spatial regression. In The SAGE Handbook of Spatial Analysis; Sage Publications: Los Angeles, CA, USA, 2009; pp. 255–276. [Google Scholar]
- MMAFF (Ministry of Agriculture, Forestry and Fishery of Japan). Basic Guidelines for Soil Fertilizer Enhancement; MMAFF: Tokyo, Japan, 2008.
- Zhang, S.; Xia, C.; Li, T.; Wu, C.; Deng, O.; Zhong, Q.; Xu, X.; Li, Y.; Jia, Y. Spatial Variability of Soil Nitrogen in a Hilly Valley: Multiscale Patterns and Affecting Factors. Sci. Total Environ. 2016, 563–564, 10–18. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Dissolved Organic Matter: Biogeochemistry, Dynamics, and Environmental Significance in Soils; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110. [Google Scholar]
- Stevenson, F.J.; Fitch, A. Chemistry of Complexation of Metal Ions with Soil Solution Organics. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986; pp. 29–58. [Google Scholar]
- Kölbl, A.; Mueller-Niggemann, C.; Schwark, L.; Cao, Z.H.; Kögel-Knabner, I. Spatial Distribution of Soil Organic Matter in Two Fields on Tidal Flat Sediments (Zhejiang Province, China) Differing in Duration of Paddy Management. J. Plant Nutr. Soil Sci. 2015, 178, 649–657. [Google Scholar] [CrossRef]
- Rüth, B.; Lennartz, B. Spatial Variability of Soil Properties and Rice Yield Along Two Catenas in Southeast China. Pedosphere 2008, 18, 409–420. [Google Scholar] [CrossRef]
- Nie, S.; Zhao, L.; Lei, X.; Sarfraz, R.; Xing, S. Dissolved Organic Nitrogen Distribution in Differently Fertilized Paddy Soil Profiles: Implications for Its Potential Loss. Agric. Ecosyst. Env. 2018, 262, 58–64. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Abdulrachman, S.; Gines, H.C.; Nagarajan, R.; Son, T.T.; Tan, P.S.; Wang, G.H.; Chien, N.V.; Thoa, V.T.K.; et al. Soil Fertility and Indigenous Nutrient Supply in Irrigated Rice Domains of Asia. Agron. J. 2003, 95, 913–923. [Google Scholar] [CrossRef]
- Nishikiori, T.; Kubota, T.; Miyazu, S.; Harada, N.; Yoshikawa, N. Improvement in Potassium Budget with Water Outflow Reduction through Reducing Excessive Irrigation in a Paddy Field. Soil Sci. Plant Nutr. 2022, 68, 583–587. [Google Scholar] [CrossRef]
- Buresh, R.J.; Pampolino, M.F.; Witt, C. Field-Specific Potassium and Phosphorus Balances and Fertilizer Requirements for Irrigated Rice-Based Cropping Systems. Plant Soil 2010, 335, 35–64. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.; Cui, Z.; Wang, G.; Zhang, W. Improving Nitrogen Management via a Regional Management Plan for Chinese Rice Production. Environ. Res. Lett. 2015, 10, 095011. [Google Scholar] [CrossRef]
Variable | Unit | Mean |
---|---|---|
available nitrogen | mg 100 g−1 | 15.84 |
pH | - | 5.59 |
electric conductivity | mS cm−1 | 47.07 |
available phosphate | mg 100 g−1 | 11.34 |
phosphate absorption coefficient | - | 528.7 |
exchangeable potassium | mg 100 g−1 | 10.65 |
exchangeable calcium | mg 100 g−1 | 87.52 |
exchangeable magnesium | mg 100 g−1 | 41.72 |
cation exchange capacity | me 100 g−1 | 11.33 |
cation saturation | % | 48.06 |
calcium saturation | % | 28.51 |
potassium absorption ratio | - | 0.97 |
calcium-magnesium ratio | - | 2.17 |
magnesium-potassium ratio | - | 10.57 |
total carbon (C) | % w | 2.23 |
total nitrogen (N) | % w | 0.21 |
CN ratio | - | 10.63 |
Water-soluble nitrogen | mg 100 g−1 | 8.75 |
Water-soluble organic carbon | mg 100 g−1 | 102.7 |
bulk density | g cm−3 | 0.97 |
dummy variable of alluvial | 1 = alluvial, 0 = volcanic | 0.93 |
dummy variable of clay loam | 1 = clay loam, 0 = sandy loam or loam | 0.07 |
dummy variable of sandy loam | 1 = sandy loam, 0 = clay loam or loam | 0.15 |
dummy variable of rich in humus | 1 = rich in humus, 0 = poor in humus | 0.15 |
dummy variable of Mamekko fertilizer * application | 1 = Mamekko, 0 = chemical or organic | 0.69 |
dummy variable of chemical fertilizer application | 1 = chemical, 0 = Mamekko or organic | 0.18 |
Test Type | Test Statistic | Statistic | |
---|---|---|---|
Spatial autocorrelation | Moran’s I | 0.415 | *** |
Geary’s C | 0.567 | *** | |
Spatial dependence | LM test (error) | 4.950 | ** |
LM test (lag) | 5.016 | ** | |
Robust LM test (error) | 0.913 | ||
Robust LM test (lag) | 0.980 | ||
SARMA | 5.929 | * |
OLS | SEM | SLM | SDM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Wx | ||||||||||
intercept | −0.148 | −0.164 | −0.144 | * | −0.002 | |||||
electric conductivity | −0.091 | −0.036 | −0.084 | −0.062 | −0.127 | |||||
exchangeable potassium | 0.108 | −0.024 | 0.073 | 0.015 | 0.325 | *** | ||||
exchangeable calcium | 0.167 | 0.115 | 0.139 | 0.085 | 0.188 | |||||
calcium saturation | −0.436 | *** | −0.197 | −0.355 | *** | −0.226 | −0.416 | ** | ||
calcium-magnesium ratio | 0.189 | 0.058 | 0.143 | 0.188 | 0.204 | |||||
water-soluble organic carbon | 0.868 | *** | 1.139 | *** | 0.864 | *** | 1.096 | *** | −0.876 | *** |
water-soluble nitrogen | −0.381 | ** | −0.517 | *** | −0.395 | *** | −0.437 | *** | 0.355 | ** |
rich in humus | 0.581 | ** | 0.646 | ** | 0.578 | *** | 0.864 | *** | −0.762 | * |
sandy loam | 0.419 | * | 0.524 | * | 0.473 | ** | −0.373 | 0.337 | ||
bulk density | −0.250 | ** | −0.206 | *** | −0.235 | *** | −0.301 | *** | −0.139 | |
Spatial parameters | ||||||||||
λ | 0.4048 | *** | ||||||||
ρ | 0.1811 | 0.237 | ** | |||||||
Model fit | ||||||||||
AIC | 119.27 | 111.59 | 115.68 | 111.54 |
Explanatory Variables | Direct | Indirect | Total |
---|---|---|---|
electric conductivity | −0.083 | −0.163 | −0.247 |
exchangeable potassium | 0.066 | 0.380 | 0.446 |
exchangeable calcium | 0.117 | 0.241 | 0.357 |
calcium saturation | −0.298 | −0.543 | −0.841 |
calcium-magnesium ratio | 0.227 | 0.288 | 0.515 |
water-soluble organic carbon | 1.001 | −0.713 | 0.288 |
water-soluble nitrogen | −0.398 | 0.291 | −0.107 |
rich in humus | 0.778 | −0.645 | 0.134 |
sandy loam | −0.335 | 0.288 | −0.047 |
bulk density | −0.333 | −0.243 | −0.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekiya, N.; Mae, A.; Peter, M.A.; Anton, B.K.; Eigen, T.; Yamayoshi, S.; Sakai, M.; Watanabe, K.; Kameoka, T. Sustainable Nitrogen Management in Rice Farming: Spatial Patterns of Nitrogen Availability and Implications for Community-Level Practices. Sustainability 2024, 16, 9880. https://doi.org/10.3390/su16229880
Sekiya N, Mae A, Peter MA, Anton BK, Eigen T, Yamayoshi S, Sakai M, Watanabe K, Kameoka T. Sustainable Nitrogen Management in Rice Farming: Spatial Patterns of Nitrogen Availability and Implications for Community-Level Practices. Sustainability. 2024; 16(22):9880. https://doi.org/10.3390/su16229880
Chicago/Turabian StyleSekiya, Nobuhito, Ayaka Mae, Mchuno Alfred Peter, Beno Kiwale Anton, Tasuku Eigen, Saki Yamayoshi, Masaru Sakai, Kunio Watanabe, and Takaharu Kameoka. 2024. "Sustainable Nitrogen Management in Rice Farming: Spatial Patterns of Nitrogen Availability and Implications for Community-Level Practices" Sustainability 16, no. 22: 9880. https://doi.org/10.3390/su16229880
APA StyleSekiya, N., Mae, A., Peter, M. A., Anton, B. K., Eigen, T., Yamayoshi, S., Sakai, M., Watanabe, K., & Kameoka, T. (2024). Sustainable Nitrogen Management in Rice Farming: Spatial Patterns of Nitrogen Availability and Implications for Community-Level Practices. Sustainability, 16(22), 9880. https://doi.org/10.3390/su16229880