Has Trade Liberalization Promoted Energy Efficiency in Enterprises?
Abstract
1. Introduction
2. Research Design
2.1. Theoretical Hypotheses
2.1.1. Technological Effect
2.1.2. Scale Effect
2.1.3. Structural Adjustment Effect
2.2. Model Selection
2.3. Key Variable Design
2.3.1. Measuring All-Factor Energy Efficiency
2.3.2. Trade Liberalization Calculations
2.3.3. Data Description
3. Test Results
3.1. Benchmark Regression Results
3.2. Endogenous Test
3.2.1. Sample Selectivity Bias
3.2.2. Instrumental Variable Two-Stage Regression (IV-2SLS)
3.3. Robustness Test
3.3.1. Changing the Measurement of Trade Liberalization
3.3.2. Changing the Measurement of Energy Efficiency
3.3.3. Double-Differential Distribution (DID)
3.4. Heterogeneity Analysis
3.4.1. Exporting or Non-Exporting Heterogeneity
3.4.2. Firm Type Heterogeneity
3.4.3. Growth Stage Heterogeneity
3.4.4. Region Heterogeneity
4. Mechanism Tests
4.1. Mechanism Model Design
4.2. Mechanism Test Results Analysis
5. Further Discussion: A Perspective on Resource Reallocation Effects
6. Discussion and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, L.Y.; Huang, G. Export liberalization and firm’s energy efficiency: Theory and evidence. Emerg. Mark. Financ. Trade 2023, 59, 977–997. [Google Scholar] [CrossRef]
- Khan, M.A.; Ozturk, I. Examining foreign direct investment and environmental pollution linkage in Asia. Environ. Sci. Pollut. Res. 2020, 27, 7244–7255. [Google Scholar] [CrossRef] [PubMed]
- Appiah, K.; Worae, T.A.; Yeboah, B.; Yeboah, M. The causal nexus between trade openness and environmental pollution in selected emerging economies. Ecol. Indic. 2022, 138, 108872. [Google Scholar] [CrossRef]
- Ullah, I.; Nuta, F.M.; Levente, D.; Yiyu, B.; Yihan, Z.; Yi, C.; Shah, M.H.; Kumar, R. Nexus between trade, industrialization, and marine pollution: A quantile regression approach. Ecol. Indic. 2023, 155, 110992. [Google Scholar] [CrossRef]
- Mahmood, H. Trade, FDI, and CO2 emissions nexus in Latin America: The spatial analysis in testing the pollution haven and the EKC hypotheses. Environ. Sci. Pollut. Res. 2023, 30, 14439–14454. [Google Scholar] [CrossRef]
- Xiang, Y.; Zheng, J.; Tu, X. The Impact of Intermediate Goods Imports on Energy Efficiency: Empirical Evidence from Chinese Cities. Int. J. Environ. Res. Public Health 2022, 19, 13007. [Google Scholar] [CrossRef]
- Lyubich, E.; Shapiro, J.; Walker, R. Regulating Mismeasured Pollution: Implications of Firm Heterogeneity for Environmental Policy. AEA Pap. Proc. 2018, 108, 136–142. [Google Scholar] [CrossRef]
- Proskuryakova, L.; Kovalev, A. Measuring Energy Efficiency: Is Energy Intensity a Good Evidence Base? Appl. Energy 2015, 138, 450–459. [Google Scholar] [CrossRef]
- Li, G.; Gao, D.; Li, Y. Impacts of market-based environmental regulation on green total factor energy efficiency in China. China World Econ. 2023, 31, 92–114. [Google Scholar] [CrossRef]
- Geng, D. The decline of total factor productivity is the main reason for the slowdown of Chinese economic growth. China Price 2017, 335, 3–7. [Google Scholar]
- Zhang, N.; Zhou, M. The inequality of city-level energy efficiency for China. J. Environ. Manag. 2020, 255, 109843. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E.; Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Hancevic, P.I. Environmental regulation and productivity: The case of electricity generation under the CAAA-1990. Energy Econ. 2016, 60, 131–143. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Petroni, G.; Bigliardi, B.; Galati, F. Rethinking the Porter hypothesis: The underappreciated importance of value appropriation and pollution intensity. Rev. Policy Res. 2019, 36, 121–140. [Google Scholar] [CrossRef]
- Li, W.Q.; Chien, F.S.; Hsu, C.C.; Zhang, Y.Q.; Nawaz, M.A.; Iqbal, S.; Mohsin, M. Nexus between Energy Povertyand Energy Efficiency: Estimating the Long-Run Dynamics. Resour. Policy 2021, 72, 102063. [Google Scholar] [CrossRef]
- Xin, D.; Ahmad, M.; Lei, H.; Khattak, S.I. Do Innovation in Environmental-Related Technologies Asymmetrically Affect Carbon Dioxide Emissions in the United States? Technol. Soc. 2021, 67, 101761. [Google Scholar] [CrossRef]
- Aghion, P.; Bénabou, R.; Martin, R.; Roulet, A. Environmental preferences and technological choices: Is market competition clean or dirty? Am. Econ. Rev. Insights 2023, 5, 1–19. [Google Scholar] [CrossRef]
- Liu, H.X.; Li, J.L.; Long, H.Y.; Li, Z.; Le, C.Y. Promoting Energy and Environmental Efficiency within a Positive Feedback Loop: Insights from Global Value Chain. Energy Policy 2018, 121, 175–184. [Google Scholar] [CrossRef]
- Mimouni, K.; Temimi, A. What drives energy efficiency? New evidence from financial crises. Energy Policy 2018, 122, 332–348. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Fang, J. Urban Agglomeration Economies and Industrial Energy Efficiency. Energy 2018, 162, 45–59. [Google Scholar] [CrossRef]
- Melitz, M.J.; Polanec, S. Dynamic Olley-Pakes Productivity Decomposition with Entry and Exit. Rand J. Econ. 2015, 46, 362–375. [Google Scholar] [CrossRef]
- Luqman, M.; Soytas, U. Asymmetric role of human capital and trade liberalization in the economic growth of Pakistan: Fresh evidence from the nonlinear analysis. J. Int. Trade Econ. Dev. 2023, 32, 475–493. [Google Scholar] [CrossRef]
- Kong, D.; Ma, G.; Qin, N. Trade liberalization and firm toxic emissions. Rev. Int. Econ. 2022, 30, 971–1002. [Google Scholar] [CrossRef]
- Baajike, F.B.; Oteng-Abayie, E.F.; Dramani, J.B.; Amanor, K. Effects of trade liberalization on the global decoupling and decomposition of CO2 emissions from economic growth. Heliyon 2024, 10, e23470. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Ahmad, M.; Chen, J. Towards high-quality energy development: Role of trade liberalization. Econ. Chang. Restruct. 2024, 57, 6. [Google Scholar] [CrossRef]
- Lu, J.; Li, H. Can digital technology innovation promote total factor energy efficiency? Firm-level evidence from China. Energy 2024, 293, 130682. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Z.; Zhao, M.; Liu, Z. How does digital trade impact urban carbon emissions efficiency? Evidence from China’s cross-border e-commerce pilot zones. J. Clean. Prod. 2024, 456, 142363. [Google Scholar] [CrossRef]
- Arias, K.; Colmenarez, M. Energy efficiency and energy depletion analysis in oil-exporting developing countries. Energy Effic. 2024, 17, 56. [Google Scholar] [CrossRef]
- He, L.Y.; Huang, G. Can importing improve the energy efficiency? Theory and evidence from Chinese industrial firms. Int. Rev. Econ. Financ. 2023, 83, 451–469. [Google Scholar] [CrossRef]
- Casey, G. Energy efficiency and directed technical change: Implications for climate change mitigation. Rev. Econ. Stud. 2024, 91, 192–228. [Google Scholar] [CrossRef]
- Cui, J.; Tam, O.K.; Wang, B.; Zhang, Y. The environmental effect of trade liberalization: Evidence from China’s manufacturing firms. World Econ. 2020, 43, 3357–3383. [Google Scholar] [CrossRef]
- Ren, X.; Li, W.; Cheng, X.; Zheng, X. Economic freedom and corporate carbon emissions: International evidence. Bus. Strat. Environ. 2024. [Google Scholar] [CrossRef]
- Meșter, I.; Simuț, R.; Meșter, L.; Bâc, D. An investigation of tourism, economic growth, CO2 emissions, trade openness and energy intensity index nexus: Evidence for the European Union. Energies 2023, 16, 4308. [Google Scholar] [CrossRef]
- Huang, Y.; Pei, J. Imported intermediates, technology spillover, and green development: Evidence from Chinese firms. Front. Environ. Sci. 2022, 10, 909055. [Google Scholar] [CrossRef]
- Sart, G.; Bayar, Y.; Danilina, M.; Sezgin, F.H. Economic freedom, education and CO2 emissions: A causality analysis for EU member states. Int. J. Environ. Res. Public Health 2022, 19, 8061. [Google Scholar] [CrossRef]
- Cherniwchan, J. Trade liberalization and the environment: Evidence from NAFTA and U.S. manufacturing. J. Int. Econ. 2017, 105, 130–149. [Google Scholar] [CrossRef]
- Peng, S.; Shu, Z.; Zhang, W. Does service trade liberalization relieve manufacturing enterprises’ financial constraints? Evidence from China. Econ. Model. 2022, 106, 105710. [Google Scholar] [CrossRef]
- Amiti, M.; Konings, J. Trade liberalization, intermediate inputs, and productivity: Evidence from Indonesia. Am. Econ. Rev. 2007, 97, 1611–1638. [Google Scholar] [CrossRef]
- Brandt, L.; Van Biesebroeck, J.; Wang, L.; Zhang, Y. WTO accession and performance of Chinese manufacturing firms. Am. Econ. Rev. 2017, 107, 2784–2820. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhao, R. Import competition and energy efficiency: Firms’ responses to the WTO accession in China. J. Econ. Behav. Organ. 2023, 214, 670–690. [Google Scholar] [CrossRef]
- Heckman, J.J. Sample Selection Bias as a Specification Error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Kleibergen, F.; Paap, R. Generalized Reduced Rank Tests Using the Singular Value Decomposition. J. Econ. 2006, 133, 97–126. [Google Scholar] [CrossRef]
- Huang, F. How does trade and fiscal decentralization leads to green growth; role of renewable energy development. Renew. Energy 2023, 214, 334–341. [Google Scholar] [CrossRef]
- Sobel, M.E. Direct and Indirect Effects in Linear Structural Equation Models. Sociol. Methods Res. 1987, 16, 155–176. [Google Scholar] [CrossRef]
- Levinsohn, J.; Petrin, A. Estimating production functions using inputs to control for unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
Symbol | Variable | Definition |
---|---|---|
tfee | Energy efficiency | Calculated by LP, +1 equates to the natural logarithm |
tariff | Trade liberalization | Calculated from tariff data, +1 equates to the natural logarithm |
loan | Financial constraint | The ratio of interest expense to fixed assets, +1 equates to the natural logarithm |
regulation | Environmental regulation | The ratio of wastewater treatment costs to the total industrial output value, +1 equates to the natural logarithm |
KL | Capital intensity | The ratio of fixed assets to the number of employees, +1 equates to the natural logarithm |
profit | Enterprise profitability | The ratio of corporate profits to the total industrial output, +1 equates to the natural logarithm |
state | State-owned enterprise | Value 1 when state owned, otherwise the value is 0 |
Variable | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
tfee | 33,628 | 1.556 | 0.280 | 0.847 | 2.351 |
tariff | 33,628 | 2.293 | 0.482 | 0.076 | 4.105 |
loan | 33,628 | 2.462 | 0.770 | 0.693 | 4.232 |
regulation | 33,628 | 0.127 | 0.130 | 0.886 | 1.347 |
KL | 33,628 | 4.287 | 1.253 | 0.004 | 12.671 |
profit | 33,628 | 1.293 | 0.129 | 0.008 | 2.643 |
state | 33,628 | 0.168 | 0.374 | 0.000 | 1.000 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
tariff | −0.0289 *** | −0.0291 *** | −0.0299 *** | −0.0296 *** | −0.0285 *** | −0.0283 *** |
(−7.01) | (−7.07) | (−7.28) | (−7.23) | (−7.03) | (−7.02) | |
loan | 0.0076 *** | 0.0068 *** | 0.0070 *** | 0.0062 *** | 0.0064 *** | |
(5.01) | (4.55) | (4.65) | (4.20) | (4.30) | ||
regulation | 0.1975 *** | 0.1962 *** | 0.1799 *** | 0.1794 *** | ||
(42.23) | (41.89) | (38.83) | (38.81) | |||
KL | 0.0041 *** | 0.0025 *** | 0.0025 *** | |||
(5.56) | (3.42) | (3.39) | ||||
profit | 0.2772 *** | 0.2773 *** | ||||
(67.56) | (67.57) | |||||
state | −0.0058 ** | |||||
(−2.07) | ||||||
cons | 1.6221 *** | 1.6040 *** | 1.5824 *** | 1.5645 *** | 1.5641 *** | 1.5648 *** |
(171.51) | (158.46) | (156.85) | (147.69) | (149.41) | (149.40) | |
j. R-sq | 33,628 | 33,628 | 33,628 | 33,628 | 33,628 | 33,628 |
0.558 | 0.558 | 0.563 | 0.563 | 0.573 | 0.573 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Heckman Two-Stage Method | IV-2SLS | ||||
Probit | IV | Key Explanatory Variable in Lag | All Variables in Lag | ||
tariff | −0.6435 *** | −0.0300 *** | −0.1780 * | −0.0437 ** | −0.0509 ** |
(−175.40) | (−7.38) | (−1.52) | (−2.18) | (−2.50) | |
loan | 0.2778 *** | 0.0082 *** | 0.0070 *** | −0.0011 | −0.0008 |
(123.54) | (5.26) | (4.47) | (−0.52) | (−0.42) | |
regulation | −0.3051 *** | 0.1788 *** | 0.1807 *** | 0.1821 *** | 0.0046 |
(−21.91) | (38.52) | (38.55) | (29.25) | (0.68) | |
KL | 0.1052 *** | 0.0028 *** | 0.0025 *** | 0.0070 *** | 0.0067 *** |
(69.18) | (3.80) | (3.40) | (6.88) | (6.16) | |
profit | −0.1242 *** | 0.2771 *** | 0.2765 *** | 0.2529 *** | 0.0808 *** |
(−10.31) | (67.50) | (66.47) | (43.06) | (13.16) | |
state | 0.4790 | −0.0038 | −0.0058 ** | −0.0067 * | 0.0045 |
(92.12) | (−1.32) | (−2.05) | (−1.71) | (1.03) | |
Mills Ratio | 0.0095 *** | ||||
(3.96) | |||||
KP-LM | 418.3110 | 1.1 × 104 | 1.0 × 104 | ||
[0.0000] | [0.0000] | [0.0000] | |||
Wald rk F | 230.0560 | 8914.5440 | 8916.6040 | ||
[0.0000] | [0.0000] | [0.0000] | |||
cons | −1.9612 *** | 1.5487 *** | |||
(−65.47) | (137.81) | ||||
N | 46,791 | 33,628 | 33,628 | 21,032 | 21,032 |
j. R-sq | 0.232 | 0.573 | 0.343 | 0.337 | 0.377 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Intermediate Goods Tariffs | OLS | FE | Single-Factor Energy Efficiency | DID | |
tariff | −0.2231 *** | −0.1185 *** | −0.0952 *** | −0.0522 *** | |
(−7.18) | (−7.94) | (−6.42) | (−4.14) | ||
triaff01 × post01 | 0.0232 *** | ||||
(6.99) | |||||
loan | 0.0064 *** | 0.0193 *** | 0.0611 *** | 0.0006 | 0.0064 *** |
(4.30) | (3.52) | (11.23) | (0.15) | (4.28) | |
regulation | 0.1800 *** | 0.8282 *** | 0.8712 *** | −0.0084 | 0.1801 *** |
(38.84) | (48.54) | (51.38) | (−0.62) | (38.86) | |
KL | 0.0025 *** | −0.0280 *** | 0.1857 *** | 0.0010 | 0.0024 *** |
(3.37) | (−10.30) | (68.80) | (0.47) | (3.24) | |
profit | 0.2772 *** | 1.0760 *** | 1.1461 *** | −0.0765 *** | 0.2770 *** |
(67.55) | (71.19) | (76.32) | (−7.33) | (67.48) | |
state | −0.0058 ** | −0.0355 *** | −0.0004 | 0.0269 *** | −0.0059 ** |
(−2.07) | (−3.43) | (−0.04) | (3.54) | (−2.11) | |
cons | 1.9423 *** | 3.4119 *** | 5.9510 *** | 0.6858 *** | 1.4584 *** |
(31.39) | (88.46) | (155.29) | (22.23) | (189.75) | |
N | 33,628 | 33,628 | 33,628 | 33,628 | 33,628 |
j. R-sq | 0.573 | 0.678 | 0.752 | 0.719 | 0.573 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Exporting | Non-Exporting | Foreign | Domestic | |
tariff | −0.0232 *** | −0.0325 *** | −0.0278 *** | −0.0216 *** |
(−3.47) | (−5.54) | (−6.58) | (−0.80) | |
loan | 0.0041 | 0.0085 *** | 0.0069 *** | 0.0014 |
(1.50) | (4.50) | (4.52) | (0.15) | |
regulation | 0.1624 *** | 0.1942 *** | 0.1814 *** | 0.1718 *** |
(19.02) | (33.64) | (36.36) | (12.22) | |
KL | 0.0065 *** | −0.0038 *** | 0.0014 * | 0.0097 *** |
(4.68) | (−3.91) | (1.74) | (3.29) | |
profit | 0.3123 *** | 0.2512 *** | 0.2796 *** | 0.1651 *** |
(41.64) | (49.46) | (64.48) | (11.55) | |
state | −0.0080 * | −0.0050 | −0.0059 ** | 0.0001 |
(−1.78) | (−1.30) | (−2.08) | (1.15) | |
cons | 1.5683 *** | 1.5797 *** | 1.5592 *** | 1.6061 *** |
(89.41) | (105.48) | (143.04) | (24.43) | |
N | 10,813 | 22,815 | 15,661 | 17,967 |
j. R-sq | 0.575 | 0.590 | 0.574 | 0.574 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Growing | Non-Growing | Eastern | Midwestern | |
tariff | −0.0239 *** | −0.0200 ** | −0.0279 *** | −0.0275 *** |
(−4.68) | (−2.55) | (−4.78) | (−4.75) | |
loan | 0.0202 *** | −0.0145 * | 0.0054 ** | 0.0069 *** |
(6.45) | (−1.89) | (2.31) | (3.53) | |
regulation | 0.1791 *** | 0.1848 *** | 0.1736 *** | 0.1435 *** |
(33.93) | (17.17) | (22.43) | (23.50) | |
KL | 0.0012 | 0.0014 | 0.0025 ** | −0.0024 ** |
(1.38) | (0.84) | (2.07) | (−2.46) | |
profit | 0.2975 *** | 0.2436 *** | 0.2318 *** | 0.3224 *** |
(51.41) | (38.20) | (39.18) | (55.41) | |
state | −0.0043 | −0.0074 | −0.0049 | −0.0047 |
(−1.13) | (−1.57) | (−1.17) | (−1.21) | |
cons | 1.5568 *** | 1.5673 *** | 1.5483 *** | 1.5977 *** |
(112.30) | (48.17) | (97.95) | (110.45) | |
j. R-sq | 20,453 | 13,175 | 23,761 | 9867 |
0.558 | 0.601 | 0.575 | 0.571 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
scale | tfp | |||||
tariff | −0.0283 *** | −0.0070 *** | −0.0155 *** | −0.0111 *** | −0.0274 *** | −0.0108 *** |
(−7.02) | (−5.25) | (−5.28) | (−4.69) | (−6.77) | (−4.57) | |
tfp | 0.0198 *** | 0.0118 *** | ||||
(6.49) | (6.41) | |||||
scale | 0.1526 *** | 0.0449 *** | ||||
(21.98) | (11.03) | |||||
loan | 0.0064 *** | −0.0099 *** | 0.0109 *** | −0.0058 *** | 0.0079 *** | −0.0053 *** |
(4.30) | (−20.18) | (10.08) | (−6.63) | (5.31) | (−6.10) | |
regulation | 0.1799 *** | 0.1521 *** | 0.1342 *** | 0.0296 *** | 0.1567 *** | 0.0229 *** |
(38.84) | (99.61) | (40.00) | (10.88) | (33.02) | (8.22) | |
KL | 0.0025 *** | 0.0030 *** | 0.0002 | 0.0023 *** | 0.0020 *** | 0.0022 *** |
(3.39) | (12.42) | (0.29) | (5.39) | (2.77) | (5.07) | |
profit | 0.2773 *** | −0.0340 *** | 0.1884 *** | 0.0664 *** | 0.2825 *** | 0.0681 *** |
(67.57) | (−25.15) | (63.37) | (27.36) | (68.81) | (28.01) | |
state | −0.0058 ** | −0.0050 *** | 0.0014 | −0.0074 *** | −0.0051 * | −0.0071 *** |
(−2.07) | (−5.38) | (0.68) | (−4.47) | (−1.80) | (−4.34) | |
cons | 1.5648 *** | 0.0580 *** | 1.9052 *** | −0.5687 *** | 1.5559 *** | −0.5696 *** |
(149.40) | (16.81) | (251.17) | (−80.45) | (148.64) | (−80.59) | |
N | 33,628 | 33,628 | 33,628 | 33,628 | 33,628 | 33,628 |
j. R-sq | 0.573 | 0.578 | 0.704 | 0.854 | 0.574 | 0.854 |
Total Change (1) | Intra-Firm Effect (2) | Inter-Firm Effect (3) | Firm Entry Effect (4) | Firm Exit Effect (5) | Entry and Exit (6) = (4) + (5) | Resource Reallocation Effect (7) = (3) + (6) |
---|---|---|---|---|---|---|
0.0431 | 0.0129 | 0.0051 | −0.0152 | 0.0403 | 0.0251 | 0.0302 |
29.93 | 11.83 | −35.27 | 93.50 | 58.24 | 70.07 |
Variable | (1) | (1) | (2) | (3) |
---|---|---|---|---|
Intra-Firm Effects | Intra-Firm Effects | Entry–Exit Effects | Resource Reallocation Effect | |
tariff | −0.1321 *** | −0.1588 *** | −0.1715 *** | −0.2053 *** |
(−5.05) | (−5.21) | (−5.25) | (−6.25) | |
scale | 0.0041 *** | 0.0051 *** | 0.0056 *** | 0.0056 *** |
(2.13) | (2.31) | (2.34) | (2.43) | |
tfp | 0.0742 *** | 0.1001 *** | 0.1066 *** | 0.1245 *** |
(2.70) | (2.81) | (2.86) | (4.08) | |
loan | −0.1185 *** | −0.1221 *** | −0.1311 *** | −0.1346 *** |
(−4.54) | (−4.42) | (−4.41) | (−4.70) | |
regulation | 0.0164 *** | 0.0218 *** | 0.0225 *** | 0.0221 *** |
(6.43) | (6.58) | (6.51) | (6.56) | |
KL | −0.0112 ** | −0.0112 ** | −0.0111 ** | −0.0114 ** |
(−1.37) | (−1.26) | (−1.11) | (−1.21) | |
profit | 0.0702 ** | 0.0851 ** | 0.1041 ** | 0.1108 *** |
(1.20) | (1.31) | (1.38) | (1.57) | |
cons | 1.3163 *** | 1.2753 *** | 1.3722 *** | 1.2612 *** |
(11.45) | (17.31) | (17.43) | (16.37) | |
N | 3726 | 3726 | 3726 | 3726 |
j. R-sq | 0.161 | 0.171 | 0.170 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, X.; Li, L.; Xu, R.; Ban, Q.; Xu, R. Has Trade Liberalization Promoted Energy Efficiency in Enterprises? Sustainability 2024, 16, 9826. https://doi.org/10.3390/su16229826
Liu X, Liu X, Li L, Xu R, Ban Q, Xu R. Has Trade Liberalization Promoted Energy Efficiency in Enterprises? Sustainability. 2024; 16(22):9826. https://doi.org/10.3390/su16229826
Chicago/Turabian StyleLiu, Xinxing, Xinheng Liu, Lei Li, Rong Xu, Qi Ban, and Rui Xu. 2024. "Has Trade Liberalization Promoted Energy Efficiency in Enterprises?" Sustainability 16, no. 22: 9826. https://doi.org/10.3390/su16229826
APA StyleLiu, X., Liu, X., Li, L., Xu, R., Ban, Q., & Xu, R. (2024). Has Trade Liberalization Promoted Energy Efficiency in Enterprises? Sustainability, 16(22), 9826. https://doi.org/10.3390/su16229826