Phytoremediation of Mercury Contamination: Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overlap Between WoS and Scopus Publications
3.2. Annual Trends
3.3. Main Subject Areas
3.4. Most Productive Countries and Organizations
3.5. Most Productive Authors
3.6. Most Recognized Journals
3.7. Most Cited Documents
3.8. Author Keyword Trend Analysis
3.9. Keywords with the Strongest Citation Bursts
- -
- Phytoremediation of heavy metals. The remediation of “heavy metals” (2016–2021), “metals” (2014–2019), and specific heavy metals such as “lead” (2018–2022), “cadmium” (2014–2021), “mercury” (2015–2021), “zinc” (2012–2019), and “nickel” (2012–2013) was investigated, with mercury and cadmium being the metals with the highest frequency. This group also included terms like “Remediation” (2018–2022), “Phytoremediation” (2015–2021), “Phytoextraction” (2014–2020), and “Volatilization” (2010–2014).
- -
- Exploration of mechanisms by which plants accumulate metals. Exploring the mechanisms by which plants absorb, accumulate, resist, stress, and translocate metal helps in understanding the process of mercury detoxification in plants. This group included “Diversity” (2020–2023), “Plant-Growth” (2019–2022), “Stress” (2017–2022), “Accumulation” (2015–2021), “Resistance” (2014–2020), “Availability” (2012–2019), “Organic-Acids” (2012–2018), “Glutathione” (2013–2018), and “Exposure” (2014–2017). Among them, “Accumulation” showed the highest frequency, which could indicate ongoing research into how plants accumulate mercury, since although plants show a well-developed mechanism for the absorption, translocation, and detoxification of mercury, there are still knowledge gaps in the molecular understanding of these processes [1].
- -
- Rice (Oryza sativa) (2020–2022) is one of the most important cereal crops, feeding nearly half of the world’s population. Mercury concentrations in rice grains can reach up to 460 μg/kg when grown in Hg-contaminated soils [90]. Thus, the accumulation levels of mercury in rice have been studied [91]. Through genetic engineering, E. coli expressed four metallothioneins from rice (Oryza sativa L.), which conferred enhanced mercury tolerance, metal binding, and sequestration [92].
- -
- -
- Phytoremediation of heavy metals. The remediation of “heavy metals” (2015–2021) and individual heavy metals like “mercury” (2012–2020) and “arsenic” (2014–2021) were investigated. This group also included terms such as “Bioremediation” (2014–2020), “Phytoremediation” (2012–2020), and “Phytostabilization” (2015–2022).
- -
- Search for strategies to improve phytoremediation efficiency. This group included “Siderophore” (2021–2022), “plant root” (2012–2019), and “Mycorrhizae”, which began in 2016 and continues to date, indicating that it is a research hotspot.
- -
- -
- Risk assessment. This group included “Risk Assessment” (2020–2022), “Human” (2016–2022), “agricultural land” (2022–2023), “ecosystem” (2016–2022), and “soil pollution” (2014–2021). It is known that mercury is highly toxic to living organisms, and its presence in agricultural land poses another route of exposure. Therefore, phytoremediation combined with risk assessment is a topic that requires attention.
- -
- China (2017–2022) is one of the top three countries publishing papers on the phytoremediation of mercury pollution and is a keyword with the highest citation frequency.
3.10. Points of Interest in the Research
- (1)
- Identification of mercury phytoremediation plants
- (2)
- Applications of Genetic Engineering (OK)
- (3)
- Assisted phytoremediation
- -
- Chelating agentsSeveral approaches have been widely used to improve the phytoremediation capacity in the field of heavy-metal pollution. Sometimes, the availability of metals in the soil is insufficient, and consequently, no active uptake of the metal by the root is generated. Mercury negatively interferes with plant growth as well as with their metabolic process, so some research has focused on the use of assisted enhancements to improve the efficiency of phytoremediation. It has been shown that sodium thiosulfate (Na2S2O3), ammonium thiosulfate (NH4)2S2O3, ethylenediaminetetraacetic acid (EDTA), diethylaminapentaacetic acid (DTPA), (NH4)2SO4, NH4Cl, NaNO3, (NH4)2S2O3, HCl, KI, and citric acid are related to the phytoremediation of mercury-contaminated soils, helping to improve their efficiency [66,69,107,108,109].Previous studies conducted on Oxalis corniculata and Brassica juncea L. found that chelating agents increased the concentration of mercury in the plant tissues of plants, achieving higher translocation and bioconcentration factors, which could be associated with the fact that the soluble complexes chelated by them can easily pass through the endodermis and enter the xylem [66,69].On the other hand, the use of organic amendments has also been used to increase the adsorption capacity of heavy metals. For example, the use of biochar (MB2) and attapulgite (MA2) showed that they can improve the growth capacity in Solanum nigrum L., a favorable feature for phytoremediation as well as remove the soil contaminant and increase the concentrations of metals in plant tissues [110]. Likewise, the addition of compost (derived from green waste) to the contaminated soil decreased the concentration of total mercury, where the higher the compost content, the lower the mercury contamination in soils [111].The application of selenium (Se) fertilizers has been used as a cost-effective strategy to ameliorate mercury accumulation and the noxious effects of mercury [112]. For example, the development of apoplastic barriers in the root endodermis of Oryza sativa crops in hydroponic solutions contaminated with mercury and methylmercury (MeHg) improved with the addition of selenium and also showed a remarkable decrease in Hg and MeHg concentrations [113].Therefore, the inclusion of these chelating agents or the development of new ones to improve the ability of plants to remove mercury from the soil is an important goal to consider.
- -
- Growth-promoting microorganismsGrowth-promoting rhizobacteria help plants cope with stressful environments in addition to forming beneficial host–plant relationships, which can increase the phytoavailability of metals while reducing their toxic effects. They stimulate the ability of the host plant to generate more biomass while storing significant concentrations of metals and decreasing toxicity [114,115,116]. Bacteria, fungi, and other microorganisms living in the rhizosphere can increase the availability of heavy metals by either changing the soil pH, releasing chelators, or having redox reactions with heavy-metal ions. Rhizosphere microorganisms in mercury-contaminated soils can reduce Hg2+ to less toxic volatile Hg0 through enzymatic reduction [15]. There is a belief that beneficial fungi in the rhizosphere stimulate root proliferation and enhance plant response to soil chemistry through plant–microbe association [117,118]. It should be added that rhizobacterial fungi and plant growth-promoting rhizobacteria (PGPR) induce heavy-metal tolerance responses [119]. For example, the symbiotic association between Lolium perenne roots and arbuscular mycorrhizal fungi (Glomus sp., Acaulospora sp., Entrophospora sp., Scutellosospora sp. and Glomus sp., Acaulospora sp., Entrophospora sp., Giaspora sp.) showed that there was enhanced mercury uptake. Arbuscular mycorrhizae play an important role in heavy-metal tolerance and have several extracellular and intracellular defense mechanisms such as plant tissue growth mechanisms and biological mechanisms of nitrogen fixation [120]. Likewise, the high mercury accumulation in Erato polymnioides could be based on a core of highly infectious strains of arbuscular mycorrhizal fungi (AMF) that are capable of improving the nutritional status of the plant and making mercury bioavailable species [31]. Therefore, the identification and characterization of heavy-metal tolerant microorganisms in soil and the development of microbial agents is a key research objective.
- (4)
- Mercury detoxification mechanisms
3.11. Problems and Challenges
- -
- The practice of phytoremediation can take years for the various contaminated fields, so the discovery of local species is necessary, as screening for locally tolerant species is becoming an alternative approach for soil restoration [121] including native species that have not been previously studied.
- -
- Most studies have been conducted at the laboratory scale using nutrient cultures and pot experiments on soil contaminated with mercurial inorganic salts. These investigations should be transferred to field experiments because these experiments are not likely to be able to define a hyperaccumulator. In addition, the tests performed in the field or in the laboratory show significant differences. For example, van der Ent et al. pointed out that hyperaccumulators should be recorded from natural habitats and did not consider the extreme accumulation achieved by laboratory work with acidified and artificially modified soils or water to be hyperaccumulation [60].
- -
- Plant growth and the bioavailability of metals are very important in the phytoremediation process. For plants, high biomass, environmental adaptability, response to Hg tolerance, root characteristics (roots with high root zone), and root protection, as it is the main organ affected by mercury, are factors to be considered. Most of the accumulator plants found so far have short cycles, with low biomass and present phytotoxic effects as the concentrations of the metal increase. Regarding the bioavailability of metals, the conditions, physicochemical properties, and characteristics of the medium (water, soil, mud, sediment, etc.) all have influences or impacts on the phytoremediation potential of plants.
- -
- Phytoremediation assisted by chelating agents or microorganisms has been shown to enhance the phytoremediation process. Some microorganisms can promote plant growth and tolerate Hg, therefore, the rational screening of microorganisms should be carried out, and microbial taming techniques should be used to help plants ameliorate mercury-contaminated environments, so the mechanism of microbial symbiosis is worth exploring further. Studies conducted with chelating agents or amendments have shown an increase in the rate of accumulation, so there is an option to further investigate all soil amendments such as biochar, compost, and biosolids in the future.
- -
- With the development of genetic engineering and molecular biology, improvements in Hg phytoremediation processes have been found. The inclusion of transporters and genes can improve the uptake, translocation, and transformation of Hg into less toxic forms. Researchers can use multi-omics methods to report on the different processes involved in gene overexpression, mercury oxidative stress, and metal translocation.
- -
- After the phytoremediation process in mercury-accumulating plants, its removal should be considered. The question of how to treat plants with mercury after harvest should be studied. The release of atmospheric mercury from plants can also cause air pollution. Methods such as composting and pyrolysis have been used for the disposal of toxic plant residues after phytoremediation [131].
4. Conclusions and Perspectives
Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Khanna, K.; Kour, J.; Dhiman, S.; Bhardwaj, T.; Devi, K.; Sharma, N.; Kumar, P.; Kapoor, N.; Sharma, P.; et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 2023, 319, 137917. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. ATSDR Agency for Toxic Substances and Disease Registry. ATSDR’s Substance Priority List. August 2022. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 25 July 2023).
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury toxicity to terrestrial biota. Ecol. Indic. 2017, 74, 451–462. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, L.A.O.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury-contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef]
- The United Nations Environment Programme (UN Environment, 2019). Available online: https://www.unep.org (accessed on 25 July 2023).
- Fernandes, I.O.; Gomes, L.F.; Monteiro, L.C.; Dórea, J.G.; Bernardi, J.V.E. A Scientometric Analysis of Research on World Mercury (Hg) in Soil (1991–2020). Water Air Soil Pollut. 2021, 232, 254. [Google Scholar] [CrossRef]
- He, M.; Tian, L.; Braaten, H.F.V.; Wu, Q.; Luo, J.; Cai, L.M.; Lin, Y. Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil? Bull. Environ. Contam. Toxicol. 2019, 102, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, T.; Matsuyama, A.; Imura, R.; Kodamatani, H.; Miyamoto, J.; Kono, Y.; Kocman, D.; Kotnik, J.; Fajon, V.; Horvat, M. The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil. Environ. Earth Sci. 2012, 65, 1309–1322. [Google Scholar] [CrossRef]
- Cai, X.; Cai, B.; Zhang, H.; Chen, L.; Zheng, C.; Tong, P.; Lin, H.; Zhang, Q.; Liu, M.; Tong, Y.; et al. Establishment of High-Resolution Atmospheric Mercury Emission Inventories for Chinese Cement Plants Based on the Mass Balance Method. Environ. Sci. Technol. 2020, 54, 13399–13408. [Google Scholar] [CrossRef] [PubMed]
- Eckley, C.S.; Gilmour, C.C.; Janssen, S.; Luxton, T.P.; Randall, P.M.; Whalin, L.; Austin, C. The assessment and remediation of mercury contaminated sites: A review of current approaches. Sci. Total Environ. 2020, 707, 136031. [Google Scholar] [CrossRef]
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, J.; Díez, S.; Morales-Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M.P. Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia. Chemosphere 2020, 258, 127319. [Google Scholar] [CrossRef]
- Mishra, B.; Chandra, M. Evaluation of phytoremediation potential of aromatic plants: A systematic review. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100405. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, H.N.; Ashraf, S. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Kumari, S.A.; Jamwal, R.; Mishra, N.; Singh, K. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100283. [Google Scholar] [CrossRef]
- Cepoi, L.; Zinicovscaia, I.; Valuta, A.; Codreanu, L.; Rudi, L.; Chiriac, T.; Yushin, N.; Grozdov, D.; Peshkova, A. Bioremediation capacity of edaphic cyanobacteria Nostoc linckia for chromium in association with other heavy-metals-contaminated soils. Environments 2021, 9, 1. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Pratush, A.; Kumar, A.; Hu, Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review. Int. Microbiol. 2018, 21, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Podar, D.; Maathuis, F.J.M. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell. Environ. 2022, 45, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.N.; Xing, Y.; Shang, L. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221, 1–18. [Google Scholar] [CrossRef]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Marrugo-Madrid, S.; Pinedo-Hernández, J.; Durango-Hernández, J.; Díez, S. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total Environ. 2016, 542, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Xun, Y.; Feng, L.; Li, Y.; Dong, H. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere 2017, 189, 161–170. [Google Scholar] [CrossRef]
- Qian, X.; Wu, Y.; Zhou, H.; Xu, X.; Xu, Z.; Shang, L.; Qiu, G. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Environ. Pollut. 2018, 239, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Petelka, J.; Abraham, J.; Bockreis, A.; Deikumah, J.P.; Zerbe, S. Soil Heavy Metal(loid) Pollution and Phytoremediation Potential of Native Plants on a Former Gold Mine in Ghana. J. Water Air Soil Pollut. 2019, 230, 267. [Google Scholar] [CrossRef]
- Muryani, E.; Sajidan, S.; Budiastuti, M.T.S.; Pranoto, P. Diversity and potential of herbaceous plants as mercury (Hg) hyperaccumulators in small-scale gold mining sites in Pancurendang, Banyumas, Indonesia. J. Biol. Divers. 2023, 24, 3364–3372. [Google Scholar] [CrossRef]
- Kukier, U.; Peters, C.A.; Chaney, R.L.; Angle, J.S.; Roseberg, R.J. The Effect of pH on Metal Accumulation in Two Alyssum Species. J. Environ. Qual. 2004, 33, 2090–2102. [Google Scholar] [CrossRef]
- Santos, G.C.G.D.; Rodella, A.A.; Abreu, C.A.D.; Coscione, A.R. Vegetable species for phytoextraction of heavy metals Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Sci. Agric. 2010, 67, 713–719. [Google Scholar] [CrossRef]
- Chamba-Eras, I.; Griffith, D.M.; Kalinhoff, C.; Ramírez, J.; Gázquez, M.J. Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon. Plants 2022, 11, 1186. [Google Scholar] [CrossRef]
- Cui, L.; Tian, X.; Xie, H.; Cong, X.; Cui, L.; Wu, H.; Wang, J.; Li, B.; Zhao, J.; Cui, Y.; et al. Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. Sci. Total Environ. 2023, 863, 160940. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Ding, S.; Xiao, H. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. Ecotoxicol. Environ. Saf. 2018, 160, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, M.A.; Ruiz-Díez, B.; Fajardo, S.; López-Berdonces, M.A.; Higueras, P.L.; Fernández-Pascual, M. Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol. Biochem. 2013, 73, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ma, Y.; Wang, H.; Huang, W.; Wang, X.; Han, L.; Sun, W.; Han, E.; Wang, B. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochem. Biophys. Res. Commun. 2018, 497, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Shi, T.; Zhang, S.; Crittenden, J.; Guo, S.; Du, H. Bibliometric analysis of insights into soil remediation. J. Soils Sediments. 2018, 18, 2520–2534. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Yang, Y.; Li, S.; Wang, T.; Oleksak, P.; Chrienova, Z.; Wu, Q.; Nepovimova, E.; Zhang, X.; et al. Phytoremediation of heavy metal pollution: Hotspots and future prospects. Ecotoxicol. Environ. Saf. 2022, 234, 113403. [Google Scholar] [CrossRef]
- Armah, F.A.; Obiri, S.; Yawson, D.O.; Onumah, E.E.; Yengoh, G.T.; Afrifa, E.K.A.; Odoi, J.O. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: A multivariate statistical approach. J. Environ. Sci. Health Part A 2010, 45, 1804–1813. [Google Scholar] [CrossRef]
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021, 402, 123431. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Ho, Y.-S. Bibliometric analysis of tsunami research. Scientometrics 2007, 73, 3–17. [Google Scholar] [CrossRef]
- Shi, D.; Xie, C.; Wang, J.; Xiong, L. Changes in the structures and directions of heavy metal-contaminated soil remediation research from 1999 to 2020: A bibliometric & scientometric study. Environ. Res. Public Health 2021, 18, 7358. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 2, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Qiu, D. Exploring coal spontaneous combustion by bibliometric analysis. Process Saf. Environ. Prot. 2019, 132, 1–10. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Zhang, D.; Dyck, M.; Filipović, L.; Filipović, V.; Lv, J.; He, H. Hyperaccumulators for potentially toxic elements: A scientometric analysis. Agronomy 2021, 11, 1729. [Google Scholar] [CrossRef]
- Valdiviezo Gonzales, L.G.; Castañeda-Olivera, C.A.; Cabello-Torres, R.J.; García Ávila, F.F.; Munive Cerrón, R.V.; Alfaro, J. Scientometric study of treatment technologies of soil pollution: Present and future challenges. Appl. Soil Ecol. 2023, 182, 104695. [Google Scholar] [CrossRef]
- Qiu, G.; Feng, X.; Wang, S.; Shang, L. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl. Geochem. 2005, 20, 627–638. [Google Scholar] [CrossRef]
- Qiu, G.; Feng, X.; Meng, B.; Zhang, C.; Gu, C.; Du, B.; Lin, Y. Environmental geochemistry of an abandoned mercury mine in Yanwuping, Guizhou Province, China. Environ. Res. 2013, 125, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Gosar, M.; Žibret, G. Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia). J. Geochem. Explor. 2011, 110, 81–91. [Google Scholar] [CrossRef]
- Kocman, D.; Kanduč, T.; Ogrinc, N.; Horvat, M. Distribution and partitioning of mercury in a river catchment impacted by former mercury mining activity. Biogeochemistry 2011, 104, 183–201. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, Y.; Chang, J.; Liu, X. Trace element contamination in urban topsoil in China during 2000–2009 and 2010–2019: Pollution assessment and spatiotemporal analysis. Sci. Total Environ. 2021, 758, 143647. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Corella, J.P.; Valero-Garcés, B.L.; Wang, F.; Martínez-Cortizas, A.; Cuevas, C.A.; Saiz-Lopez, A. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain). Atmos. Environ. 2017, 155, 97–107. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Kumar, P.N.; Dushenkov, V.; Motto, H.; Raskin, I. Phytoextraction: The Use of Plants To Remove Heavy Metals from Soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar] [CrossRef]
- Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 2018, 193, 421–430. [Google Scholar] [CrossRef]
- Chen, G.Q.; Li, J.S.; Chen, B.; Wen, C.; Yang, Q.; Alsaedi, A.; Hayat, T. An overview of mercury emissions by global fuel combustion: The impact of international trade. Renew. Sustain. Energy Rev. 2016, 65, 345–355. [Google Scholar] [CrossRef]
- Gutiérrez, J.K.R.; Velasco, N.Y.G. Redes de coautoría como herramienta de evaluación de la producción científica de los grupos de investigación. Rev. Gen. Inf. Doc. 2017, 27, 279–297. [Google Scholar] [CrossRef]
- Wang, J.; Xia, J.; Feng, X. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. J. Environ. Manag. 2017, 186, 233–239. [Google Scholar] [CrossRef]
- Wang, J.; Anderson, C.W.N.; Xing, Y.; Fan, Y.; Xia, J.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake. Environ. Pollut. 2018, 242, 86–993. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, L.; Wu, H. Experimental study of the effects of soil pH and ionic species on the electro-osmotic consolidation of kaolin. J. Hazard. Mater. 2019, 368, 885–893. [Google Scholar] [CrossRef]
- Su, H.-N.; Lee, P.-C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Park, J.; Song, W.Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Schutzendubel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace. Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Malar, S.; Sahi, S.V.; Favas, P.J.C.; Venkatachalam, P. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 2015, 22, 4597–4608. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Ulaganathan, A.; Robinson, J.S.; Rajendran, S.; Geevaretnam, J.; Shanmugam, S.; Natarajan, A.; Abdulrahman, I.A.; Karthikeyan, P. Potentially toxic elements contamination and its removal by aquatic weeds in the riverine system: A comparative approach. Environ. Res. 2022, 206, 112613. [Google Scholar] [CrossRef]
- Peng, D.; Chen, M.; Su, X.; Liu, C.; Zhang, Z.; Middleton, B.A.; Lei, T. Mercury accumulation potential of aquatic plant species in West Dongting Lake, China. Environ. Pollut. 2023, 324, 121313. [Google Scholar] [CrossRef]
- Qiu, G.; Feng, X.; Li, P.; Wang, S.; Li, G.; Shang, L.; Fu, X. Methylmercury Accumulation in Rice (Oryza sativa L.) Grown at Abandoned Mercury Mines in Guizhou, China. J. Agric. Food. Chem. 2008, 56, 2465–2468. [Google Scholar] [CrossRef]
- Feng, X.; Li, P.; Qiu, G.; Wang, S.; Li, G.; Shang, L.; Meng, B.; Jiang, H.; Bai, W.; Li, Z.; et al. Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China. Environ. Sci. Technol. 2008, 42, 326–332. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Shi, F.; Meng, B.; Liu, J.; Mi, Y.; Dong, C.; Su, H.; Liu, X.; Wang, F.; et al. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. Ecotoxicol. Environ. Saf. 2023, 255, 114776. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; López, J.E.; Díaz-García, L.; Montoya-Ruiz, C. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. Environ. Sci. Pollut. Res. 2023, 30, 49498–49511. [Google Scholar] [CrossRef]
- Guo, Y.; Sommer, N.; Martin, K.; Rasche, F. Rhizophagus irregularis improves Hg tolerance of Medicago truncatula by upregulating the Zn transporter genes ZIP2 and ZIP6. Mycorrhiza 2023, 33, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Zhao, L.; Wang, Z.; Teng, Y.; Luo, Y. Mercury Enrichment Characteristics and Rhizosphere Bacterial Community of Ramie (Boehmeria nivea L. Gaud.) in Mercury-Contaminated Soil. Sustainability 2023, 15, 6009. [Google Scholar] [CrossRef]
- Senabio, J.A.; de Campos Pereira, F.; Pietro-Souza, W.; Sousa, T.F.; Silva, G.F.; Soares, M.A. Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz. J. Microbiol. 2023, 54, 949–964. [Google Scholar] [CrossRef]
- Sharma, P.; Chaturvedi, P.; Chandra, R.; Kumar, S. Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere 2022, 295, 133823. [Google Scholar] [CrossRef]
- Ustiatik, R.; Nuraini, Y.; Suharjono, S.; Jeyakumar, P.; Anderson, C.W.N.; Handayanto, E. Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediat. J. 2022, 26, 208–227. [Google Scholar] [CrossRef]
- Valdiviezo Gonzales, L.G.; García Ávila, F.F.; Cabello Torres, R.J.; Castañeda Olivera, C.A.; Alfaro Paredes, E. Scientometric study of drinking water treatments technologies: Present and future challenges. Cogent Eng. 2021, 8, 1929046. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Han, X.; Gao, X.; He, G.; Zhao, Y.; Li, H. A bibliometrics review of water footprint research in China: 2003-2018. Sustainability 2019, 11, 5082. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Larsen, T.; Shang, L.; Li, P. Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (Oryza sativa L.) Grain. Environ. Sci. Technol. 2010, 44, 4499–4504. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, F.; Yi, J.; Yan, H.; He, Z.; Li, X. Transcriptomic and physio-biochemical features in rice (Oryza sativa L.) in response to mercury stress. Chemosphere 2022, 309, 136612. [Google Scholar] [CrossRef]
- Shahpiri, A.; Mohammadzadeh, A. Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann. Microbiol. 2018, 68, 145–152. [Google Scholar] [CrossRef]
- Gomes, M.V.T.; de Souza, R.R.; Teles, V.S.; Mendes, É.A. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere 2014, 103, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Enamorado-Montes, G.; Durango-Hernández, J.; Pinedo-Hernández, J.; Díez, S. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere 2017. 167, 188–192. [CrossRef]
- Dushenkov, S. Trends in phytoremediation of radionuclides. Plant Soil. 2003, 249, 167–175. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; Ent, A. van der. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. Available online: https://www.jstor.org/stable/90019919 (accessed on 23 September 2024). [CrossRef]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Tiodar, E.D.; Văcar, C.L.; Podar, D. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and perspectives. Int. J. Environ. Res. Public. Health. 2021, 18, 2435. [Google Scholar] [CrossRef]
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, H.S.; Díez, S.; Morales–Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M.P. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. J. Hazard. Mater. 2012, 4040, 124080. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Marrugo–Madrid, S.; Turull, M.; Montes, G.E.; Pico, M.V.; Marrugo–Negrete, J.L.; Díez, S. Phytoremediation of mercury in soils impacted by gold mining: A case study of Colombia. Bioremediation Environ. Sustain. Toxic. Mech. Contam. Degrad. Detoxif. Chall. 2021, 2021, 145–160. [Google Scholar] [CrossRef]
- Czako, M.; Feng, X.; He, Y.; Liang, D.; Marton, L. Transgenic Spartina alterniflora for phytoremediation. Environ. Geochem. Health. 2006, 28, 103–110. [Google Scholar] [CrossRef]
- Yang, R.Y.; Li, T.T.; Yang, T.H.; Li, Y.P.; Liu, H.; Wang, L.; Lu, N.Q. Advances in enhanced phytoremediation by genetic engineering technology for heavy metal pollution in soil. Res. Environ. Sci. 2019, 32, 1294–1303. [Google Scholar]
- Priyadarshanee, M.; Chatterjee, S.; Rath, S.; Dash, H.R.; Das, S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J. Hazard. Mater. 2022, 423, 26985. [Google Scholar] [CrossRef] [PubMed]
- Heaton, A.C.; Rugh, C.L.; Kim, T.; Wang, N.J.; Meagher, R.B. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 2003, 22, 2940–2947. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Zhou, Y.; Gong, T.; Wang, J.; Ge, Y. Enhanced phytoremediation of mixed heavy metal (mercury)—Organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J. Hazard. Mater. 2013, 260, 1100–1107. [Google Scholar] [CrossRef]
- Rodríguez, L.; Alonso-Azcárate, J.; Villaseñor, J.; Rodríguez-Castellanos, L. EDTA and hydrochloric acid effects on mercury accumulation by Lupinus albus. Environ. Sci. Pollut. Res. 2016, 23, 24739–24748. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. Sci. Total Environ. 2020, 702, 134924. [Google Scholar] [CrossRef] [PubMed]
- Amir, W.; Farid, M.; Ishaq, H.K.; Farid, S.; Zubair, M.; Alharby, H.F.; Ali, S. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. Chemosphere 2020, 257, 127247. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Cui, Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol. Environ. Saf. 2019, 180, 517–525. [Google Scholar] [CrossRef]
- Smolinska, B.; Leszczynska, J. Influence of combined use of iodide and compost on Hg accumulation by Lepidium sativum L. J. Environ. Manage. 2015, 150, 499–507. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, F.; Evans, R.D.; Zhong, H.; Zhao, J.; Zhou, D. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: The key role of antagonism in soil. Sci. Rep. 2016, 6, 19477. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.; Wang, H.; Wang, L. Thiosulphate-induced mercury accumulation by plants: Metal uptake and transformation of mercury fractionation in soil—Results from a field study. Plant Soil 2014, 375, 21–33. [Google Scholar] [CrossRef]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Labuschagne, N.; Dubery, I.A. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Ruley, J.A.; Tumuhairwe, J.B.; Amoding, A.; Westengen, O.T.; Vinje, H. Rhizobacteria Communities of Phytoremediation Plant Species in Petroleum Hydrocarbon Contaminated Soil of the Sudd Ecosystem, South Sudan. Int. J. Microbiol. 2020, 2020, 6639118. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour. Technol. 2021, 328, 124835. [Google Scholar] [CrossRef]
- Gupta, D.K.; Huang, H.G.; Corpas, F.J. Lead tolerance in plants: Strategies for phytoremediation. Environ. Sci. Pollut. Res. 2013, 20, 2150–2161. [Google Scholar] [CrossRef]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Ma, Y.; Prasad, M.N.V.; Rajkumar, M.; Freitas, H.J.B.A. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef]
- Leudo, A.M.; Cruz, Y.; Montoya-Ruiz, C.; Delgado, M.d.P.; Saldarriaga, J.F. Mercury phytoremediation with Lolium perenne—Mycorrhizae in contaminated soils. Sustainability 2020, 12, 3795. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, C.; Wang, G.; Guan, D.; Zhang, R.; Chen, Y.; Dai, J. Influencing pathways of soil microbial attributes on accumulation of heavy metals in brassica (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) leaves. Environ. Pollut. 2020, 262, 114215. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, L.; Wahid, Z.A.; Siddiqui, M.F.; Atnaw, S.M.; Din, M.F.M. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Assess. 2016, 188, 206. [Google Scholar] [CrossRef]
- Esteban, E.; Moreno, E.; Penalosa, J.; Cabrero, J.I.; Millán, R.; Zornoza, P. Short and long-term uptake of Hg in white lupin plants: Kinetics and stress indicators. Environ. Exp. Bot. 2008, 62, 316–322. [Google Scholar] [CrossRef]
- Ibraheem, F.; Al-Hazmi, N.; El-Morsy, M.; Mosa, A. Ecological risk assessment of potential toxic elements in salt marshes on the east coast of the red sea: Differential physiological responses and adaptation capacities of dominant halophytes. Sustainability 2021, 13, 11282. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.D.; Parlak, K.U. Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemma gibba. Int. J. Phytorem. 2011, 13, 805–817. [Google Scholar] [CrossRef]
- Manara, A. Plant Responses to Heavy Metal Toxicity. In Plants Heavy Metals; Springer: Dordrecht, The Netherlands, 2012; pp. 27–53. [Google Scholar] [CrossRef]
- Szalai, G.; Krantev, A.; Yordanova, R.; Popova, L.P.; Janda, T. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk. J. Bot. 2013, 37, 708–714. [Google Scholar] [CrossRef]
- Xu, J.; Bravo, A.G.; Lagerkvist, A.; Bertilsson, S.; Sjöblom, R.; Kumpiene, J. Sources and remediation techniques for mercury contaminated soil. Environ. Int. 2015, 74, 42–53. [Google Scholar] [CrossRef]
- Sidhu, G.P.S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol. Environ. Saf. 2017, 135, 209–215. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Li, Y.; Wu, Y.; Zeng, Z.; Xu, R.; Zhang, J. Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. J. Hazard. Mater. 2019, 378, 120757. [Google Scholar] [CrossRef]
- Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Pollut. 2010, 158, 3447–3461. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere 2011, 83, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Pathak, H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.E.; Sobrino-Plata, J.; Montero-Palmero, M.B.; Carrasco-Gil, S.; Flores-Cáceres, M.L.; Ortega-Villasante, C.; Escobar, C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015, 66, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hou, D.; Cao, Y.; Ok, Y.S.; Tack, F.M.; Rinklebe, J.; O’Connor, D. Remediation of mercury-contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ. Int. 2020, 134, 105281. [Google Scholar] [CrossRef] [PubMed]
- OB, A.; Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int. J. Phys. Sci. 2010, 5, 1807–1817. [Google Scholar]
- Arao, T.; Ishikawa, S.; Murakami, M.; Abe, K.; Maejima, Y.; Makino, T. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ. 2010, 8, 247–257. [Google Scholar] [CrossRef]
- Gaur, N.; Flora, G.; Yadav, M.; Tiwari, A. A review with recent advancements on bioremediation-based abolition of heavy metals. Environ. Sci. Process. Impacts 2014, 16, 180–193. [Google Scholar] [CrossRef]
- Singh, J.S.; Abhilash, P.C.; Singh, H.B.; Singh, R.P.; Singh, D.P. Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene 2011, 480, 1–9. [Google Scholar] [CrossRef]
- Bonanno, G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf. 2013, 97, 124–130. [Google Scholar] [CrossRef]
- Li, K.; Ramakrishna, W. Effect of multiple metal-resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater. 2011, 189, 531–539. [Google Scholar] [CrossRef]
- Monterroso, C.; Rodríguez, F.; Chaves, R.; Diez, J.; Becerra-Castro, C.; Kidd, P.S.; Macías, F. Heavy metal distribution in mine soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochem. 2014, 44, 3–11. [Google Scholar] [CrossRef]
- Mleczek, M.; Rutkowski, P.; Rissmann, I.; Kaczmarek, Z.; Golinski, P.; Szentner, K.; Stachowiak, A. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 2010, 34, 1410–1418. [Google Scholar] [CrossRef]
- Bonanno, G.; Cirelli, G.L. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf. 2017, 143, 92–99. [Google Scholar] [CrossRef]
- Li, W.C.; Tse, H.F. Health risk and significance of mercury in the environment. Environ. Sci. Pollut. Res. 2015, 22, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 939161. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 14, 277–281. [Google Scholar] [CrossRef]
- Weis, J.S.; Weis, P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ. Int. 2004, 30, 685–700. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef]
- Patra, M.; Sharma, A. Mercury toxicity in plants. The Botanical Review. 2000, 66, 379–422. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, J.; Lombi, E. Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron. 2002, 75, 1–56. [Google Scholar] [CrossRef]
- Krämer, U. Phytoremediation: Novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 2005, 16, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Doty, S.L. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008, 179, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Eapen, S.; D’souza, S.F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Adv. 2005, 23, 97–114. [Google Scholar] [CrossRef]
- Lebeau, T.; Braud, A.; Jézéquel, K. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 2008, 153, 497–522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Cao, X.; Li, X.; Li, T.; Zhang, H.; Cui, X.; Cui, Z. Ecological toxicity of Cd, Pb, Zn, Hg and regulation mechanism in Solanum nigrum L. Chemosphere 2023, 313, 137447. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Olivero-Verbel, J.; Díez, S. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 2015, 127, 58–63. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Enamorado-Montes, G.; Díez, S. Mercury uptake and effects on growth in Jatropha curcas. Environ. Sci. 2016, 48, 120–125. [Google Scholar] [CrossRef]
- Durante-Yánez, E.V.; Martínez-Macea, M.A.; Enamorado-Montes, G.; Combatt Caballero, E.; Marrugo-Negrete, J. Phytoremediation of soils contaminated with heavy metals from gold mining activities using Clidemia sericea D. Don. Plants. 2022, 11, 597. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.A.; Xu, J.; Ding, S.; Feng, X.; Xiao, H. Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol. Eng. 2017, 106, 273–278. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, J.; Wu, S.C.; Zhang, S.; Christie, P.; Liang, P. Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. Ecotoxicol. Environ. Saf. 2019, 183, 109549. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ordiales, E.; Roqueñí, N.; Loredo, J. Mercury bioaccumulation by Juncus maritimus grown in a Hg contaminated salt marsh (northern Spain). Mar. Chem. 2020, 226, 103859. [Google Scholar] [CrossRef]
- Shiyab, S.; Chen, J.; Han, F.X.; Monts, D.L.; Matta, F.B.; Gu, M.; Su, Y. Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol. Environ. Saf. 2009, 72, 619–625. [Google Scholar] [CrossRef] [PubMed]
Scopus | WoS | ||||
---|---|---|---|---|---|
Document Type | Documents | Percentage (%) | Document Type | Documents | Percentage (%) |
Article | 468 | 67.0 | Article | 396 | 86.5 |
Review article | 108 | 15.5 | Review article | 51 | 11.1 |
Book chapter | 76 | 10.9 | Proceeding paper | 5 | 1.1 |
Conference paper | 35 | 5.0 | Early access | 5 | 1.1 |
Others | 11 | 1.6 | Others | 1 | 0.2 |
Total | 698 | 100 | Total | 458 | 100 |
Rank | WoS | Scopus | ||||
---|---|---|---|---|---|---|
Organization | Documents | Country | Organizations | Documents | Country | |
1 | Chinese Academy of Sciences | 29 (6.3%) | China | Chinese Academy of Sciences | 39 (5.5%) | China |
2 | Guiyang Institute of Geochemistry Cas | 15 (3.3%) | China | Institute of Geochemistry Chinese Academy of Sciences | 20 (2.8%) | China |
3 | University of Chinese Academy of Sciences Cas | 15 (3.3%) | China | University of Chinese Academy of Sciences | 17 (2.4%) | China |
4 | Chongqing University | 10 (2.2%) | China | Universidade de Aveiro | 11 (1.6%) | Portugal |
5 | Consejo Superior de Investigaciones Cientificas Csic | 10 (2.2%) | Spain | Massey University | 10 (1.4%) | New Zealand |
6 | Universidade De Aveiro | 10 (2.2%) | Portugal | University of Georgia | 10 (1.4%) | United States |
7 | Centro de Investigaciones Energéticas Medioambientales Tecnológicas | 8 (1.7%) | Spain | Ministry of Education of the People’s Republic of China | 9 (1.3%) | China |
8 | Massey University | 8 (1.7%) | New Zealand | Chongqing University | 9 (1.3%) | China |
9 | Yangtze Normal University | 8 (1.7%) | China | Universidad de Castilla—La Mancha | 8 (1.1%) | Spain |
10 | Council of Scientific Industrial Research Csir India | 7 (1.7%) | India | Kitasato University | 8 (1.1%) | Japan |
11 | Lodz University of Technology | 7 (1.7%) | Poland | Banaras Hindu University | 8 (1.1%) | India |
12 | Universidad de Córdoba | 7 (1.7%) | Colombia | Indian Institute of Technology Indian School of Mines, Dhanbad | 8 (1.1%) | India |
13 | Universidade Federal de Mato Grosso | 7 (1.7%) | Brazil | Universidad de Córdoba, Monteria | 8 (1.1%) | Colombia |
14 | University of Melbourne | 7 (1.7%) | Australia | The State Key Laboratory of Coal Mine Disaster Dynamics and Control | 8 (1.1%) | China |
15 | University of Oviedo | 7 (1.7%) | Spain | Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas | 7 (1.0%) | Spain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosquera Chaverra, L.; Paredes Cuervo, D.; López Gutiérrez, A.; Arias, C.A.; Carvalho, P.N. Phytoremediation of Mercury Contamination: Bibliometric Analysis. Sustainability 2024, 16, 9408. https://doi.org/10.3390/su16219408
Mosquera Chaverra L, Paredes Cuervo D, López Gutiérrez A, Arias CA, Carvalho PN. Phytoremediation of Mercury Contamination: Bibliometric Analysis. Sustainability. 2024; 16(21):9408. https://doi.org/10.3390/su16219408
Chicago/Turabian StyleMosquera Chaverra, Lina, Diego Paredes Cuervo, Ana López Gutiérrez, Carlos A. Arias, and Pedro N. Carvalho. 2024. "Phytoremediation of Mercury Contamination: Bibliometric Analysis" Sustainability 16, no. 21: 9408. https://doi.org/10.3390/su16219408
APA StyleMosquera Chaverra, L., Paredes Cuervo, D., López Gutiérrez, A., Arias, C. A., & Carvalho, P. N. (2024). Phytoremediation of Mercury Contamination: Bibliometric Analysis. Sustainability, 16(21), 9408. https://doi.org/10.3390/su16219408