Long-Term Effects of Thinning in Sub-Mountainous Thermophilic Sessile Oak (Quercus petraea Mill.) and European Beech (Fagus sylvatica L.) Coppices in the Croatian Dinarides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experiment Establishment
2.2. Study Design
2.3. Measurements of Height and DBH
2.4. Assessment of Silvicultural Characteristics
- Tree/stem straightness (S), visually assessed as deviation from the vertical axis of the stem, low stem straightness points to the degree of stem deformation (large—straight, medium—crooked, small -deformed);
- Taper/degree of decreasing diameter along the trunk, visually assessed by how much the stem is similar to the ideal cylinder (T_shape), large taper points to stem similar to the ideal cylinder (large, medium, small);
- Curvature showing how much the tree/stem is curved, or how many curves the stem has (C) (large–more than two curves, medium—two curves, small—one or no curve);
- Crown width (C_WIDTH) (large, medium, small);
- Forking (F) (large—the tree has more than one principal stem that is forked below one-third of its height; medium—the tree has more than one principal stem that is forked higher than one-third of its height; small—the tree has one principal stem or two principal stems that are forked in the tree crown);
- Crown symmetry (C_sym) (symmetric, asymmetric).
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.1.1. Number of Trees/Species Composition
3.1.2. DBH and Height
3.1.3. Other Criteria
3.2. DBH and Height Analysis
3.3. Analysis of Silvicultural Features (Stem/Crown Shape)
4. Discussion
4.1. Effects of Thinning on Species Composition and Tree Origin
4.2. Effects of Thinning on Tree/Stem Growth
4.3. Effects of Thinning on Silvicultural Characteristics (Stem/Crown Shape)
4.4. Study Limitations and Further Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolescu, V.-N. The Practice of Silviculture; Aldus: Brasov, Romania, 2018; p. 254. [Google Scholar]
- UN/ECE-FAO. Main Report—Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (Industrialised Temperate/Boreal Countries): UN-ECE/FAO Contribution to the Global Forest Resources Assessment; United Nations: New York, NY, USA; United Nations: Geneva, Switzerland, 2000; p. 467. [Google Scholar]
- Slach, T.; Volařík, D.; Maděra, P. Dwindling coppice woods in Central Europe—Disappearing natural and cultural heritage. For. Ecol. Manag. 2021, 501, 119687. [Google Scholar] [CrossRef]
- Kamp, J. Coppice loss and persistence in Germany. Trees For. People 2022, 8, 100227. [Google Scholar] [CrossRef]
- Unrau, A.; Becker, G.; Spinelli, R.; Lazdina, D.; Magagnotti, N.; Nicolescu, V.-N.; Buckley, P.; Bartlett, D.; Kofman, P. Coppice Forests in Europe; Albert Ludwig University of Freiburg: Freiburg im Breisgau, Germany, 2018; p. 388. [Google Scholar]
- Buckley, P. Coppice restoration and conservation: A European perspective. J. For. Res. 2020, 25, 125–133. [Google Scholar] [CrossRef]
- Bartlett, D.; Laina, R.; Petrović, N.; Sperandio, G.; Unrau, A.; Županić, M. Socio-Economic Factors Influencing Coppice Management in Europe. In Coppice Forests in Europe; Unrau, A., Becker, G., Spinelli, R., Lazdina, D., Magagnotti, N., Nicolescu, V.-N., Buckley, P., Bartlett, D., Kofman, P., Eds.; Albert Ludwig University of Freiburg: Freiburg im Breisgau, Germany, 2018; pp. 158–165. [Google Scholar]
- Vymazalová, P.; Košulič, O.; Hamřík, T.; Šipoš, J.; Hédl, R. Positive impact of traditional coppicing restoration on biodiversity of ground-dwelling spiders in a protected lowland forest. For. Ecol. Manag. 2021, 490, 119084. [Google Scholar] [CrossRef]
- Đodan, M.; Smerdel, D.; Perić, S. Issues of coppice management in FA Gospić—An overview of scientific and expert project activities. Rad.-Hrv. Šum. Inst. 2022, 48, 81–89. [Google Scholar]
- Vlachou, M.A.; Zagas, T.D. Conversion of oak coppices to high forests as a tool for climate change mitigation in central Greece. Int. J. Environ. Sci. Technol. 2023, 20, 8813–8828. [Google Scholar] [CrossRef]
- Radtke, A.; Toe, D.; Berger, F.; Zerbe, S.; Bourrier, F. Managing coppice forests for rockfall protection: Lessons from modeling. Ann. For. Sci. 2014, 71, 485–494. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Carvalho, J.; Hochbichler, E.; Bruckman, V.; Piqué-Nicolau, M.; Hernea, C.; Viana, H.; Štochlová, P.; Ertekin, M.; Tijardovic, M.; et al. Silvicultural guidelines for European coppice forests. In COST Action FP1301 Reports; Albert Ludwig University of Freiburg: Freiburg, Germany, 2017; p. 33. [Google Scholar]
- Bottero, A.; Meloni, F.; Garbarino, M.; Motta, R. Temperate coppice forests in north-western Italy are resilient to wild ungulate browsing in the short to medium term. For. Ecol. Manag. 2022, 523, 120484. [Google Scholar] [CrossRef]
- Morhart, C.D.; Douglas, G.C.; Dupraz, C.; Graves, A.R.; Nahm, M.; Paris, P.; Sauter, U.H.; Sheppard, J.; Spiecker, H. Alley coppice—A new system with ancient roots. Ann. For. Sci. 2014, 71, 527–542. [Google Scholar] [CrossRef]
- Manetti, M.C.; Conedera, M.; Pelleri, F.; Montini, P.; Maltoni, A.; Mariotti, B.; Pividori, M.; Marcolin, E. Optimizing quality wood production in chestnut (Castanea sativa Mill.) coppices. For. Ecol. Manag. 2022, 523, 120490. [Google Scholar] [CrossRef]
- Dekanić, S.; Dubravac, T.; Lexer, M.J.; Stajic, B.; Zlatanov, T.; Trajkov, P. European forest types for coppice forests in Croatia. Silva Balc. 2009, 10, 47–62. [Google Scholar]
- Cutini, A.; Chianucci, F.; Giannini, T.; Manetti, M.C.; Salvati, L. Is anticipated seed cutting an effective option to accelerate transition to high forest in European beech (Fagus sylvatica L.) coppice stands? Ann. For. Sci. 2015, 72, 631–640. [Google Scholar] [CrossRef]
- MAFRC (Ministry of Agriculture and Forestry of the Republic of Croatia). National Forest Management Plant for the Republic of Croatia—2006–2015; Ministry of Agriculture and Forestry of the Republic of Croatia: Zagreb, Croatia, 2006; p. 800. [Google Scholar]
- MARC (Ministry of Agriculture of the Republic of Croatia). National Forest Management Plant for the Republic of Croatia—2016–2025; Ministry of Agriculture of the Republic of Croatia: Zagreb, Croatia, 2016; p. 927. [Google Scholar]
- Dubravac, T.; Đodan, M. Croatia-facts and figures. In Coppice Forests in Europe; Unrau, A., Becker, G., Spinelli, R., Lazdina, D., Magagnotti, N., Nicolescu, V.-N., Buckley, P., Bartlett, D., Kofman, P., Eds.; Albert Ludwig University of Freiburg: Freiburg im Breisgau, Germany, 2018; pp. 214–218. [Google Scholar]
- Matić, S. Forests and forestry in Croatia—Past, presence and the future. In Annales Pro Experimentis Foresticis; Faculty of Forestry, University of Zagreb: Zagreb, Croatia, 1990; Available online: https://urn.nsk.hr/urn:nbn:hr:108:401278 (accessed on 2 January 2024).
- Krejči, V.; Dubravac, T. From coppice to high forest of evergreen oak (Quercus ilex L.) by shelterwood cutting. Šumar. List 2004, 7/8, 405–412. [Google Scholar]
- Štimac, M. Effects of tending activities on structural features of coppices in Lika region. Šumar. List 2010, 134, 45–53. [Google Scholar]
- Čavlović, J. Management of coppices in the area of Hrvatskozagorje. Ann. Pro Exp. For. 1994, 30, 143–192. [Google Scholar]
- Niccoli, F.; Pelleri, F.; Manetti, M.C.; Sansone, D.; Battipaglia, G. Effects of thinning intensity on productivity and water use efficiency of Quercus robur L. For. Ecol. Manag. 2020, 473, 118282. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- Matić, S.; Rauš, Đ. Conversion of maquis and garrigue of Holm oak into stands of advanced silvicultural form. Ann. Pro Exp. For. Seditiopeculiaris 1986, 2. [Google Scholar]
- Chianucci, F.; Salvati, L.; Giannini, T.; Chiavetta, U.; Corona, P.; Cutini, A. Long-term response to thinning in a beech (Fagus sylvatica L.) coppice stand under conversion to high forest in Central Italy. Silva Fenn. 2016, 50, 9. [Google Scholar] [CrossRef]
- Mattioli, W.; Ferrari, B.; Giuliarelli, D.; Mancini, L.D.; Portoghesi, L.; Corona, P. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification. Environ. Manag. 2016, 56, 1159–1169. [Google Scholar] [CrossRef]
- Manetti, M.C.; Becagli, C.; Sansone, D.; Pelleri, F. Tree-oriented silviculture: A new approach for coppice stands. IForest 2016, 9, 791–800. [Google Scholar] [CrossRef]
- Marini, F.; Battipaglia, G.; Manetti, M.C.; Corona, P.; Romagnoli, M. Impact of Climate, Stand Growth Parameters, and Management on Isotopic Composition of Tree Rings in Chestnut Coppices. Forests 2019, 10, 1148. [Google Scholar] [CrossRef]
- García-Pérez, J.L.; Oliet, J.A.; Villar-Salvador, P.; Guzmán, J.E. Root Growth Dynamics and Structure in Seedlings of Four Shade Tolerant Mediterranean Species Grown under Moderate and Low Light. Forests 2021, 12, 1540. [Google Scholar] [CrossRef]
- Rodríguez-Calcerrada, J.; Pérez-Ramos, I.M.; Ourcival, J.-M.; Limousin, J.-M.; Joffre, R.; Rambal, S. Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Ann. For. Sci. 2011, 68, 575–585. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Cukor, J.; Bílek, L.; Gallo, J.; Bulušek, D. Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains. Cent. Eur. For. J. 2020, 66, 116–129. [Google Scholar] [CrossRef]
- van der Maaten, E. Thinning prolongs growth duration of European beech (Fagus sylvatica L.) across a valley in southwestern Germany. For. Ecol. Manag. 2013, 306, 135–141. [Google Scholar] [CrossRef]
- Tonelli, E.; Vitali, A.; Brega, F.; Gazol, A.; Colangelo, M.; Urbinati, C.; Camarero, J.J. Thinning improves growth and resilience after severe droughts in Quercus subpyrenaica coppice forests in the Spanish Pre-Pyrenees. Dendrochronologia 2023, 77, 126042. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Aldea, J.; Gea-Izquierdo, G.; Cañellas, I.; Martín-Benito, D. Influence of climate and thinning on Quercus pyrenaica Willd. coppices growth dynamics. Eur. J. For. Res. 2021, 140, 187–197. [Google Scholar] [CrossRef]
- Gavinet, J.; Ourcival, J.-M.; Gauzere, J.; de Jalón, L.G.; Limousin, J.-M. Drought mitigation by thinning: Benefits from the stem to the stand along 15 years of experimental rainfall exclusion in a holm oak coppice. For. Ecol. Manag. 2020, 473, 118266. [Google Scholar] [CrossRef]
- Pahernik, M.; Jovanić, M. Geomorphologic database in the function of the Central Lika landscape typology. In Hilly-Mountain Areas: Problems and Perspectives, Proceedings of International Scientific Symposium, Ohrid, North Macedonia, 12–15 September 2013; Makedonsko Geografsko Društvo: Skopje, North Macedonia, 2014; pp. 97–105. [Google Scholar]
- Horvat, I. Bio-geographical placement and dismemberment of Lika and Krbava. Acta Bot. Croat. 1962, 20–21, 233–242. [Google Scholar]
- DHMZ (Croatian Meteorological and Hydrological Service). Available online: https://meteo.hr/klima.php?section=klima_podaci¶m=k1&Grad=gospic (accessed on 9 March 2023).
- Štimac, M. Effects of Tending Activities on Structural Features of Lika Coppices. Master’s Thesis, Faculty of Forestry, University of Zagreb, Zagreb, Croatia, 2009. [Google Scholar]
- Nimac, I.; Perčec Tadić, M. New 1981–2010 climatological normal for Croatia and comparison to previous 1961–1990 and 1971–2000 normals temperature, precipitation and humidity in Croatia. In Proceedings of the GeoMLA Conference, Belgrade, Serbia, 23–24 June 2016; pp. 79–85. [Google Scholar]
- Ministry of Agriculture. Management Plan for Management Unit “Risovac-Grabovača”; Croatian Forests Ltd.: Zagreb, Croatia; Ministry of Agriculture; Zagreb, Croatia, 2018. [Google Scholar]
- Perić, S. Silvicultural properties of different pedunculated oak (Quercus robur L.) provenances in Croatia. Doctoral Thesis, Faculty of Forestry, University of Zagreb, Zagreb, Croatia, 2001; p. 169. [Google Scholar]
- StatSoft, Inc. STATISTICA; Version 8.2; StatSoft, Inc.: Tulsa, OK, USA, 2007. [Google Scholar]
- SAS Institute. SAS; Version 9.4; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Barčić, D.; Španjol, Ž.; Rosavec, R.; Ančić, M.; Dubravac, T.; Končar, S.; Ljubić, I.; Rimac, I. Overview of vegetation research in holm oak forests (Quercus ilex L.) on experimental plots in Croatia. Šumar. List 2021, 1–2, 47–62. [Google Scholar] [CrossRef]
- Bahmani, F.; Soltani, A.; Mafi-Gholami, K.; Khodamoradi, D. Structural Dynamics and Successional Trajectories in Zagros Mountain Oak Coppice Forests. Ecopersia 2024, 12, 247–259. [Google Scholar] [CrossRef]
- Fedorová, B.; Kadavý, J.; Adamec, Z.; Knott, R.; Kučera, A.; Knei, M.; Drápela, K.; Inurrigarro, R.O. Effect of thinning and reduced throughfall in young coppice dominated by Quercus petraea (Matt.) Liebl. and Carpinus betulus L. Jahrgang 2018, 1, 1–17. [Google Scholar]
- Fedorová, B.; Kadavý, J.; Adamec, Z.; Kneifl, M.; Knott, R. Response of diameter and height increment to thinning in oak-hornbeam coppice in the southeastern part of the Czech Republic. J. For. Sci. 2016, 62, 229–235. [Google Scholar] [CrossRef]
- Ducrey, M.; Toth, J. Effect of cleaning and thinning on height growth and girth increment in holm oak coppices (Quercus ilex L.). Vegetatio 1992, 99–100, 365–376. [Google Scholar] [CrossRef]
- Krejči, V.; Dubravac, T. Oplodnom sječom odpanjače do sjemenjače hrasta crnike (Quercus ilex L.). Šumar. List 2004, 128, 405–412. [Google Scholar]
- Krejči, V.; Dubravac, T. Obnova panjača hrasta crnike (Quercus ilex L.) oplodnom sječom. Šumar. List 2000, 5, 661–668. [Google Scholar]
- Matić, S. Management interventions in coppices for increase of production and forest stability. Šumar. List 1987, 3–4, 143–148. [Google Scholar]
- Bošeľa, M.; Štefančík, I.; Petráš, R.; Vacek, S. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric. For. Meteorol. 2016, 222, 21–31. [Google Scholar] [CrossRef]
- Müllerová, J.; Hédl, R.; Szabó, P. Coppice Abandonment and its Implications for Species Diversity in Forest Vegetation. For. Ecol. Manag. 2015, 343, 88–100. [Google Scholar] [CrossRef]
- Stajić, B.; Zlatanov, T.; Velichkov, I.; Dubravac, T.; Trajkov, P. Past and recent coppice forest management in some regions of South Eastern Europe. Silva Balc. 2009, 10, 9–19. [Google Scholar]
- Nocentini, S. Structure and management of beech (Fagus sylvatica L.) forests in Italy. iForest 2009, 2, 105–113. Available online: https://iforest.sisef.org/contents/?id=ifor0499-002 (accessed on 2 January 2024). [CrossRef]
- Fabbio, G. Coppice forests, or the changeable aspect of things, a review. Ann. Silvic. Res. 2016, 40, 108–132. [Google Scholar] [CrossRef]
- Kneifl, M.; Kadavý, J.; Knott, R. Gross value yield potential of coppice, high forest and model conversion of high forest to coppice on best sites. J. For. Sci. 2011, 57, 536–546. [Google Scholar] [CrossRef]
- Stojanović, M.; Čater, M.; Pokorný, R. Responses in young Quercus petraea: Coppices and standards under favourable and drought conditions. Dendrobiology 2016, 76, 127–136. [Google Scholar] [CrossRef]
- Montes, F.; Cañellas, I.; del Río, M.; Calama, R.; Montero, G. The effects of thinning on the structural diversity of coppice forests. Ann. For. Sci. 2004, 61, 771–779. [Google Scholar] [CrossRef]
Trial Plots | ||||
---|---|---|---|---|
Name of trial plots | Beech14 | Oak103 | ||
Tree density (tree/ha) | 654 | 1053 | ||
Basal area (m2/ha) | 17.68 | 22.03 | ||
Stem volume (m3/ha) | 138 | 131 | ||
Average tree height (m) in 2020 and 2022. | 16.26 | 17.14 | 14.98 | 15.66 |
Average DBH (cm) in 2020 and 2022. | 14.29 | 15.43 | 12.70 | 16.26 |
Tree species | Thinning | Control | Thinning | Control |
Carpinus betulus L. | 2 | 2 | 10 | - |
Fagus sylvatica L. | 164 | 215 | - | - |
Quercus petraea (Matt.) Liebl. | - | 26 | 84 | 171 |
Ostrya carpinifolia Scop. | 3 | 40 | 92 | 131 |
Pyrus pyraster (L.) Burgsd. | 1 | 4 | 1 | - |
Abies alba Mill. | - | 1 | 3 | - |
Prunus avium L. | - | 1 | - | - |
Sorbus torminalis (L.) Crantz | - | 4 | 2 | 24 |
Acer pseudoplatanus L. | - | 1 | 45 | 8 |
Cornus mas L. | - | 1 | - | 1 |
Fraxinus ornus L. | - | 1 | 73 | 143 |
Acer obtusatum Waldst. et Kit. ex Willd. | - | - | - | 16 |
Acer campestre L. | - | - | 3 | 3 |
Beech14 | Oak103 | |||
---|---|---|---|---|
Stand volumen before thinning in 2002. | 140.2 m3 h−1 | 195.69 m3 ha−1 | ||
Stand volumen after thinning | 115.36 m3 h−1 | 144.63 m3 ha−1 | ||
Intesity of thinning | 17.71% (24.84 m3 ha−1) | 26.09% (51.06 m3 ha−1) | ||
Residual stand basal area | 20.40 m2 ha−1 | 23.36 m2 ha−1 | ||
Remained seed-originating trees per ha | 200 | 524 | ||
Remained stump-originating stems per ha | 1197 | 1281 | ||
Main tree species in the plot | Beech | 94.01% | S. oak | 75.39% |
S. oak | 2.29% | Hophornbeam | 11.8% | |
Other | 3.7% | Others | 12.8% | |
Loss after drought in 2003. | 172 trees 164 vegetative origin 156 beech trees | 68 trees 23 seed (all S. oak) 45 vegetative origin (13 S. oak) | ||
basal area 1.81 m2 ha−1, wood volume 9.43 m3 ha−1 | ||||
Measurment from 2018 (Forst management plan) | 654 trees/stems per hectare | 1053 trees/stems per hectare | ||
Basal area of 17.68 m2 | Basal area of 22.03 m2 ha−1 | |||
Stand volume of 138 m3 ha−1. | Stand volume of 131 m3 ha−1 |
Trial Plots | ||||
---|---|---|---|---|
Beech14 | Oak103 | |||
High altitude (m) | 560–660 m | |||
Slope (°) | 5°–35° | |||
Aera (ha) | 15.96 ha | |||
Tree species | Thinning | Control | Thinning | Control |
Carpinus betulus L. | 2 | 2 | 10 | - |
Fagus sylvatica L. | 164 | 215 | - | - |
Quercus petraea (Matt.) Liebl. | - | 26 | 84 | 171 |
Ostrya carpinifolia Scop. | 3 | 40 | 92 | 131 |
Pyrus pyraster (L.) Burgsd. | 1 | 4 | 1 | - |
Abies alba Mill. | - | 1 | 3 | - |
Prunus avium L. | - | 1 | - | - |
Sorbus torminalis (L.) Crantz | - | 4 | 2 | 24 |
Acer pseudoplatanus L. | - | 1 | 45 | 8 |
Cornus mas L. | - | 1 | - | 1 |
Fraxinus ornus L. | - | 1 | 73 | 143 |
Acer obtusatum Waldst. et Kit. ex Willd. | - | - | - | 16 |
Acer campestre L. | - | - | 3 | 3 |
COPPICE TYPE | TREATMENT | ORIGIN | N | DBH2020 (cm) | DBH2022 (cm) | N | H2020 (m) | H2022 (m) |
---|---|---|---|---|---|---|---|---|
Mean ± Std Dev | Mean ± Std Dev | Mean ± Std Dev | Mean ± Std Dev | |||||
Beech14 | CONTROL | GEN | 23 | 14.61 ± 7.25 | 15.38 ± 7.18 | 21 1 | 12.25 ± 2.67 | 13.46 ± 2.77 |
CONTROL | VEG | 271 | 14.20 ± 5.56 | 14.90 ± 5.56 | 220 2 | 12.25 ± 2.43 | 13.26 ± 2.39 | |
THINNING | VEG | 161 | 20.23 ± 7.84 | 21.18 ± 7.83 | 145 3 | 17.43 ± 3.10 | 18.95 ± 3.44 | |
1 2 seed origin stems died in the control plot during the measurement process—not possible to measure the height 2 51 vegetative origin stems significantly deformed—not possible to measure the height 3 16 vegetative origin stems significantly deformed—not possible to measure the height | ||||||||
Oak103 | CONTROL | GEN | 83 | 15.61 ± 4.73 | 16.16 ± 4.74 | 78 1 | 12.96 ± 2.44 | 13.90 ± 2.41 |
CONTROL | VEG | 398 | 13.01 ± 4.23 | 13.69 ± 4.26 | 280 2 | 11.83 ± 2.58 | 12.69 ± 2.56 | |
THINNING | GEN | 128 | 17.37 ± 7.72 | 18.08 ± 7.75 | 120 3 | 13.78 ± 3.73 | 14.51 ± 3.79 | |
THINNING | VEG | 182 | 13.41 ± 4.76 | 14.06 ± 4.82 | 158 4 | 11.79 ± 2.89 | 12.43 ± 3.02 | |
1 5 seed origin stems significantly deformed—not possible to measure the height 2 118 vegetative origin significantly deformed—not possible to measure the height 3 8 seed origin stems significantly deformed—not possible to measure the height 4 24 vegetative origin stems significantly deformed—not possible to measure the height |
DBH (cm) | h (m) | |||||
---|---|---|---|---|---|---|
Source of Variability | MeanSquare | F Value | p > F | MeanSquare | F Value | p > F |
Between Subjects Effects * | ||||||
COPPICE TYPE | 1099.13 | 17.02 | <0.0001 | 821.87 | 50.98 | <0.0001 |
TREATMENT | 4291.19 | 66.44 | <0.0001 | 2314.56 | 143.56 | <0.0001 |
ORIGIN | 650.83 | 10.08 | 0.0015 | 135.92 | 8.43 | 0.0038 |
COPPICE TYPE × TREATMENT | 3716.58 | 57.54 | <0.0001 | 2928.55 | 181.64 | <0.0001 |
COPPICE TYPE × ORIGIN | 140.93 | 2.18 | 0.1399 | 33.40 | 2.07 | 0.1503 |
TREATMENT × ORIGIN | 151.92 | 2.35 | 0.1254 | 48.15 | 2.99 | 0.0843 |
Error | 64.59 | 16.12 | ||||
Within Subjects Effects * | ||||||
YEARS | 80.21 | 708.56 | <0.0001 | 140.745 | 503.75 | <0.0001 |
YEARS × COPPICE TYPE | 1.95 | 17.23 | <0.0001 | 8.905 | 31.87 | <0.0001 |
YEARS × TREATMENT | 2.84 | 25.10 | <0.0001 | 1.255 | 4.49 | 0.0343 |
YEARS × ORIGIN | 0.13 | 1.15 | 0.2846 | 0.595 | 2.13 | 0.1449 |
YEARS × COPPICE TYPE × TREATMENT | 2.22 | 19.62 | <0.0001 | 11.995 | 42.93 | <0.0001 |
YEARS × COPPICE TYPE × ORIGIN | 0.33 | 2.91 | 0.0883 | 0.105 | 0.37 | 0.5424 |
YEARS × TREATMENTxORIGIN | 0.63 | 5.58 | 0.0183 | 0.00 | 0.01 | 0.9292 |
Error (years) | 0.11 | 0.28 |
BEECH | S. OAK | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Level | CONTROL | THINNING | Total (%) | CONTROL | THINNING | Total (%) | ||
S * | 1 | 84 | 79 | 163 (35.43) | Chi2 = 18.91; df = 2; p < 0.0001 | 106 | 56 | 162 (20.10) | Chi2 = 1.35 df = 2; p = 0.5096 |
2 | 153 | 66 | 219 (47.61) | 268 | 170 | 438 (54.34) | |||
3 | 59 | 19 | 78 (16.96) | 123 | 83 | 206 (25.56) | |||
∑ | 296 (64.35%) | 164 (35.65%) | 460 (100) | 497 (61.66%) | 309 (38.34%) | 806 (100%) | |||
T_shape | 1 | 92 | 97 | 189 (41.09) | Chi2 = 34.53; df = 2; p < 0.0001 | 113 | 82 | 195 (24.19) | Chi2 = 16.99 df = 2; p = 0.0002 |
2 | 164 | 52 | 219 (46.96) | 246 | 180 | 426 (52.86) | |||
3 | 40 | 15 | 55 (11.96) | 138 | 47 | 485 (55.95) | |||
∑ | 296 | 164 | 460 | 497 | 309 | 806 | |||
C | 1 | 5 | 1 | 6 (1.3) | Fisher Chi2 = 13.96; df = 2; p < 0.0006 | 108 | 78 | 186 (23.08) | Chi2 = 7.08 df = 2; p = 0.0291 |
2 | 138 | 49 | 187 (40.65) | 285 | 148 | 433 (53.27) | |||
3 | 153 | 114 | 267 (58.04) | 104 | 83 | 187 (23.20) | |||
∑ | 296 | 164 | 460 | 497 | 309 | 806 | |||
F | 1 | 11 | 6 | 17 (3.72) | Chi2 = 5.07; df = 2; p = 0.0790 | 38 | 22 | 60 (7.57) | Chi2 = 0.13 df = 2; p = 0.9386 |
2 | 87 | 65 | 152 (33.26) | 232 | 148 | 380 (47.92) | |||
3 | 196 | 92 | 288 (63.02) | 218 | 135 | 353 (44.51) | |||
∑ | 294 (64.33) | 163 (35.67) | 457 | 488 (61.54) | 305 (38.46) | 793 | |||
C_WIDTH | 1 | 48 | 42 | 90 (19.69) | Chi2 = 5.97; df = 2; p = 0.0505 | 67 | 98 | 165 (20.68) | Chi2 = 42.58 df = 2; p < 0.0001 |
2 | 182 | 91 | 273 (59.74) | 233 | 137 | 370 (46.37) | |||
3 | 64 | 30 | 94 (20.57) | 189 | 74 | 263 (32.96) | |||
∑ | 294 | 163 | 457 | 489 (61.28) | 309 (38.72) | 798 | |||
C_sym | sym | 30 | 22 | 52 (11.38) | Chi2 = 1.13; df = 1; p = 0.2888 | 19 | 41 | 60 (7.52) | Chi2 = 23.97; df = 1; p < 0.0001 |
asym | 264 | 141 | 405 (88.62) | 470 | 268 | 738 (92.48) | |||
∑ | 294 | 163 | 457 | 489 | 309 | 798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đodan, M.; Nicolescu, V.-N.; Perić, S.; Jazbec, A.; Bartlett, D. Long-Term Effects of Thinning in Sub-Mountainous Thermophilic Sessile Oak (Quercus petraea Mill.) and European Beech (Fagus sylvatica L.) Coppices in the Croatian Dinarides. Sustainability 2024, 16, 9340. https://doi.org/10.3390/su16219340
Đodan M, Nicolescu V-N, Perić S, Jazbec A, Bartlett D. Long-Term Effects of Thinning in Sub-Mountainous Thermophilic Sessile Oak (Quercus petraea Mill.) and European Beech (Fagus sylvatica L.) Coppices in the Croatian Dinarides. Sustainability. 2024; 16(21):9340. https://doi.org/10.3390/su16219340
Chicago/Turabian StyleĐodan, Martina, Valeriu-Norocel Nicolescu, Sanja Perić, Anamarija Jazbec, and Debbie Bartlett. 2024. "Long-Term Effects of Thinning in Sub-Mountainous Thermophilic Sessile Oak (Quercus petraea Mill.) and European Beech (Fagus sylvatica L.) Coppices in the Croatian Dinarides" Sustainability 16, no. 21: 9340. https://doi.org/10.3390/su16219340
APA StyleĐodan, M., Nicolescu, V.-N., Perić, S., Jazbec, A., & Bartlett, D. (2024). Long-Term Effects of Thinning in Sub-Mountainous Thermophilic Sessile Oak (Quercus petraea Mill.) and European Beech (Fagus sylvatica L.) Coppices in the Croatian Dinarides. Sustainability, 16(21), 9340. https://doi.org/10.3390/su16219340