The Use of Socio-Environmental Indicators to Assess the Needs Relating to the Development of Urban Greenery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Time Frame
2.3. Data Sources
3. Indices
3.1. Greenness Index
3.2. Greenery Deficiency Index
3.3. Greenery Participation Index
4. Results (Lodz Case Study) and Discussion
4.1. Spatial Data Arrangement
4.2. NDVI Values and Saturation Point
4.3. Greeness Index Values
4.4. Greenery Participation Index Distribiution in Lodz
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Białobok, S. Ochrona zadrzewień i roślin w najbliższym otoczeniu człowieka. In Ochrona Przyrodniczego Środowiska Człowieka; Michajłow, W., Ed.; PWN: Warszawa, Poland, 1976; pp. 223–245. [Google Scholar]
- Haber, Z.; Urbański, P. Kształtowanie Terenów Zieleni z Elementami Ekologii; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Poland, 2005. [Google Scholar]
- Łukasiewicz, A.; Łukasiewicz, S. Rola i Kształtowanie Zieleni Miejskiej: Skrypt dla Studentów Ochrony Środowiska; Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza: Poznań, Poland, 2022. [Google Scholar]
- Wu, W.; Wang, M.X.; Zhu, N.; Zhang, W.; Sun, H. Residential satisfaction about urban greenness: Heterogeneous effects across social and spatial gradients. Urban For. Urban Green. 2019, 38, 133–144. [Google Scholar] [CrossRef]
- Wysocki, C. Miasto jako specyficzne środowisko życia roślinności. Nauka Przyr. Technol. 2008, 2, 1–10. [Google Scholar]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. A decade of urban forestry in Europe. For. Policy Econ. 2003, 5, 173–186. [Google Scholar] [CrossRef]
- Sdg, U. Sustainable development goals. In The Energy Progress Report; Tracking SDG; International Renewable Energy Agency: New York, NY, USA, 2019; Volume 7, pp. 805–814. [Google Scholar]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2022, 34, 821–830. [Google Scholar] [CrossRef]
- Farkas, J.Z.; Hoyk, E.; de Morais, M.B.; Csomós, G. A systematic review of urban green space research over the last 30 years: A bibliometric analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef]
- Bielecki, A. Pluralizm Definicji Zieleni Miejskiej w Literaturze. Standardy, Aspekty Przyrodnicze i Techniczne. Konwersatorium Wiedzy Mieście, 2024; accepted, awaiting for the publication. [Google Scholar]
- Ustawa 2004: Ustawa z dnia 16 kwietnia 2004 r. o ochronie przyrody [Act 2004: Law of 16 April 2004 on the Protection of Nature] (c.t. Journal of Law of 20.10.2015 item 1651). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20040920880 (accessed on 19 October 2024).
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef]
- Cudny, W. Model przemian miasta postsocjalistycznego–przykład Łodzi. Stud. Miej. 2011, 4, 153–159. [Google Scholar]
- Archiciński, P.; Sikorski, P.; Sikorska, D.; Przybysz, A. Roślinność wieloletnich nieużytków miejskich–systematyka zbiorowisk, ich struktura i pełnione usługi ekosystemowe. Vegetation of perennial urban wastelands–syntaxonomy, structure and ecosystem services. Przegląd Geogr. 2021, 93, 341–363. [Google Scholar] [CrossRef]
- Batala, E.; Thekla, T. Street tree health assessment system: A tool for study of urban greenery. Int. J. Sustain. Dev. Plan. 2009, 4, 345–356. [Google Scholar] [CrossRef]
- Wężyk, P.; Bajorek-Zydroń, K.; Cisło-Lesicka, U. Monitoring teledetekcyjny zieleni miejskiej z pułapu BSP oraz satelitarnego. In Drzewa w Zieleni Miejskiej; Szwałko, P., Wężyk, P., Eds.; ProGea 4D sp. z o.o., Zarząd Zieleni Miejskiej w Krakowie: Kraków, Poland, 2021. [Google Scholar]
- Zarzecki, M.; Pasierbiński, A. Zastosowanie GIS i teledetekcji w badaniach szaty roślinnej. Wiadomości Bot. 2009, 53, 53–56. [Google Scholar]
- Niewiadomski, A. Struktura i znaczenie terenów zieleni w Łodzi na tle dużych ośrodków miejskich w Polsce. Acta Univ. Lodz. Folia Geogr. Phys. 2013, 12, 33–47. [Google Scholar] [CrossRef]
- Central Statistical Office. Available online: www.stat.gov.pl (accessed on 9 January 2024).
- Krzywnicka, I.; Jankowska, P. The accessibility of public urban green space. A case study of Białystok city. Acta Sci. Pol. Adm. Locorum. 2021, 20, 203–214. [Google Scholar] [CrossRef]
- Będkowski, K.; Bielecki, A. Ocena dostępności zieleni w miejscu zamieszkania w miastach z wykorzystaniem NDVI oraz krzywej koncentracji Lorenza. Teledetekcja Sr. 2017, 57, 5–14. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Tech. Rep. Serv. 1974. E75-10354. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 19 October 2024).
- Bolkaner, M.K.; Asilsoy, B. Reinventing the Urban Neighborhood Green Index in the Context of Urban Ecology as a Conceptual Framework in Northern Nicosia, Cyprus. Sustainability 2023, 15, 13880. [Google Scholar] [CrossRef]
- Jia, J.; Zlatanova, S.; Liu, H.; Aleksandrov, M.; Zhang, K. A design-support framework to assess urban green spaces for human wellbeing. Sustain. Cities Soc. 2023, 98, 104779. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Abutaleb, K.; Mudede, M.F.; Nkongolo, N.; Newete, S.W. Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg. Egypt. J. Remote Sens. Space Sci. 2021, 24, 343–351. [Google Scholar] [CrossRef]
- Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X. Understory bamboo discrimination using a winter image. Photogramm. Eng. Remote Sens. 2009, 75, 37–47. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A pixel based regeneration index using time series similarity and spatial context. Photogramm. Eng. Remote Sens. 2010, 76, 673–682. [Google Scholar] [CrossRef]
- Olpenda, A.S.; Paringit, E.C. Utilizing spectral reflectance and vegetation indices of Bougainvillea spectabilis for monitoring particulate air pollution in Metro Manila. In Proceedings of the 32nd Asian Conference on Remote Sensing, Taipei, Taiwan, 3–7 October 2011. [Google Scholar]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hunt, E.R., Jr.; Qu, J.J.; Hao, X.; Daughtry, C.S. Towards estimation of canopy foliar biomass with spectral reflectance measurements. Remote Sens. Environ. 2011, 115, 836–840. [Google Scholar] [CrossRef]
- Jarocińska, A.; Zagajewski, B. Korelacje naziemnych i lotniczych teledetekcyjnych wskaźników roślinności dla zlewni Bystrzanki. Teledetekcja Sr. 2008, 40, 100–124. [Google Scholar]
- Skachkova, M.; Guryeva, O. Monitoring of the State of Saint Petersburg Green Spaces by Remote Sensing Data. Ecol. Ind. Russ. 2023, 27, 51–57. (In Russian) [Google Scholar] [CrossRef]
- Worm, A.; Będkowski, K.; Bielecki, A. Wykorzystanie wskaźników powierzchniowych i objętościowych z wysokorozdzielczych danych teledetekcyjnych do oceny wypełnienia roślinnością kwartałów miejskich w centrum miasta Łodzi. Teledetekcja Sr. 2019, 60, 5–20. [Google Scholar]
- Matasci, G.; Coops, N.C.; Williams, D.A.; Page, N. Mapping tree canopies in urban environments using airborne laser scanning (ALS): A Vancouver case study. For. Ecosyst. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Wirth, H.; Schilbach, G.; Wirth, A. Beitrag zur Analyse von Fernerkundungsdaten im SUB-PIXEL-Bereich. Vermessungstechnik 1987, 33, 56–59. [Google Scholar]
- Borowiecki, I.; Michalik, A. Klasyfikacja chmury punktów lotniczego skaningu laserowego z zastosowaniem programów Tiltan Tlid, Terrascan VRMesh. Infrastrukt. Ekol. Teren. Wiej. 2012, 1/III, 219–230. [Google Scholar]
- Kubalska, J.; Preuss, R. Wykorzystanie danych fotogrametrycznych do inwentaryzacji zieleni na terenach zurbanizowanych. Arch. Fotogram. Kartogr. Teledetekcji 2014, 26, 75–86. [Google Scholar]
- Grigillo, D.; Kanjir, U. Urban object extraction from digital surface model and digital aerial images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 215–220. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Hopkins, P.F.; Brock, R.H. Urban cover mapping using digital, high-spatial resolution aerial imagery. Urban Ecosyst. 2001, 5, 243–256. [Google Scholar] [CrossRef]
- Krukowski, M.; Cebrykow, P.; Płusa, J. Klasyfikacja terenów zieleni w Lublinie na podstawie zdjęcia satelitarnego IKONOS 2. Reg. Barometer. Anal. Progn. 2016, 14, 35–44. [Google Scholar] [CrossRef]
- Alekseev, D.K.; Primak, E.A.; Kanukhina, A.Y.; Vinogradov, F.V. Dynamics of green areas in Saint Petersburg and climate risks. Adv. Curr. Nat. Sci. 2024, 8, 6–11. [Google Scholar] [CrossRef]
- Strzeliński, P.; Wencel, A.; Zawiła-Niedźwiecki, T.; Zasada, M.; Jagodziński, A.; Chirrek, M. Wybrane zdalne metody szacowania biomasy roślinnej w ekosystemach leśnych jako podstawa systemu raportowania bilansu węgla. Roczniki Geomatyki Ann. Geomat. 2007, 5, 7–16. [Google Scholar]
- Stereńczak, K. Lotniczy skaning laserowy (LiDAR) w badaniach na rzecz ochrony przyrody. Stud. Mater. Cent. Edukac. Przyr.-Leśnej 2009, 11, 135–143. [Google Scholar]
- Mu, X.; Yang, Y.; Xu, H.; Guo, Y.; Lai, Y.; McVicar, T.R.; Xie, D.; Yan, G. Improvement of NDVI mixture model for fractional vegetation cover estimation with consideration of shaded vegetation and soil components. Remote Sens. Environ. 2024, 314, 114409. [Google Scholar] [CrossRef]
- Pouya, S.; Aghlmand, M. Evaluation of urban green space per capita with new remote sensing and geographic information system techniques and the importance of urban green space during the COVID-19 pandemic. Environ. Monit. Assess. 2022, 194, 633. [Google Scholar] [CrossRef]
- Shekhar, S.; Kumar, S. Assessing the quality of urban environment through urban neighbourhood green index. In Proceedings of the ISPRS TC VIII International Symposium on “Operational Remote Sensing Applications: Opportunities, Progress and Challenges”, Hyderabad, India, 9 December 2014. [Google Scholar]
- Yang, J.; Zhao, L.; McBride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- da Costa Ribeiro, R.J.; Goulart, F.F.; Jacobson, T.K.B.; da Rocha, D.M.S.; Jaloretto, D.; Gonçalves, B.E.F.; Gerber, D. Beyond climate villains: Estimating carbon storage in urban parks using high-resolution imagery combined with field sampling. preprint 2024. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing urban greenery by harvesting street view data: A review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Ionova, M.N. Application of Remote Sensing of the Earth for Monitoring Green Spaces in the City of Yakutsk. Vestn. Sev. Vostochnogo Fed. Univ. Im. M.K. Ammosova. Ser. Nauki Zemle 2020, 4, 57–64. [Google Scholar] [CrossRef]
- Liszewski, S. Lodz: Monografia Miasta; Łódzkie Towarzystwo Naukowe: Lodz, Poland, 2009. [Google Scholar]
- Koter, M. Geneza Układu Przestrzennego Łodzi Przemysłowej; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1969. [Google Scholar]
- Wycichowska, B. Przegląd działań w zakresie ochrony i kształtowania zieleni zabytkowej miasta Łodzi. Probl. Ekol. Kraj. 2008, 22, 65–78. [Google Scholar]
- Durecka, I. Parki Jako Element Struktury Przestrzennej Miast Łódzkiego Obszaru Metropolitalnego. Ph.D. Thesis, University of Lodz, Lodz, Poland, 2017. [Google Scholar]
- Borsa, D.; Piot, B.; Munos, R.; Pietquin, O. Observational learning by reinforcement learning. arXiv 2017, arXiv:1706.06617. [Google Scholar]
- Obwieszczenie Ministra Inwestycji i Rozwoju z dnia 3 stycznia 2019 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Rozwoju Regionalnego i Budownictwa w sprawie ewidencji gruntów i budynków (Dz.U. 2019 poz. 393). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190000393/O/D20190393.pdf (accessed on 19 October 2024).
- Rozporządzenie Ministra Infrastruktury z dnia 24 czerwca 2022 r. w sprawie przepisów techniczno-budowlanych dotyczących dróg publicznych (Dz.U. 2022 poz. 1518). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20220001518/O/D20221518.pdf (accessed on 19 October 2024).
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Curran, P.J. Multispectral remote sensing for the estimation of green leaf area index. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1983, 309, 257–270. [Google Scholar]
- Klosinska, T. Wykorzystanie roślin drzewiastych w remediacji terenów zurbanizowanych. Sylwan 2021, 165, 725–737. [Google Scholar]
- Cunliffe, A.M.; Assmann, J.J.; Daskalova, G.N.; Kerby, J.T.; Myers-Smith, I.H. Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ. Res. Lett. 2020, 15, 125004. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R. Linearization of NDVI Based on its Relationship with Vegetation Fraction. Photogramm. Eng. Remote Sens. 2010, 76, 965–975. [Google Scholar] [CrossRef]
- Terekhin, E.A. Spatial analysis of tree vegetation of abandoned arable lands using their spectral response in forest-steppe zone of Central Chernozem Region. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 2020, 17, 142–156. [Google Scholar] [CrossRef]
- Nelson, R. Modelling forest canopy heights: The effects of canopy shape. Remote Sens. Environ. 1997, 60, 327–334. [Google Scholar] [CrossRef]
- Żybura, H. Długość koron drzew w drzewostanach sosnowych. Sylwan 1977, 121, 13–20. [Google Scholar]
- Bielecki, A.; Będkowski, K. The degree of greenery in Lodz city, Poland—Clearing up discrepancies between official statistics and satellite data. Acta Sci. Pol. Adm. Locorum. 2022, 21, 489–512. [Google Scholar] [CrossRef]
- Dai, L.; Xu, Q.; Fan, X.; Chang, M.; Yang, Q.; Yang, F.; Ren, J. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment. Gongchengdizhixuebao 2017, 25, 1151–1164. [Google Scholar]
- Gluch, R.M.; Ridd, M.K. The VIS model: Quantifying the urban environment. In Remote Sensing of Urban and Suburban Areas; Springer: Dordrecht, The Netherlands, 2010; pp. 85–116. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Adamiak, M.; Będkowski, K.; Bielecki, A. Generative adversarial approach to urban areas NDVI estimation: A case study of Lodz, Poland. Quaest. Geogr. 2023, 42, 87–106. [Google Scholar] [CrossRef]
- Bielecki, A. Porównanie oprogramowania do przetwarzania danych LiDAR w zakresie generowania NMT i NMPT. Teledetekcja Sr. 2018, 58, 5–11. [Google Scholar]
- Kressler, F.; Mucher, C.A.; Steinnocher, K.; Thunnissen, H.A.M. Evaluation of medium-resolution satellite images for land use monitoring using spectral mixture analysis. Int. Arch. Photogramm. Remote Sens. 2000, 33, 709–716. [Google Scholar]
- LAS to Raster Function. Available online: https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/las-to-raster-function.htm (accessed on 2 April 2024).
- Czarnecki, W. Planowanie Miast i Osiedli. Vol. 1.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1965. [Google Scholar]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
Definition Type | Description | Example |
---|---|---|
Acknowledged range | A definition that acknowledges the range of what can be considered ‘greenspace’ | “greenness describes the level of vegetation, ranging from sparsely landscaped streets to tree-lined walk-ways to play field sand forested parks” |
Definition by examples | Examples are provided to illustrate what is meant by green space | “combined areas of open land, cropland, urban open land, pasture, forest, and woody perennial” |
Ecosystem services | Examples that embody ecosystem services, such as urban agriculture, and/or a reference to serving human needs | “a type of land use which has significant contributions to urban environments in terms of ecology, aesthetics or public health, and primarily serving human needs and uses” |
Green areas | A reference to ‘green’ and/or ‘natural’ areas without further explanation | “the area investigated included substantial green elements” |
Land uses | Generic land uses described as green space | “recreational or undeveloped land” |
Vegetated areas | Areas that feature vegetation | “green in the sense of being predominantly covered with vegetation” |
Type of Use According to EGiB | Acronym | Surface Area [km2] | % of the City |
---|---|---|---|
Residential areas | B | 46.17 | 16.00 |
Industrial areas | Ba | 13.02 | 4.51 |
Other built-up areas | Bi | 24.36 | 8.44 |
Urbanized undeveloped areas or under development | Bp | 10.24 | 3.55 |
Built-up agricultural land | Br | 6.34 | 2.20 |
Recreational areas | Bz | 10.95 | 3.79 |
Roads | dr | 30.84 | 10.69 |
Ecological use | E, E-W | 0.91 | 0.31 |
Mining land use | K | 1.07 | 0.37 |
Forests | Ls | 24.69 | 8.55 |
Wooded and bushed land | Lz | 3.77 | 1.31 |
Wooded and bushed land on agricultural land | Lzr | 0.11 | 0.04 |
Wasteland | N | 1.23 | 0.43 |
Pastures | PS | 6.66 | 2.31 |
Arable land | R | 92.60 | 32.08 |
Orchards | S | 2.57 | 0.89 |
Other communication areas | Ti | 2.78 | 0.96 |
Railway areas | Tk | 7.11 | 2.46 |
Land reserved for the construction of public roads or railway lines | Tp | 1.08 | 0.37 |
Miscellaneous land | Tr | 0.34 | 0.12 |
Land under ditches | W | 0.27 | 0.09 |
Land under surface water flowing | Wp | 1.21 | 0.42 |
Land under surface water still | Ws | 0.14 | 0.05 |
Land under ponds | Wsr | 0.19 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecki, A.; Będkowski, K. The Use of Socio-Environmental Indicators to Assess the Needs Relating to the Development of Urban Greenery. Sustainability 2024, 16, 9230. https://doi.org/10.3390/su16219230
Bielecki A, Będkowski K. The Use of Socio-Environmental Indicators to Assess the Needs Relating to the Development of Urban Greenery. Sustainability. 2024; 16(21):9230. https://doi.org/10.3390/su16219230
Chicago/Turabian StyleBielecki, Adam, and Krzysztof Będkowski. 2024. "The Use of Socio-Environmental Indicators to Assess the Needs Relating to the Development of Urban Greenery" Sustainability 16, no. 21: 9230. https://doi.org/10.3390/su16219230
APA StyleBielecki, A., & Będkowski, K. (2024). The Use of Socio-Environmental Indicators to Assess the Needs Relating to the Development of Urban Greenery. Sustainability, 16(21), 9230. https://doi.org/10.3390/su16219230