Comparative Analysis of Gini Coefficient, GDP, Energy Consumption, and Transportation Modes on CO2 Using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data Analysis
4. Stages of NARDL Model
5. Empirical Results
6. Wavelet Analyses: Application of Discrete Wavelet Transform Technique and Wavelet Outlier Detection for USA
7. Conclusions
8. Policy Recommendations
9. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Aytekin, I. Türkiye’de karayolu ve demiryolu ulaştırma hizmetleri ile kalkınma arasındaki nedensellik ilişkisinin analizi. Anadolu İktisat İşletme Derg. 2022, 6, 17–35. [Google Scholar]
- Munasinghe, M. Sustainable development and climate change: Applying the sustainomics transdisciplinary meta-framework. Int. J. Glob. Environ. Issues 2001, 1, 13–55. [Google Scholar] [CrossRef]
- Gulmez, Y.S.; Tuzun Rad, S. Green logistics for sustainability. Uluslararası Yönetim İktisat İşletme Derg. 2017, 13, 603–614. [Google Scholar] [CrossRef]
- Zaman, K.; Shamsuddin, S. Green logistics and national scale economic indicators: Evidence from a panel of selected European countries. J. Clean. Prod. 2017, 143, 51–63. [Google Scholar] [CrossRef]
- Hussain, Z.; Marcel, B.; Majeed, A.; Tsimisaraka, R. Effects of transport–carbon intensity, transportation, and economic complexity on environmental and health expenditures. Environ. Dev. Sustain. 2024, 26, 16523–16553. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Mraihi, R.; ben Abdallah, K.; Abid, M. Road transport-related energy consumption: Analysis of driving factors in Tunisia. Energy Policy 2013, 62, 247–253. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, research and technology transfer in China. Ecol. Econ. 2009, 68, 2658–2665. [Google Scholar] [CrossRef]
- Bahadır, S. The Interactions among air freight, GDP, energy usage and ecological footprint: An empirical investigation from Turkey. Int. J. Energy Econ. Policy 2022, 12, 332–339. [Google Scholar] [CrossRef]
- Egilmez, F. The long-run relationship between airline transport, export volume and economic growth: Evidence from USA. Acad. Rev. Humanit. Soc. Sci. 2020, 3, 466–482. [Google Scholar]
- Dursun, E. The Nexus among civil aviation, energy performance efficiency and GDP in terms of ecological footprint: Evidence from France and Finland. Int. J. Energy Econ. Policy 2022, 12, 243–251. [Google Scholar] [CrossRef]
- Bahadır, S. Analyzing the environmental Kuznets curve hypothesis in terms of airplane transport: Empirical examination for baltic states. Int. J. Energy Econ. Policy 2022, 12, 252–259. [Google Scholar] [CrossRef]
- Kayabas, Y.E. The relationship between trade liberalization, sea freight, and carbon-dioxide emissions within the perspective of EKC: The case of Mexico. Int. J. Energy Econ. Policy 2023, 13, 364–372. [Google Scholar] [CrossRef]
- Yazici, S. Investigating the Maritime Freight-Induced EKC Hypothesis: The Case of Scandinavian Countries. Front. Environ. Sci. 2022, 289, 1–18. [Google Scholar] [CrossRef]
- Dursun, E. Investigating the air transport-induced EKC hypothesis: Evidence from NAFTA countries. Int. J. Energy Econ. Policy 2022, 12, 494–500. [Google Scholar] [CrossRef]
- Kalayci, S.; Yazici, S. The Impact of Export Volume and GDP on USA’s Civil Aviation in between 1980–2012. Int. J. Econ. Financ. 2016, 8, 229–235. [Google Scholar] [CrossRef]
- Kalayci, S.; Yanginlar, G. The effects of economic growth and foreign direct investment on air transportation: Evidence from Turkey. Int. Bus. Res. 2016, 9, 154–162. [Google Scholar] [CrossRef]
- Ozkan, T.; Yanginlar, G.; Kalayci, S. Testing the transportation induced environmental Kuznets curve hypothesis: Evidence from eight developed and developing countries. Int. J. Energy Econ. Policy 2019, 9, 174–183. [Google Scholar]
- Kalayci, S.; Artekin, A.Ö. The Linkage between Truck Transport, Trade Openness, Economic Growth, and CO2 Emissions within the Scope of Green Deal Action Plan: An Empirical Investigation from Türkiye. Pol. J. Environ. Stud. 2024, 33, 3231–3245. [Google Scholar] [CrossRef]
- Kalayci, S.; Koksal, C. The Relationship between China’s Airway Freight in Terms of Carbon-Dioxide Emission and Export Volume. Int. J. Econ. Perspect. 2015, 9, 60–68. [Google Scholar]
- Manga, M. Taşımacılık Sektöründe Çevresel Kuznets Eğrisi Hipotezinin Geçerliliği: Seçilmiş OECD Ülkeleri Örneği. Atatürk Üniversitesi İktisadi İdari Bilim. Derg. 2021, 35, 203–218. [Google Scholar]
- Hassan, S.A.; Nosheen, M.; Rafaz, N.; Haq, I. Exploring the existence of aviation Kuznets curve in the context of environmental pollution for OECD nations. Environ. Dev. Sustain. 2021, 23, 15266–15289. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Bekun, F.V.; Balsalobre-Lorente, D.; Onifade, S.T.; Ampomah, A.B. Beyond the environmental Kuznets curve: Do combined impacts of air transport and rail transport matter for environmental sustainability amidst energy use in E7 economies? Environ. Dev. Sustain. 2022, 24, 11852–11870. [Google Scholar] [CrossRef]
- Erdogan, S.; Adedoyin, F.; Bekun, F.; Sarkodie, S. Testing the transport-induced environmental Kuznets curve hypothesis: The role of air and railway transport. J. Air Transp. Manag. 2020, 89, 101935. [Google Scholar] [CrossRef]
- Ozpolat, A. Sektörel CO2 Emisyonlarini Etkileyen Faktörlerin Belirlenmesi: Gelecek-11 Ülkeleri Örnegi. Finans Polit. Ekon. Yorumlar 2020, 57, 115–136. [Google Scholar]
- Hassan, S.; Nosheen, M. The impact of air transportation on carbon dioxide, methane, and nitrous oxide emissions in Pakistan: Evidence from ARDL modelling approach. Int. J. Innov. Econ. Dev. 2018, 3, 7–32. [Google Scholar] [CrossRef]
- Danish, M.; Awais, B.; Shah, S. Modeling the impact of transport energy consumption on CO2 emission in Pakistan: Evidence from ARDL approach. Environ. Sci. Pollut. Res. 2018, 25, 9461–9473. [Google Scholar] [CrossRef]
- Chatti, W. Moving towards environmental sustainability: Information and communication technology (ICT), freight transport, and CO2 emissions. Heliyon 2021, 10, e08190. [Google Scholar] [CrossRef]
- Sohail, M.T.; Ullah, S.; Majeed, M.T.; Usman, A. Pakistan management of green transportation and environmental pollution: A nonlinear ARDL analysis. Environ. Sci. Pollut. Res. 2021, 28, 29046–29055. [Google Scholar] [CrossRef]
- Law, C.C.; Zhang, Y.; Gow, J.; Vu, X.B. Dynamic relationship between air transport, economic growth and inbound tourism in Cambodia, Laos, Myanmar and Vietnam. J. Air Transp. Manag. 2022, 98, 102161. [Google Scholar] [CrossRef]
- Shafique, M.; Azam, A.; Rafiq, M.; Luo, X. Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach. Transp. Policy 2021, 109, 61–71. [Google Scholar] [CrossRef]
- Habib, Y.; Xia, E.; Hashmi, S.H.; Yousaf, A.U. Testing the heterogeneous effect of air transport intensity on CO2 emissions in G20 countries: An advanced empirical analysis. Environ. Sci. Pollut. Res. 2022, 29, 44020–44041. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wood, J.; Geng, X.; Wang, Y.; Qiao, C.; Long, X. Transportation CO2 emission decoupling: Empirical evidence from countries along the belt and road. J. Clean. Prod. 2020, 263, 121450. [Google Scholar] [CrossRef]
- Yin, X.; Chen, W.; Eom, J.; Clarke, L.E.; Kim, S.H.; Patel, P.L. China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy 2015, 82, 233–248. [Google Scholar] [CrossRef]
- Xu, Q.; Umar, M.; Ji, X. Time-frequency analysis between renewable and nonrenewable energy consumption, economic growth, and CO2 emissions in the United States: Evidence from the transportation sector. In Proceedings of the 20th COTA International Conference of Transportation Professionals, Xi’an, China, 14–16 August 2020; pp. 2964–2974. [Google Scholar]
- Okanli, G.; Demir, O. Karbon ayak izi, türleri, oluşum sebepleri ve azaltma stratejileri. Toprak Alti Hazinesi 2024, 1, 47–65. [Google Scholar]
- Onder, H.; Kaya, O.C. Elektrikli araçların satışı üzerinde sosyo-ekonomik faktörlerin etkisi: Bir panel veri analizi. Anemon Muş Alparslan Üniversitesi Sos. Bilim. Derg. 2019, 7, 17–21. [Google Scholar]
- Pradhan, B.; Maharana, S.; Patra, S.; Nayak, R.; Behera, C.; Bhuyan, P.P.; Jena, M. Biosorption of Heavy Metal by Algae to Meet Clean Environment: The Need of the Hour for a Sustainable Future. In Algal Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; Volume 1, pp. 125–138. [Google Scholar]
- World Bank. Air Transport, Registered Carrier Departures Worldwide. 2024. Available online: https://data.worldbank.org/indicator/IS.AIR.DPRT (accessed on 14 August 2024).
- World Bank. Gross Domestic Product (GDP)—(Constant LCU). 2024. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KN (accessed on 14 August 2024).
- World Bank. Gini Index—United States (Poverty and Inequality Platform). 2024. Available online: https://data.worldbank.org/indicator/SI.POV.GINI?locations=US (accessed on 14 August 2024).
- Our World in Data. CO2 Emissions from Fossil Fuels. 2024. Available online: https://ourworldindata.org/co2-emissions (accessed on 14 August 2024).
- Our World in Data. Energy Usage of United States of America. 2024. Available online: https://ourworldindata.org/explorers/energy?tab=chart&facet=none&country=~USA&Total+or+Breakdown=Total&Energy+or+Electricity=Primary+energy&Metric=Per+capita+consumption (accessed on 14 August 2024).
- Federal Highway Administration. Highway Statistics of United States of America. 2024. Available online: https://www.fhwa.dot.gov/policyinformation/hsspubsarc.cfm (accessed on 14 August 2024).
- BTS. Bureau of Transportation Statistics of United States (BTS). 2024. Available online: https://www.bts.gov/newsroom/november-2023-us-airline-traffic-data-81-same-month-2022 (accessed on 14 August 2024).
- STATISTA. Household Income Distribution of United States of America. 2024. Available online: https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/ (accessed on 14 August 2024).
- United States Census Bureau. United States of America Gini Index of Income Inequality. 2024. Available online: https://data.census.gov/table/ACSDT1Y2019.B19083?q=Gini&g=040XX00US51,50,11,12,53,54,10,15,16,13,19,17,18,40,41,44,01,45,42,04,48,49,05,02,46,47,08,09,06,30,33,34,31,32,37,38,35,36,39,22,23,20,21,26,27,24,25,28,29,72,55,56_010XX00US&moe=false&tp=true&tid=ACSDT1Y2019.B19083 (accessed on 14 August 2024).
- Lee, J.; Strazicich, M.C. Minimum Lagrange multiplier unit root test with two structural breaks. Rev. Econ. Stat. 2003, 85, 1082–1089. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Gujarati, D.N. Essentials of Econometrics; Sage Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Perron, P.; Phillips, P.C. Does GNP have a unit root?: A re-evaluation. Econ. Lett. 1987, 23, 139–145. [Google Scholar] [CrossRef]
- Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econom. J. Econom. Soc. 1989, 57, 1361–1401. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Narayan, P.K. The saving and investment nexus for China: Evidence from cointegration tests. Appl. Econ. 2005, 37, 1979–1990. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Banerjee, A.; Dolado, J.; Mestre, R. Error-correction mechanism tests for cointegration in a single- equation framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar] [CrossRef]
- Bozma, G. Havacılık sektöründe çevre yönetimi, ekonomik büyüme ve kentleşme ilişkisi: Çevresel Kuznets Eğrisi üzerine bir inceleme. Turan-Sam 2020, 12, 132–146. [Google Scholar]
- Hassan, S.A.; Nosheen, M. Estimating the Railways Kuznets Curve for high income nations A GMM approach for three pollution indicators. Energy Rep. 2019, 5, 170–186. [Google Scholar] [CrossRef]
- Hassan, S.; Nosheen, M.; Rafaz, N. Revealing the environmental pollution in nexus of aviation transportation in SAARC region. Environ. Sci. Pollut. Res. 2019, 26, 25092–25106. [Google Scholar] [CrossRef]
- Satrovic, E.; Adedoyin, F.F. The role of energy transition and international tourism in mitigating environmental degradation: Evidence from SEE countries. Energies 2023, 16, 1002. [Google Scholar] [CrossRef]
Findings | Region | Variables | ADF T. I(0) | ADF T. I(1) | |
I(1) | USA | CO2 (CO) | (−1.7679) | (−3.3230) ** | |
−2.9237 | −2.9281 | ||||
I(1) | Economic Growth (GDP) | (−2.1913) * | (−5.7020) * | ||
−2.9237 | −3.5777 | ||||
I(1) | Energy Cons (EC) | (−0.9072) | (−5.7581) * | ||
−2.9237 | −3.5811 | ||||
I(1) | Highway (HW) | (−0.4003) | (−5.0035) * | ||
−2.9237 | −3.5777 | ||||
I(1) | Airway (AR) | (−1.8776) | (−8.6617) * | ||
−2.9237 | −3.5777 | ||||
I(1) | Income Inequality (GINI) | (−0.4412) | (−3.3135) ** | ||
−2.9266 | −2.9266 | ||||
Notes: Thick numbers demonstrate ADF test findings. “*” and “**” terms refer to unit root test of the series completely which is conducted in the forecast period, 1 and 5% importance levels. Finally, bold values and parenthesis point out ADF statistics as well. | |||||
Findings | Region | Variables | PP T. I(0) | PP T. I(1) | |
I(1) | USA | CO2 (CO) | (−1.8018) | (−6.6631) * | |
−2.9237 | −3.5777 | ||||
I(1) | Economic Growth (GDP) | (−2.0921) | (−5.6902) * | ||
−2.9237 | −3.5777 | ||||
I(1) | Energy Cons (EC) | (−0.9259) | (−6.4260) * | ||
−2.9237 | −3.5777 | ||||
I(1) | Highway (HW) | (−2.4224) | (−4.9386) * | ||
−2.9237 | −2.9251 | ||||
I(1) | Airway (AR) | (−1.8103) | (−9.3864) * | ||
−2.9237 | −2.9251 | ||||
I(1) | Income Inequality (GINI) | (−0.2045) | (−6.8837) * | ||
−2.9237 | −3.5777 | ||||
Notes: Thick numbers demonstrate PP test findings. “*” and “**” terms refer to unit root test of the series completely which is conducted in the forecast period, 1 and 5% importance levels. Finally, bold values and parenthesis point out PP statistics as well. | |||||
USA | At level | KPSS Test at I(0) | At first difference | KPSS Test at I(1) | |
Intercept | Intercept | ||||
Variables | Frequency (k) | FKPSS stats. | Frequency (k) | FKPSS stats. | |
CO2 (CO) | 1 | 0.4069 | 1 | 0.0010 | |
Economic Growth (GDP) | 1 | 0.9197 | 1 | 0.0003 | |
Energy Cons (EC) | 1 | 0.6277 | 1 | 0.0007 | |
Highway (HW) | 1 | 0.9182 | 1 | 0.0001 | |
Airway (AR) | 1 | 0.7682 | 1 | 0.0091 | |
Income Inequality (GINI) | 1 | 0.3177 | 1 | 0.0426 | |
Notes: The critical values of the FKPSS; test is 0.269 at 1%. | |||||
Findings | Region | Variables | ZA T. I(0) | ZA T. I(1) | |
C/T I(1) | USA | CO2 (CO) | −2.3266 | −4.5470 ** | |
−4.9300 | −4.4200 | ||||
I(1) | Economic Growth (GDP) | −3.5170 | −6.2357 * | ||
−4.9300 | −5.3400 | ||||
I(1) | Energy Cons (EC) | −3.2660 | −6.6129 * | ||
−4.9300 | −5.3400 | ||||
I(1) | Highway (HW) | −4.3216 | −5.7458 * | ||
−4.9300 | −5.3400 | ||||
I(1) | Airway (AR) | −3.3635 | −9.0822 * | ||
−4.9300 | −5.3400 | ||||
I(1) | Income Inequality (GINI) | −0.9138 | −5.8329 * | ||
−4.9300 | −5.3400 | ||||
Notes: Thick numerals refer to ZA test outcomes. “*” and “**” symbols show the unit root test of the series which is employed in the estimation period, 1 and 5% importance levels. | |||||
Findings | Region | Variables | LS T. I(0) | LS T. I(1) | |
I(1) | USA | CO2 (CO) | −1.8065 | −8.4494 * | |
−3.5630 | −7.0040 | ||||
I(1) | Economic Growth (GDP) | −5.1007 | −6.6285 ** | ||
−6.3120 | −6.1080 | ||||
I(1) | Energy Cons (EC) | −3.3677 | −8.3772 * | ||
−3.4870 | −7.0040 | ||||
I(1) | Highway (HW) | −4.3086 | −6.8450 * | ||
−6.1520 | −6.1080 | ||||
I(1) | Airway (AR) | −5.7572 | −10.7098 * | ||
−6.3120 | −7.0040 | ||||
I(1) | Income Inequality (GINI) | −5.8250 | −9.8666 * | ||
−6.1520 | −6.7500 | ||||
Notes: Thick numerals refer to LS test outcomes. “*” and “**” symbols show the unit root test of the series which is employed in the estimation period, 1 and 5% importance levels. |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
CO2(−1) | −0.148055 | 0.212548 | −0.696575 | 0.4945 |
CO2(−2) | −0.490463 | 0.22733 | −2.157491 | 0.0440 |
@AIRWAY_POS | −0.071297 | 0.028094 | −2.537844 | 0.0201 |
@AIRWAY_POS(−1) | 0.048835 | 0.029325 | 1.665312 | 0.1123 |
@AIRWAY_POS(−2) | −0.136271 | 0.043044 | −3.165829 | 0.0051 |
@AIRWAY_NEG | −0.012129 | 0.018438 | −0.657819 | 0.5185 |
@AIRWAY_NEG(−1) | −0.135551 | 0.041054 | −3.301765 | 0.0038 |
@ENERGY_USE_POS | 1.146754 | 0.11869 | 9.661753 | 0.0000 |
@ENERGY_USE_POS(−1) | −0.09308 | 0.243484 | −0.382284 | 0.7065 |
@ENERGY_USE_POS(−2) | 0.453537 | 0.229539 | 1.975861 | 0.0629 |
@ENERGY_USE_NEG | 0.928176 | 0.126657 | 7.328259 | 0.0000 |
@ENERGY_USE_NEG(−1) | 0.383489 | 0.251198 | 1.526641 | 0.1433 |
@ENERGY_USE_NEG(−2) | 0.447772 | 0.282375 | 1.585737 | 0.1293 |
@GDP_POS | 0.098303 | 0.135641 | 0.724726 | 0.4775 |
@GDP_POS(−1) | −0.062077 | 0.154013 | −0.403065 | 0.6914 |
@GDP_POS(−2) | 0.48544 | 0.139721 | 3.47436 | 0.0025 |
@GDP_NEG | 0.345498 | 0.137561 | 2.511605 | 0.0212 |
@GINI_POS | 0.25609 | 0.11454 | 2.235812 | 0.0376 |
@GINI_POS(−1) | −0.146758 | 0.132034 | −1.111514 | 0.2802 |
@GINI_NEG | 0.006742 | 0.005558 | 1.213076 | 0.2400 |
@GINI_NEG(−1) | 0.246377 | 0.114202 | 2.157385 | 0.044 |
@GINI_NEG(−2) | −0.181116 | 0.100403 | −1.8039 | 0.0871 |
HIGHWAY_POS | 0.029757 | 0.192166 | 0.154853 | 0.8786 |
HIGHWAY_NEG | 0.126242 | 0.160632 | 0.78591 | 0.4416 |
HIGHWAY_NEG(−1) | −0.231264 | 0.186522 | −1.239876 | 0.2301 |
C | 0.102562 | 0.021199 | 4.837987 | 0.0001 |
Variable * | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
AIRWAY1_POS(−1) | −0.053289 | 0.030209 | −1.764032 | 0.0867 |
AIRWAY1_NEG(−1) | −0.039230 | 0.028427 | −1.380011 | 0.1766 |
ENERGY_USE1_POS(−1) | 0.765696 | 0.133194 | 5.748729 | 0.0000 |
ENERGY_USE1_NEG(−1) | 0.958758 | 0.130850 | 7.327171 | 0.0000 |
GDP1_POS(−1) | 0.445249 | 0.150941 | 2.949824 | 0.0057 |
GDP1_NEG(−1) | 0.133164 | 0.086650 | 1.536798 | 0.1336 |
GINI1_POS(−1) | −0.059484 | 0.105790 | −0.562287 | 0.5776 |
GINI1_NEG(−1) | −0.050106 | 0.079576 | −0.629657 | 0.5331 |
HIGHWAY1_POS(−1) | 0.017936 | 0.209823 | 0.085482 | 0.9324 |
HIGHWAY1_NEG | 0.009118 | 0.137739 | 0.066197 | 0.9476 |
C | 0.053430 | 0.007379 | 7.241162 | 0.0000 |
Null hypothesis: No levels relationship | |
Number of cointegrating variables: 9 | |
Trend type: Rest. constant (Case 2) | |
Sample size: 45 | |
Test Statistic | Value |
F-statistic | 14.023670 |
10% | 5% | 1% | ||||
---|---|---|---|---|---|---|
Sample Size | I(0) | I(1) | I(0) | I(1) | I(0) | I(1) |
40 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
45 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
Asymptotic | 1.800 | 2.800 | 2.040 | 2.080 | 2.500 | 3.680 |
Optimum Lag | Length | Selected model | ARDL | (2, 2, 1, 1, 0, 2, 2, 2, 2, 0) |
Heteroskedasticity Test: Breusch–Pagan–Godfrey; Null Hypothesis: Homoskedasticity | |||
F-statistic: | 0.587929 | Prob. F(26, 18): | 0.8943 |
Obs × R-squared: | 20.66556 | Prob. Chi-Square(26): | 0.7590 |
Scaled explained SS: | 4.053474 | Prob. Chi-Square(26): | 1.0000 |
Breusch–Godfrey Serial Correlation LM Test: | |||
Null hypothesis: No serial correlation at up to 1 lag | |||
F-statistic: | 0.237665 | Prob. F(1, 17): | 0.6321 |
Obs × R-squared: | 0.620439 | Prob. Chi-Square(1): | 0.4309 |
Ramsey RESET Test | |||
Equation: UNTITLED | |||
Omitted Variables: Powers of fitted values from 2 to 3 | |||
Specification: CO21 CO21(−1) CO21(−2) AIRWAY1 ENERGY_USE1 | |||
ENERGY_USE1(−1) ENERGY_USE1(−2) GDP1 GINI1 HIGHWAY1 C | |||
Value | df | Probability | |
F-statistic | 0.781418 | (2, 34) | 0.4658 |
Likelihood ratio | 2.067270 | 2 | 0.3557 |
F-test summary: | |||
Sum of Sq. | df | Mean Squares | |
Test SSR | 9.61 × 10−5 | 2 | 4.80 × 10−5 |
Restricted SSR | 0.002186 | 36 | 6.07 × 10−5 |
Unrestricted SSR | 0.002090 | 34 | 6.15 × 10−5 |
LR test summary: | |||
Value | |||
Restricted LogL | 163.6809 | ||
Unrestricted LogL | 164.7145 |
Country | FMOLS | |||||
---|---|---|---|---|---|---|
USA | Dependent Variable | |||||
CO2 Emissions | ||||||
Independent Variables | T-st | P-vl | Coef | |||
GDP | 2.809995 | 0.0074 | 0.062263 | |||
Energy Cons | 9.726202 | 0.0000 | 1.085018 | |||
Airway | 5.095324 | 0.0000 | 0.244611 | |||
C | 3.230532 | 0.0023 | 4.321283 | |||
Independent Variables | DOLS | CCR | ||||
T-st | P-vl | Coef | T-st | P-vl | Coef | |
GDP | 2.276036 | 0.0295 | 0.067571 | 2.549856 | 0.0143 | 0.056896 |
Energy Cons | 9.908135 | 0.0000 | 1.090160 | 10.10937 | 0.0000 | 1.064040 |
Airway | 3.680480 | 0.0008 | 0.255319 | 5.011550 | 0.0000 | 0.257509 |
C | 3.067127 | 0.0043 | 3.924582 | 3.707615 | 0.0006 | 4.514570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artekin, A.Ö.; Kalayci, S. Comparative Analysis of Gini Coefficient, GDP, Energy Consumption, and Transportation Modes on CO2 Using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA. Sustainability 2024, 16, 9030. https://doi.org/10.3390/su16209030
Artekin AÖ, Kalayci S. Comparative Analysis of Gini Coefficient, GDP, Energy Consumption, and Transportation Modes on CO2 Using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA. Sustainability. 2024; 16(20):9030. https://doi.org/10.3390/su16209030
Chicago/Turabian StyleArtekin, Ayşe Özge, and Salih Kalayci. 2024. "Comparative Analysis of Gini Coefficient, GDP, Energy Consumption, and Transportation Modes on CO2 Using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA" Sustainability 16, no. 20: 9030. https://doi.org/10.3390/su16209030
APA StyleArtekin, A. Ö., & Kalayci, S. (2024). Comparative Analysis of Gini Coefficient, GDP, Energy Consumption, and Transportation Modes on CO2 Using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA. Sustainability, 16(20), 9030. https://doi.org/10.3390/su16209030