Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment
Abstract
:1. Introduction
- (1)
- Taking the future hydrogen demand of Chengdu City as an example, a liquid-gas cascade green hydrogen supply scheme from Qinghai to Chengdu is proposed. The scheme makes full use of the surplus renewable energy in Qinghai province for the electrolysis of water to produce hydrogen and uses a cascade storage and transport scheme to maximize the advantages of LH2 transport and GH2 transport, and the transport vehicle also uses hydrogen-powered vehicles. While lowering the cost of hydrogen, it also significantly reduces the amount of indirect carbon emissions generated during the process, with no direct CO2 emissions throughout the entire transport process.
- (2)
- Based on the actual costs and performance of the equipment, an economic model and a carbon emission model of the liquid-gas cascade green hydrogen supply scheme are established. The model systematically analyzes the economic and environmental benefits, taking into account the costs of operation and maintenance and the consumption of various energy sources. Finally, a static/dynamic payback period analysis and a carbon emission analysis are performed to evaluate the economics and emission reduction capability of the scheme, providing a universal evaluation method for the practical development and use of liquid-gas cascade transport schemes.
2. Overall Framework and Principle
3. System Modeling
3.1. H2 Production Stage
3.2. LH2 Transport
3.3. GH2 Transport
3.4. H2 Transit Stage
3.5. H2 Refueling Stations Stage
4. Economic Analysis
4.1. Methods of Economic Calculation
4.2. Results of Economic Calculations
4.3. Capital Recovery, Profitability, and Government Subsidies
5. CO2 Emissions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, J.; Gao, S.; Tan, S.; Dong, L.; Scipioni, A.; Mazzi, A. Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China. Renew. Sustain. Energy Rev. 2015, 41, 1217–1229. [Google Scholar] [CrossRef]
- Kim, J.H.; Han, S.M.; Yoo, S.H. Price premium for green hydrogen in South Korea: Evidence from a stated preference study. Renew. Energy 2023, 211, 647–655. [Google Scholar] [CrossRef]
- Kern, F.; Schmelzle, F.; Hummel, M. Hydrogen as a panacea for decarbonising everything? Exploring contested hydrogen pathways in Germany. Environ. Res. Lett. 2023, 18, 114017. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Zhang, Z.; Lin, K.; Zheng, M. Current development status, policy support and promotion path of China’s green hydrogen industries under the target of carbon emission peaking and carbon neutrality. Sustainability 2023, 15, 10118. [Google Scholar] [CrossRef]
- Vilbergsson, K.; Dillman, K.; Emami, N.; Ásbjörnsson, E.; Heinonen, J.; Finger, D. Can remote green hydrogen production play a key role in decarbonizing Europe? A cradle to gate LCA of hydrogen production in Austria, Belgium and Iceland. EGU Gen. Assem. Conf. Abstr. 2022, EGU22-5406. [Google Scholar] [CrossRef]
- Ibagon, N.; Muñoz, P.; Díaz, V.; Teliz, E.; Correa, G. Techno-economic analysis for off-grid green hydrogen production in Uruguay. J. Energy Storage 2023, 67, 107604. [Google Scholar] [CrossRef]
- Galimova, T.; Fasihi, M.; Bogdanov, D.; Breyer, C. Impact of international transportation chains on cost of green e-hydrogen: Global cost of hydrogen and consequences for Germany and Finland. Appl. Energy 2023, 347, 121369. [Google Scholar] [CrossRef]
- Ruhnau, O.; Qvist, S. Storage requirements in a 100% renewable electricity system: Extreme events and inter-annual variability. Environ. Res. Lett. 2022, 17, 044018. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.; Eduok, U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 2022, 47, 13771–13802. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, Z. Overview of hydrogen storage and transportation technology in China. Unconv. Resour. 2023, 3, 291–296. [Google Scholar] [CrossRef]
- Semeraro, M.A., III. Renewable energy transport via hydrogen pipelines and HVDC transmission lines. Energy Strategy Rev. 2021, 35, 100658. [Google Scholar] [CrossRef]
- Nazir, H.; Muthuswamy, N.; Louis, C.; Jose, S.; Prakash, J.; Buan, M.E.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. Int. J. Hydrogen Energy 2020, 45, 20693–20708. [Google Scholar] [CrossRef]
- Dogan, B. Hydrogen storage tank systems and materials selection for transport applications. In Proceedings of the ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 23–27 July 2006; pp. 571–578. [Google Scholar]
- Pan, W.; Wan, T.; Han, Y.; Liu, S.; Fu, J. Storage and transportation technology solutions selection for large-scale hydrogen energy utilization scenarios under the trend of carbon neutralization. IOP Conf. Ser. Earth Environ. Sci. 2021, 770, 012017. [Google Scholar] [CrossRef]
- Tzimas, E.; Castello, P.; Peteves, S. The evolution of size and cost of a hydrogen delivery infrastructure in Europe in the medium and long term. Int. J. Hydrogen Energy 2007, 32, 1369–1380. [Google Scholar] [CrossRef]
- Bauer, A.; Mayer, T.; Semmel, M.; Morales MA, G.; Wind, J. Energetic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrogen Energy 2019, 44, 6795–6812. [Google Scholar] [CrossRef]
- Petitpas, G.; Aceves, S.M.; Gupta, N. Vehicle refueling with liquid hydrogen thermal compression. Int. J. Hydrogen Energy 2012, 37, 11448–11457. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Wolfram, P.; O’Rourke, P.; McJeon, H.; Kyle, P. Helping the climate by replacing liquefied natural gas with liquefied hydrogen or ammonia? Environ. Res. Lett. 2024, 19, 054005. [Google Scholar] [CrossRef]
- Aziz, M. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Muduli, R.C.; Kale, P. Sorption properties of nanostructured ball-milled porous silicon for solid-state hydrogen storage up to 80 bar. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Halder, P.; Babaie, M.; Salek, F.; Haque, N.; Savage, R.; Stevanovic, S.; Zare, A. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2024, 52, 973–1004. [Google Scholar] [CrossRef]
- Rampai, M.M.; Mtshali, C.B.; Seroka, N.S.; Khotseng, L. Hydrogen production, storage, and transportation: Recent advances. RSC Adv. 2024, 14, 6699–6718. [Google Scholar] [CrossRef]
- Demir, M.E.; Dincer, I. Cost assessment and evaluation of various hydrogen delivery scenarios. Int. J. Hydrogen Energy 2018, 43, 10420–10430. [Google Scholar] [CrossRef]
- Chengdu Hydrogen Energy Industry Development Plan. Available online: https://cdjx.chengdu.gov.cn/cdsjxw/ (accessed on 2 February 2021).
- Le Duigou, A.; Bader, A.G.; Lanoix, J.C.; Nadau, L. Relevance and costs of large scale underground hydrogen storage in France. Int. J. Hydrogen Energy 2017, 42, 22987–23003. [Google Scholar] [CrossRef]
- Rashid, M.; Al Mesfer, M.K.; Naseem, H.; Danish, M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 2249–8958. [Google Scholar]
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
- Lahrichi, A.; El Issmaeli, Y.; Kalanur, S.S.; Pollet, B.G. Advancements, strategies, and prospects of solid oxide electrolysis cells (SOECs): Towards enhanced performance and large-scale sustainable hydrogen production. J. Energy Chem. 2024, 94, 688–715. [Google Scholar] [CrossRef]
- Liu, H.; Yu, M.; Tong, X.; Wang, Q.; Chen, M. High Temperature Solid Oxide Electrolysis for Green Hydrogen Production. Chem. Rev. 2024, 18, 10509–10576. [Google Scholar] [CrossRef]
- Astriani, Y.; Tushar, W.; Nadarajah, M. Optimal planning of renewable energy park for green hydrogen production using detailed cost and efficiency curves of PEM electrolyzer. Int. J. Hydrogen Energy 2024, 79, 1331–1346. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Qi, M.; Kim, J. Techno-economic analysis of anion exchange membrane electrolysis process for green hydrogen production under uncertainty. Energy Convers. Manag. 2024, 302, 118134. [Google Scholar] [CrossRef]
- Manabe, A.; Kashiwase, M.; Hashimoto, T.; Hayashida, T.; Kato, A.; Hirao, K.; Shimomura, I.; Nagashima, I. Basic study of alkaline water electrolysis. Electrochim. Acta 2013, 100, 249–256. [Google Scholar] [CrossRef]
- Shi, J.; Gao, H.; Wang, H. Economic analysis on wind power for hydrogen production. Energy China 2015, 37, 11–14. [Google Scholar]
- Zhang, C. Cost analysis and development suggestion for hydrogen production from coal and natural gas. Pet. Process. Petrochem. 2018, 49, 94–98. [Google Scholar]
- Time-Sharing Mechanism for Electricity Prices in Qinghai Province. Available online: http://www.qinghai.gov.cn/index.html (accessed on 9 September 2022).
- Zeyen, E.; Riepin, I.; Brown, T. Temporal regulation of renewable supply for electrolytic hydrogen. Environ. Res. Lett. 2024, 19, 024034. [Google Scholar] [CrossRef]
- Abdin, Z.; Tang, C.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. Iscience 2021, 24, 102966. [Google Scholar] [CrossRef]
- Busch, T.; Groß, T.; Linßen, J.; Stolten, D. The role of liquid hydrogen in integrated energy systems–A case study for Germany. Int. J. Hydrogen Energy 2023, 48, 39408–39424. [Google Scholar] [CrossRef]
- Available online: https://www.yicai.com/news/101148270.html (accessed on 21 August 2021).
- Available online: http://www.chinahv.cn/display/439168.html (accessed on 9 October 2020).
- Chen, X.; Pang, Z.; Zhang, M.; Jiang, S.; Feng, J.; Shen, B. Techno-economic study of a 100-MW-class multi-energy vehicle charging/refueling station: Using 100% renewable, liquid hydrogen, and superconductor technologies. Energy Convers. Manag. 2023, 276, 116463. [Google Scholar] [CrossRef]
- Argonne National Laboratory. Hydrogen and Fuel Cells Program. Available online: https://www.anl.gov (accessed on 1 August 2023).
- Zou, J.; Han, N.; Yan, J.; Feng, Q.; Wang, Y.; Zhao, Z.; Fan, J.; Zeng, L.; Li, H.; Wang, H. Electrochemical compression technologies for high-pressure hydrogen: Current status, challenges and perspective. Electrochem. Energy Rev. 2020, 3, 690–729. [Google Scholar] [CrossRef]
- Barthélémy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Rong, Y.; Chen, S.; Li, C.; Chen, X.; Xie, L.; Chen, J.; Long, R. Techno-economic analysis of hydrogen storage and transportation from hydrogen plant to terminal refueling station. Int. J. Hydrogen Energy 2024, 52, 547–558. [Google Scholar] [CrossRef]
- Chen, X.; Gou, H.; Chen, Y.; Jiang, S.; Zhang, M.; Pang, Z.; Shen, B. Superconducting fault current limiter (SFCL) for a power electronic circuit: Experiment and numerical modelling. Supercond. Sci. Technol. 2022, 35, 045010. [Google Scholar] [CrossRef]
- Clegg, M.; Ruiz, H.S. Electromagnetic analysis and AC losses of triaxial cables with multiple 2G-HTS layers per phase. Superconductivity 2023, 5, 100039. [Google Scholar] [CrossRef]
- Mayer, T.; Semmel, M.; Morales MA, G.; Schmidt, K.M.; Bauer, A.; Wind, J. Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrogen Energy 2019, 44, 25809–25833. [Google Scholar] [CrossRef]
- Reddi, K.; Elgowainy, A.; Rustagi, N.; Gupta, E. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. Int. J. Hydrogen Energy 2017, 42, 21855–21865. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Q.; Xue, J.; Tang, Z.; Sun, Y.; Wu, Q. Comparative techno-economic study of solar energy integrated hydrogen supply pathways for hydrogen refueling stations in China. Energy Convers. Manag. 2020, 223, 113240. [Google Scholar] [CrossRef]
- Elgowainy, A.; Reddi, K.; Lee, D.; Rustagi, N.; Gupta, E. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations. Int. J. Hydrogen Energy 2017, 42, 29067–29079. [Google Scholar] [CrossRef]
- Huang, S. Technological Economy of Chemical Engineering; Chemical Industry Press: Beijing, China, 2012. [Google Scholar]
- NDRC. Construction of Project Economic Evaluation Methods and Parameters; NDRC: Beijing, China, 2006. [Google Scholar]
- Esen, H.; Inalli, M.; Esen, M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Build. Environ. 2007, 42, 1955–1965. [Google Scholar] [CrossRef]
- Esen, M.; Yuksel, T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build. 2013, 65, 340–351. [Google Scholar] [CrossRef]
- China’s National Development Reform Commission. Available online: https://en.ndrc.gov.cn (accessed on 1 August 2023).
- Chen, X.; Pang, Z.; Jiang, S.; Zhang, M.; Feng, J.; Fu, L.; Shen, B. A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives. Energy 2023, 270, 126871. [Google Scholar] [CrossRef]
- Opinions of the General Office of Chengdu Municipal People’s Government on Promoting High-Quality Development of Hydrogen Energy Industry. Available online: http://www.sczwfw.gov.cn (accessed on 13 July 2020).
- Mahmod, S.S.; Jahim, J.M.; Abdul, P.M.; Luthfi AA, I.; Takriff, M.S. Techno-economic analysis of two-stage anaerobic system for biohydrogen and biomethane production from palm oil mill effluent. J. Environ. Chem. Eng. 2021, 9, 105679. [Google Scholar] [CrossRef]
- Bosch, M.; Montllor-Serrats, J.; Tarrazon, M. NPV as a function of the IRR: The value drivers of investment projects. J. Appl. Financ. 2007, 17, 41. [Google Scholar]
- Yu, S.; Wei, Y.; Guo, H.; Ding, L. Carbon emission coefficient measurement of the coal-to-power energy chain in China. Appl. Energy 2014, 114, 290–300. [Google Scholar] [CrossRef]
- China Product Full Life Cycle Greenhouse Gas Emission Coefficient Library. Available online: http://lca.cityghg.com/ (accessed on 22 September 2024).
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories Volume 1: General Guidance and Reporting; Institute for Global Environmental Strategies (IGES) for the IPCC: Kanagawa, Japan, 2006. [Google Scholar]
- Kothari, R.; Buddhi, D.; Sawhney, R.L. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 2008, 12, 553–563. [Google Scholar] [CrossRef]
Technical Data | Value | Unit |
---|---|---|
Price | 14,100,000 | RMB |
Capacity | 89.3 | kgH2/h |
Operating temperature | 343 | K |
Operating pressure | 15 | atm |
Power consumption of electrolysis | 50.392 | kWh/kgH2 |
Other consumption | 4.7 | kWh/kgH2 |
Delivered H2 pressure | 2 | MPa |
Fresh water consumption | 10.99 | kg/kgH2 |
Recycling water consumption | 405.15 | kg/kgH2 |
Day running time | 18 | h |
Parameter | Value | Unit |
---|---|---|
Price | 1,200,000 | $ |
Fuel type | H2 | - |
Transport type | LH2 | - |
Load capacity | 4000 | kg |
Fuel economy | 0.08 | kg/km |
Average speed | 70 | km/h |
Truck use per day | 15 | h |
Parameter | Value | Unit |
---|---|---|
Price | 376,470 | $ |
Fuel type | H2 | - |
Transport type | GH2 | - |
Tube trailer pressure | 20 | MPa |
Load capacity | 350 | kg |
Fuel economy | 0.08 | kg/km |
Average speed | 70 | km/h |
Truck use per day | 15 | h |
Item | Price | Unit |
---|---|---|
Electricity in flat and low periods (Qinghai Province) | 0.28 | RMB/kWh |
Electricity (Qinghai Province) | 0.35 | RMB/kWh |
Electricity (Sichuan Province) | 0.55 | RMB/kWh |
Fresh water | 1.5 | RMB/ton |
Recycling water | 0.3 | RMB/ton |
Fuel H2 | 40,000 | RMB/ton |
O2 | 0.25 | RMB/Nm3 |
Item | Value | Unit |
---|---|---|
HRS capacity | 500 | kgH2/d |
Discounted rate | 8% | - |
Exchange rate of RMB | 7 | RMB:$ |
Lifetime for H2 production | 20 | years |
Lifetime for H2 transportation | 20 | years |
Lifetime for H2 refueling station | 15 | years |
General facilities | 10% | of TPU |
Engineering permitting and startup | 5% | of TPU |
Contingencies | 5% | of TPU |
Land Miscellaneous | 3% | of TPU |
Variable non-fuel O and M | 0.5% | of TCC |
Labor | 3% | of TCC |
Fixed operating cost | 5% | of TCC |
Equipment | Capital Costs | Refs |
---|---|---|
Liquefier cost | 75,185,000 $ each unit | [43] |
Compressor | 51,901 × (3600 m)0.65 $ | [50] |
Gasifier | 650,000 $ each unit | [50] |
Low-pressure buffer tank | 1001 $/kgH2 | [50] |
High-pressure buffer tank | 1495 $/kgH2 | [50] |
Liquid H2 tank | 27 $/kgH2 | [59] |
Dispenser with precooling unit | 170,000 $ each unit | [53] |
Item | Value | Unit |
---|---|---|
Wind photovoltaic | 0.01 | kgCO2/kWh |
Electricity (Qinghai Province) | 0.096 | kgCO2/kWh |
Electricity (Sichuan Province) | 0.123 | kgCO2/kWh |
Fresh water | 5.75 | kgCO2/ton |
Recycling water | 0.82 | kgCO2/ton |
Fuel H2 | 10,063 | kgCO2/ton |
Diesel | 3797 | kgCO2/ton |
The Main Energy-Consuming Phase | Line 1 | Line 2 | Line 3 | |||
---|---|---|---|---|---|---|
The Amount and Proportion of CO2 Emissions | Proportion of Energy | The Amount and Proportion of CO2 Emissions | Proportion of Energy | The Amount and Proportion of CO2 Emissions | Proportion of Energy | |
H2 production | 5.684 (78.6%) | Electric 73.1% | 5.684 (70.5%) | Electric 65.6% | 5.684 (61.3%) | Electric 57% |
Water 5.5% | Water 4.9% | Water 4.3% | ||||
H2 transportation | 1.36 (18.8%) | Electric 13.6% | 1.703 (21.1%) | Electric 17.4% | 3.406 (36.7%) | Electric 7% |
H2 5.2% | H2 3.7% | H2 29.7% | ||||
H2 refueling station | 0.188 (2.6%) | Electric 2.6% | 0.675 (8.4%) | Electric 8.4% | 0.188 (2%) | Electric 2% |
Total CO2 emissions | 7.232 | 8.062 | 9.278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yu, L.; Chen, X.; Zhang, Z.; Qing, K.; Shen, B. Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment. Sustainability 2024, 16, 8839. https://doi.org/10.3390/su16208839
Yu Y, Yu L, Chen X, Zhang Z, Qing K, Shen B. Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment. Sustainability. 2024; 16(20):8839. https://doi.org/10.3390/su16208839
Chicago/Turabian StyleYu, Yaoyao, Lixia Yu, Xiaoyuan Chen, Zhiying Zhang, Ke Qing, and Boyang Shen. 2024. "Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment" Sustainability 16, no. 20: 8839. https://doi.org/10.3390/su16208839
APA StyleYu, Y., Yu, L., Chen, X., Zhang, Z., Qing, K., & Shen, B. (2024). Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment. Sustainability, 16(20), 8839. https://doi.org/10.3390/su16208839