Bamboo Scaffolding as a European Promising Opportunity: A Structural Feasibility Study
Abstract
:1. Introduction
2. Design of the Scaffolding
Connections
3. Case Studies: Prototype 1 and 2 Dimensioning and Verification
4. Materials
5. Structural Design
5.1. Load Analysis
5.2. Structural Analysis
5.3. Verification of the Connection
6. Resulting Scaffolding Structure
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- European Commission. The Europen Green Deal—Comunication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Liese, W.; Köhl, M. Bamboo: The Plant and Its Uses; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 10. [Google Scholar]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Xu, M.; Ji, H.; Zhuang, S. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLoS ONE 2018, 13, e0193024. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, Y.; Li, Y.; Henley, G. Impacts of selective harvest on the carbon sequestration potential in Moso bamboo (Phyllostachys pubescens) plantations. For. Trees Livelihoods 2013, 22, 1–18. [Google Scholar] [CrossRef]
- Laleicke, P.F.; Cimino-Hurt, A.; Gardner, D.; Sinha, A. Comparative carbon footprint analysis of bamboo and steel scaffolding. J. Green Build. 2015, 10, 114–126. [Google Scholar] [CrossRef]
- Guinée, J. Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges? In Taking Stock of Industrial Ecology; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Butera, S.; Christensen, T.H.; Astrup, T.F. Life cycle assessment of construction and demolition waste management. Waste Manag. 2015, 44, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Zea Escamilla, E.; Habert, G. Environmental impacts of bamboo-based construction materials representing global production diversity. J. Clean. Prod. 2014, 69, 117–127. [Google Scholar] [CrossRef]
- Zea Escamilla, E.; Habert, G.; Daza, J.F.C.; Archilla, H.F.; Fernández, J.S.E.; Trujillo, D. Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. Sustainability 2018, 10, 3096. [Google Scholar] [CrossRef]
- Guidelines on the Design and Construction of Bamboo Scaffolds, Building Department. Available online: https://www.bd.gov.hk/doc/en/resources/codes-and-references/code-and-design-manuals/GDCBS.pdf (accessed on 19 December 2023).
- Chung, K.F.; Yu, W.K. Mechanical Properties of Structural Bamboo for Bamboo Scaffoldings. Eng. Struct. 2002, 24, 429–442. [Google Scholar] [CrossRef]
- Chung, K.F.; Siu, Y.C. Erection of Bamboo Scaffolds; Technical Report n. 24; The Hong Kong Polytechnic University: Hong Kong, China; Available online: https://dokumen.tips/documents/bamboo-scaffolds-in-building-construction-erection-manualtechnical-report-no24.html?page=1 (accessed on 14 January 2024).
- Chang, C.; Yu, T.X. An Engineering Study for Improving Safety and Reliability of Bamboo Scaffoldings; Occupational Safety and Health Council: Hong Kong, China, 2002. [Google Scholar]
- Zhang, C. Some Issues Relating to Safe Usage of Bamboo Scaffoldings; University of Science and Technology: Hong Kong, China, 2017. [Google Scholar]
- ISO 22156:2021; Bamboo Structures—Bamboo Culms—Structural Design. ISO: Geneva, Switzerland, 2021.
- Harries, K.A.; Sharma, B.; Richard, M. Structural use of full culm bamboo: The path to standardization. Int. J. Archit. Eng. Constr. 2012, 1, 66–75. [Google Scholar] [CrossRef]
- Molari, L.; Mentrasti, L.; Fabiani, M. Mechanical characterization of five Italian bamboo species. Structures 2019, 24, 59–72. [Google Scholar] [CrossRef]
- UNI EN 12810-1:2004; Ponteggi di Facciata Realizzati con Componenti Prefabbricati—Parte 1: Specifiche di Prodotto (Facade Scaffolding Made with Prefabricated Components—Part 1: Product Specifications). UNI: Rome, Italy, 2004.
- UNI EN 12810-2:2004; Ponteggi di Facciata Realizzati con Componenti Prefabbricati—Parte 2: Metodi Particolari di Progettazione Strutturale (Facade Scaffolding Made with Prefabricated Components—Part 2: Special Structural Design Methods). UNI: Rome, Italy, 2004.
- NTC2018; Norme Tecniche delle Costruzioni. 2018. Available online: http://ntc.archliving.it/norme-tecniche-per-le-costruzioni/ (accessed on 14 January 2024).
- Parrella, V.F.; Molari, L. Building retrofitting system based on bamboo-steel hybrid exoskeleton. Sustainability 2021, 13, 5984. [Google Scholar] [CrossRef]
Tightening Moment [Nm] | Thickness of Throat Band Cable Tie [mm] | Load [kN] |
---|---|---|
5 | 9.0 | 0.77 |
5 | 12.7 | 0.99 |
7 | 12.7 | 1.55 |
12 | 12.7 | 1.95 |
Structural Elements | Prototype 1 | Prototype 2 |
---|---|---|
Bay length [m] | 1.8 | 1.5 |
Bay lift [m] | 1.0 | 0.8 |
Height lift [m] | 2.0 | 2.0 |
Total height [m] | 9.4 | 9.4 |
Resistance | Young Moduli | ||
---|---|---|---|
[Mpa] | [Gpa] | ||
[Mpa] | [GPa] | ||
[Gpa] | |||
[Mpa] | [Gpa] | ||
[MPa] | [Gpa] | ||
[MPa] |
Characteristic Values | Characteristic Values | |||||
---|---|---|---|---|---|---|
[Mpa] | [Gpa] | |||||
[Mpa] | [Gpa] | |||||
[Gpa] | ||||||
[MPa] | [Gpa] | |||||
[MPa] | [Gpa] | |||||
[MPa] | ||||||
Denomination | Load Combinations |
---|---|
1 | Service condition with the action of the main service loads |
2 | Service condition with the action of the main service loads and the secondary wind |
3 | Out-of-service condition with the main wind action |
4 | Out-of-service condition with primary action snow and secondary wind action |
5 | Out-of-service condition with main action wind and secondary snow |
Prototype | Structural Elements | [kN] | Shear Force [kN] | Bending Moment [kNmm] | |||
---|---|---|---|---|---|---|---|
Prototype 1 | Standards | 5.30 | ULS 4 | 0.31 | ULS 3/5 | 98.0 | ULS 1 |
Ledgers | 0.66 | ULS 5 | 1.40 | ULS 1 | - | - | |
Transoms | 1.49 | ULS 3 | 2.30 | ULS 1 | 0.70 | ULS 1 | |
Diagonals | 1.40 | ULS 1 | - | - | - | - | |
Prototype 2 | Standards | 3.92 | ULS 4 | 0.33 | ULS 3/5 | 56.1 | ULS 1 |
Ledgers | 0.56 | ULS 5 | 0.94 | ULS 1 | - | - | |
Transoms | 1.58 | ULS 5 | 1.60 | ULS 1 | 0.37 | ULS 1 | |
Diagonals | 0.88 | ULS 1 | - | - | - | - |
Prototype | Structural Elements | [mm] | [mm] |
---|---|---|---|
Prototype 1 | Standards | 75 | |
Ledgers | 75 | ||
Transoms | 85 | ||
Diagonals | 50 | ||
Prototype 2 | Standards | 65 | |
Ledgers | 65 | ||
Transoms | 70 | ||
Diagonals | 50 |
Elements | Number | Length [m] | [mm] | [mm] | |
---|---|---|---|---|---|
Standards | M1 | 4 | 3.50 | 75 | |
M2 | 8 | 4.00 | 75 | ||
M3 | 4 | 1.90 | 75 | ||
M4 | 4 | 2.50 | 75 | ||
M5 | 4 | 2.90 | 75 | ||
Ledgers | C1 | 8 | 2.60 | 75 | |
C2 | 8 | 3.30 | 75 | ||
Transoms | T1 | 32 | 1.40 | 85 | |
Diagonals | D1 | 19 | 2.70 | 50 | |
D2 | 8 | 2.20 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altieri, D.; Molari, L. Bamboo Scaffolding as a European Promising Opportunity: A Structural Feasibility Study. Sustainability 2024, 16, 915. https://doi.org/10.3390/su16020915
Altieri D, Molari L. Bamboo Scaffolding as a European Promising Opportunity: A Structural Feasibility Study. Sustainability. 2024; 16(2):915. https://doi.org/10.3390/su16020915
Chicago/Turabian StyleAltieri, Davide, and Luisa Molari. 2024. "Bamboo Scaffolding as a European Promising Opportunity: A Structural Feasibility Study" Sustainability 16, no. 2: 915. https://doi.org/10.3390/su16020915